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The recent methodological advances in multi-omics approaches, including

genomic, transcriptomic, metabolomic, lipidomic, and proteomic, have

revolutionized the research field by generating “big data” which greatly

enhanced our understanding of the molecular complexity of the brain and

disease states. Network approaches have been routinely applied to single-

omics data to provide critical insight into disease biology. Furthermore, multi-

omics integration has emerged as both a vital need and a new direction to

connect the different layers of information underlying disease mechanisms. In

this review article, we summarize popular network analytic approaches for

single-omics data and multi-omics integration and discuss how these

approaches have been utilized in studying neurodegenerative diseases.
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Introduction

Human diseases have enormous levels of complexity. The vast majority of conditions,

such as Alzheimer’s disease (AD), are caused by a combination of genetic, environmental,

and lifestyle factors, most of which have not yet been identified (Knopman et al., 2021). To

understand this disease complexity and explore the undefined risk factors, the research

field has tended to employ the single- or multi-omics approaches that aim to study the

broader biological processes in an unbiased way, instead of focusing on single molecules.

This rapid progress in basic science brought by omics study seems to be quite fruitful;

however, how to extract meaningful insights from these large-scale and high-dimensional

data sets from multiple sources is still a challenge.

Network-based approaches to studying human disease have had promising

applications. Networks constitute the foundation of biological systems. A network can

involve different levels of biological entities that connect to one another through direct or

indirect interactions. The central idea of applying network analysis is to reduce the

dimensionality of data from thousands of altered genes, proteins, metabolites, lipids, or

other biological entities to a smaller and more interpretable set of altered processes (Pe’er

and Hacohen, 2011).
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The fast development of omics technology combined with a

decrease in cost has made multi-omics readily available to

researchers. These different omics data types are unique but

complementary with each set containing information that is not

represented in others. Taken together as a collective group, these

various omics representations constitute the biological networks that

drive disease mechanisms. Multi-omics integration using a network

approach helps to bridge the gap between genotype and disease,

which remains an essential task in the current era of big data analytics.

In the following sections, we summarize popular network analytic

approaches for omics studies of neurodegenerative diseases from the

standpoints of both single-omics and multi-omics integration.

Common network approaches for
single-omics

As most neurodegenerative disease studies focused on the

analysis of single-omics for many years, successful network

approaches have been developed to fit the data type. In fact,

network frameworks can often be adapted to fit multiple data

types. Here, we summarize several common network approaches

for single-omics analysis [Figure 1] (Created with BioRender.com).

Genomics

Genomics analysis utilizing whole exome or whole genome

sequencing is perhaps the most common omics for genetic

studies aiming to identify risk and protective mutations

(Pottier et al., 2019). However, despite the success of genome-

wide association studies (GWAS) for human disease, a large

portion of genetic variance remains unexplained (Manolio et al.,

2009; Zuk et al., 2012). Gene-gene interactions, such as epistasis,

may explain a portion of the missing variance. For example,

Combarros et al. (2009) used synergy factor analysis to assess

epistasis in sporadic AD, providing a measure of both the size

and significance of interactions between genetic variants. They

identified significant gene-gene interactions associated with AD

that were involved in networks of cholesterol metabolism, β-
amyloid (Aβ) metabolism, inflammation, oxidative stress, and

others. More recently, Reddy et al. (2020) analyzed close to ten

thousand whole exomes from the Alzheimer’s Disease

Sequencing Project and used polygenic risk scores to combine

single nucleotide variant analysis with co-expression network

analysis to identify four genes significantly associated with AD

within a co-expression network with TREM2. Another recent

study combined epistasis screening with co-expression network

analysis using multiple independent datasets and identified two

significant genetic interactions implicated in AD (Wang et al.,

2021).

Notably, the Individualized Network-based Co-Mutation

(INCM) methodology was developed for quantifying the

putative genetic interactions in cancer. This approach has

been demonstrated to uncover differential genetic interaction

burdens between mutated or known cancer genes compared to

other essential genes. The network-predicted putative genetic

interactions were also correlated with patient survival (Liu et al.,

FIGURE 1
An overview of network analytic approaches for omics studies.
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2020). While this approach has only been applied to cancer

studies thus far, it could be adapted to other disease studies for

the comprehensive identification of candidate therapeutic

pathways.

Transcriptomics

Transcriptomics has evolved from the traditional bulk RNA

sequencing to single cell/single nuclei RNA sequencing (sc/

snRNA-seq) allowing the molecular mechanism of the disease

to be directly measured and explored at the cellular level. More

recent spatial transcriptomics technologies measure cell-level

expression activity in their morphological context. In the

context of AD, it has been demonstrated that the strongest

disease-associated transcriptomic changes appeared early in

pathological progression and were highly cell-type specific,

whereas genes upregulated at late stages were common across

cell types and primarily involved in the global stress response

(Mathys et al., 2019). Regardless of the underlying technological

differences of these modalities, the resulting transcriptomics data

lend themselves to the application of target-list-based, rank-

based, and correlation-based network analysis.

Target-list-based approaches rely on a list of specific gene

targets, often selected from differentially expressed genes

between conditions, to identify enriched gene ontologies,

canonical pathways, and regulatory networks. This approach

is intuitive, and the gene targets identified can often be

validated in wet labs (Ren et al., 2018; Zhao et al., 2020a;

Zhao et al., 2020b). However, when gene expression

differences between conditions are subtle, the target-list

approach will not work well because very few genes will pass

reasonable statistical significance thresholds for inclusion in

downstream analyses. Alternatively, a rank-based approach,

such as Gene Set Enrichment Analysis (GSEA), can

circumvent this limitation and find the biological significance

behind small but concerted changes. Instead of evaluating the

contribution of individual genes, GSEA focuses on gene sets,

which come in the form of published pathways, ontologies, or a

specific curation to assess whether members of a gene set tend to

occur toward the top or bottom of the ranked gene list, in which

case the gene set is regarded as being correlated with the trait of

interest (Subramanian et al., 2005). A recent AD study applying

GSEA to snRNA-seq data of a transgenic mouse model of 5x

familial Alzheimer’s disease (5xFAD) found that a specific

subtype of AD-associated excitatory neuron possessed

downregulated AD pathways at an early stage of disease

progression (Shao et al., 2021), a finding which highlights the

value of applying network approaches traditionally used on bulk

data to the more sparse representations found at the single-nuclei

level.

Correlation-based analysis, such as Weighted Gene Co-

expression Network Analysis (WGCNA), relies on calculating

correlation coefficients between gene pairs, grouping highly

correlated genes into modules (i.e., subnetworks), and then

correlating the expression pattern of the module with traits of

interest. The module hub genes, those with the highest

connectivity to all genes within the module, can be nominated

as biomarkers or therapeutic targets. For example, Liang et al.

(2018) investigated co-expression networks in AD and control

samples of the human hippocampus and found that mineral

absorption, NF-κB signaling, and cGMP-PKG signaling

pathways were associated with AD clinical severity. Analysis

of human temporal cortex and cerebellum samples by our group

found that TMEM106B protective haplotypes were associated

with gene networks involved in synaptic transmission.

Separately, the risk haplotype was associated with gene

networks enriched for immune response (Ren et al., 2018).

Our group also studied the brain transcriptomics of human

apolipoprotein E (apoE)-targeted replacement mice across

different ages and sex and reported an aging-related immune

module led by Trem2 and Tyrobp, and an apoE-related module

with multiple Serpina3 genes (Zhao et al., 2020b). Notably, the

different network approaches mentioned here are

complementary, and a study can often benefit from applying

more than one approach to gain different insights (Rexach et al.,

2020) (Ren et al., 2018; Zhao et al., 2020a; Zhao et al., 2020b).

Finally, it is worth noting that while hub genes are often key

regulators in gene networks identified by methods such as

WGCNA, the definition of hub genes is not confined to

WGCNA. Indeed, the presence of hubs seems to be a general

feature of all cellular networks. For example, transcription factors

(TF) are often regarded as hub genes because they bind to specific

DNA sequences, form interactions with many genes, and

conduct most of the regulation activities in the human

genome, Additionally, cancer genes such as oncogenes and

tumor suppressors are often hub genes in the tumor genetics

network (Yu et al., 2017). While hub genes in biological studies

are often identified based on highest connectivity (Langfelder and

Horvath, 2008), other methods can also be used to name hub

genes, such as Kleinberg (1998) score, superior node degree and

other node centrality measures (Freeman, 1977; Freeman et al.,

1979; Strogatz, 2001; Li et al., 2018; Ruffini et al., 2022).

Proteomics

Proteomics analyses can utilize many of the same network

approaches as transcriptomics due to the easy mapping of genes

to proteins (Zhang et al., 2018). Of note, Protein-Protein

Interaction (PPI) is one of the main categories of biological

networks which form the backbone of signaling pathways,

metabolic pathways, and cellular processes required for the

normal functioning of cells (Westermarck et al., 2013). The

mapping of protein interactions over time has been curated

and stored in several large databases, which currently serve as
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the knowledge base for network analysis of proteomics. Some of

the most commonly used databases include Human Protein

Reference Database (HPRD) (Peri et al., 2004), Molecular

Interaction Database (MINT) (Chatr-aryamontri et al., 2007),

Biological General Repository for Interaction Database

(BioGRID) (Stark et al., 2006), and the IntAct molecular

interaction database (IntAct) (Hermjakob et al., 2004).

Many major studies have relied on protein networks to

investigate disease biology. In one multicenter consortium

study, the investigator analyzed more than 2,000 human brain

tissues via quantitative mass spectrometry (MS)-based

proteomics and found a protein network module linked to

sugar metabolism emerged as one of the protein modules

most significantly associated with AD pathology and cognitive

impairment. This module was enriched in AD genetic risk factors

as well as microglia and astrocyte protein markers associated

with an anti-inflammatory state, suggesting that the biological

functions it represents serve a protective role in AD (Johnson

et al., 2020). Further proteome and transcriptome comparison

revealed that the levels of RNAs and proteins were only partially

correlated. This supports the belief that the transcriptome is often

not an accurate indicator of protein abundance, because protein

abundance can be regulated by posttranscriptional events such as

protein turnover. For example, in another study, the investigators

analyzed the proteomes of more than 1,000 brain tissues across

various cohorts and brain regions to reveal new AD-related

proteins. They found that nearly half of the protein co-

expression modules, including modules significantly altered in

AD such as theMAPK signaling andmatrisome-related modules,

were not observed in RNA networks from the same cohorts and

brain region (Johnson et al., 2022). These results suggest that

future studies should consider the integration of transcriptomics

with proteomics profiles to better understand the disease.

Lipidomics and metabolomics

The determination of interactions between individual lipid

species or metabolites with other lipids, proteins, and metabolites

in the system adds crucial information on disease regulation. The

network approach for lipidomics and metabolomics can also be

adapted to those commonly used in transcriptomics or

proteomics. For example, using a correlation-based network

approach, Aikawa et al. (2021) reported that LPS

administration and ABCA7 haplodeficiency affected

glycerophospholipid metabolism, linoleic acid metabolism, and

α-linolenic acid metabolism. Our group found that aging

regulated mouse serum metabolomics and affected networks

involving long chain fatty acids, amino acids, and biogenic

amines (Zhao et al., 2020b). Köberlin et al. (2015) reported

coregulated lipids associated with different immune

stimulations, which were conserved in cell lines, mice, and

humans. In the same study, gene expressions were mapped to

known sphingolipid metabolic pathways to show immune

regulations of both transcriptomics and lipidomics. This

study, among many others, showcased how lipidomics can be

analyzed similarly in terms of the network approach and that

connecting different omics through networks is not only helpful

but also necessary to understand the disease biology better.

Network-based multi-omics
integration methods

Current multi-omics integration methods can be classified

into two general categories: statistical integration and network-

based integration. Statistical integration relies on drawing

inferences from the data themselves without using prior

knowledge. For example, a top-performing statistical

integration method is joint dimensionality reduction (jDR),

and many tools using this concept have been reviewed

(Cantini et al., 2022). Network-based integration, on the other

hand, views biological systems as interconnected entities, with

each omics contributing to revealing the true connections of the

networks. The central idea is built on the known relationship

among these entities, which provides a guide to the type of

integration.

The Similarity Network Fusion (SNF) method is one of the

few computational network approaches for multi-omics

integration. It constructs a sample-similarity network for each

data type and integrates these networks into a single

comprehensive similarity network via a nonlinear combination

method. During this process, weak similarities are removed while

strong similarities are added, making the combined network

more coherent and robust. SNF has been shown to work well to

integrate mRNA, miRNA, and DNA methylation data for five

cancer datasets (Wang et al., 2014). Lemon-Tree, a method based

on module network inference, was developed to reconstruct co-

expression modules and their upstream regulatory programs

from multi-omics datasets. On one hand, it finds co-expressed

clusters from the gene expression data; on the other hand, it

combines other omics data types, such as miRNA expression,

copy number variants (CNV), and methylation with the gene

module to infer a regulatory score. This approach has shown

accurate prediction results from integrating somatic CNV and

gene expression levels measured in glioblastoma samples from

The Cancer Genome Atlas (TCGA) (Bonnet et al., 2015).

However, both approaches are yet to be utilized in

neurodegenerative disease studies.

While the true computational network approaches for

multi-omics integration are under-developed, many studies

that successfully drew valuable conclusions from multi-omics

data used network analysis differently. For example, Nativio

et al. (2020) used a step-wise approach to integrate

transcriptomic, proteomic, and epigenomic data of

postmortem human brains in AD and control samples. They
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first performed transcriptomics analysis and identified

differentially expressed chromatin-regulated genes in AD.

From there, they investigated proteomics and focused on

histone post-translational modifications (PTMs), which are

known chromatin regulators. The PTMs of interest were

then examined using chromatin immunoprecipitation

sequencing (ChIP–seq). Genes associated with these PTM

changes were used for pathway enrichment analysis, leading

to the conclusion that H3K27ac and H3K9ac were potential

epigenetic drivers of AD, which spur disease pathways through

dysregulation of transcription and chromatin–gene feedback

loops. A more recent study analyzed cerebrospinal fluid (CSF)

from individuals with normal cognition or with cognitive

impairment. They first analyzed proteomics, metabolomics,

lipidomics, and one-carbon metabolism separately, and then

integrated them using multi-omics factor analysis (MOFA)

(Argelaguet et al., 2018), followed by pathway enrichment

analysis. They identified interactions between single-omics

modalities and revealed overrepresentation of the hemostasis,

immune response, and extracellular matrix signaling pathways

in association with AD (Clark et al., 2021). Another group

integrated miRNA, total RNA, and proteomics generated from

human post-mortem midbrains, and found enriched pathways

associated with Parkinson’s disease (PD), including

neuroinflammation, mitochondrial dysfunction, and defects

in synaptic function. Like the other studies, their approach

relies on first analyzing each single-omics; the integration of

multi-omics occurs afterward by exploring interaction

databases (Caldi Gomes et al., 2022).

Neurodegenerative diseases share many common features

such as the accumulation of misfolded proteins and the

progressive loss of neurons. These events are usually regulated

on multiple omics’ levels (Ruffini et al., 2022). To compare

different neurodegenerative diseases, a recent meta-study

integrated genomics, transcriptomics, proteomics, and

methylomics across four different neurodegenerative disorders,

and used network approaches to uncover biological processes

both common and unique to the diseases investigated. They

found that the four neurodegenerative diseases did not differ in

terms of the disease hallmarks, including cell cycle, autophagy

and apoptosis, extracellular matrix organization, development,

signal transduction/transport, immune system, and metabolic

processes. The integration of multi-omics data was done through

the intersection of genes from different omics, multi-omics

conformity, and protein-protein interaction networks. Some

hub genes that were identified through the protein-protein

interaction networks are common in different diseases, such

as HDAC1, BIN1, PICALM, and APOE. Interestingly, the

involvement of HDAC1, which contributes to epigenetic

silencing of active chromatin, was found to be the hub gene

in transcriptomics data of all four diseases, suggesting a crucial

role of epigenomics in unveiling the mechanisms of

neurodegenerative diseases (Ruffini et al., 2022).

Conclusion

In this review, we summarized several common network analysis

approaches used in the studies of neurodegenerative diseases. The

network approaches for different omics are mainly built on the

assumption that the biological entities that function in the same

network or pathway correlate. As a result of this assumption, network

methods initially designed for a particular type of omics can be

adapted to other omics modalities, often with minimal difficulty. At

the same time,multi-omics integration approaches have been utilized

in cancer studies for over a decade, thanks to the large magnitude of

data types available in cancer databases (The Cancer Genome Atlas

Network, 2012). Multi-omics integration for neurodegenerative

diseases is in its infancy and just beginning to benefit from the

availability of larger volumes of multi-omics data. While many

studies have gained critical insight from multi-omics data,

accurate computational network analytic approaches for multi-

omics integration are still developing. It will require continuing

refinement as the field evolves, hoping to shed light on our

understanding of the complex disease molecular mechanisms and

guide future research to find the targeted therapeutic strategies for

these devastating neurodegenerative diseases.
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