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Abstract: Extraction of coronary arteries in coronary computed tomography (CT) angiography
is a prerequisite for the quantification of coronary lesions. In this study, we propose a tracking
method combining a deep convolutional neural network (DNN) and particle filtering method to
identify the trajectories from the coronary ostium to each distal end from 3D CT images. The
particle filter, as a non-linear approximator, is an appropriate tracking framework for such thin
and elongated structures; however, the robust ‘vesselness’ measurement is essential for extracting
coronary centerlines. Importantly, we employed the DNN to robustly measure the vesselness using
patch images, and we integrated softmax values to the likelihood function in our particle filtering
framework. Tangent patches represent cross-sections of coronary arteries of circular shapes. Thus,
2D tangent patches are assumed to include enough features of coronary arteries, and the use of 2D
patches significantly reduces computational complexity. Because coronary vasculature has multiple
bifurcations, we also modeled a method to detect branching sites by clustering the particle locations.
The proposed method is compared with three commercial workstations and two conventional
methods from the academic literature.

Keywords: coronary artery; deep learning; tracking; computed tomography

1. Introduction

Extraction of coronary arteries in coronary computed tomography angiography
(CCTA) is a prerequisite task for the automatic quantification of coronary lesions. In
clinical application, quantification of coronary artery lesions is critical for correct diagnosis,
treatment, and procedure planning. However, the quantification of coronary artery lesions
still requires manual annotation by an experienced expert, which becomes a considerable
burden both in time and cost. Coronary arteries are represented as a tree structure in
a three-dimensional (D) volume image and elongated with an inhomogeneous contrast
enhancement on the lesion. Automatic segmentation of coronary arteries in CT images
remains a challenge because coronary arteries are elongated and have complex tree shapes.

In the literature [1,2], considerable attention was paid to the analysis of curvilinear or
vascular structures. Seven geometric and four photometric characteristics were introduced
for the definition of curvilinear objects as a region of pixels or voxels within one image [2].
Coronary arteries as curvilinear objects have the same characteristics, and the representative
characteristics are:

• The region of the coronary artery is thin across a long path.
• The voxels have significantly different intensities compared to the neighboring background.
• The cross-sectional profile—the intensity values transverse to the main direction—

follow a specific distribution.
• The variation in color along the main direction is smooth.
• Coronary arteries have local curvatures; for instance, some parts may be mostly

straight, other parts can admit soft bends, and other parts may be highly tortuous.
• Coronary arteries have bifurcation sites that are defined as three-branch joints.
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There are several approaches to locating coronary arteries based on the representative
characteristics of the curvilinear objects. Lorenz et al. [3] proposed supervised wave
propagation based on the models of hyper-intensity, locally tubular geometry, centerline
smoothness with the adaptive threshold, and co-variance analysis of extracted segments.
Lorigo et al. [4] proposed a curve evolution approach based on the centerline smoothness
using curvature regularization and image gradients. Hessian-based minimal paths were
found using the multiscale Hessian-based vessel enhancement filters [5–7].

Particle filtering-based tracking methods for coronary artery extraction were intro-
duced by varying measurement models or using novel prior information [8–13]. Lesage et al.
proposed the representative method [9,10] based on the particle filtering framework. Flux-
based vascular features were utilized for the likelihood function, and medial-based geomet-
ric models were learned by kernel density estimation in terms of the scale and direction for
the prior functions. This method has significant potential for improvement by employing a
deep neural network as a robust observation and measurement model. In such a stochastic
framework, the most important component is an accurate measurement of the vesselness,
which mostly affects tracking results.

Mathematical modeling features for a coronary artery is a challenging task because
coronary arteries are thin, elongated, and have complex tree structures. The image qualities
can vary by the noise, artifacts, contrast injection timing, which makes the problem more
challenging; however, a convolutional neural network (CNN) can extract representative
features effectively [14]. CNNs have been successfully applied to vascular segmentation,
and motion estimation on various image modalities including cardiac CT images [15–19].

Wolterlink et al. [16] proposed a CNN-based method for coronary artery tracking.
This method utilizes 3D volume patches to observe the contextual information around the
tracker, which can robustly predict 3D orientations; this, eventually, leads to the location
of centerlines of coronary arteries. Similarly, Salahuddin et al. [19] proposed a 3D patch-
based CNN method to track the coronary artery centerlines. Jung et al. [17] proposed a
CNN-based method for coronary motion estimation where the 2D cross-sectional patches
of coronary arteries were sampled and learned for motion correction; finally, the coronary
arteries were reconstructed in a 3D volume using the compensated 2D patches. The method
shows that CNN can learn the features of coronary arteries using cross-sectional patches.
Zhang et al. [18] proposed a CNN-based deep reinforcement learning method. The method
employed double deep Q-learning and designed Markov decision process for branch-aware
centerline extraction, and shows a higher performance in processing time. Kong et al. [20]
proposed a novel tree-structured convolutional gated recurrent unit model to learn the
structure of coronary arteries. The method demonstrates that long short-term memory can
learn the tree structures of coronary arteries. Inspired by U-Net, Chen et al. [21] proposed
an architecture having multiple auxiliary branches; here, an uncertainty map is generated
from the multiple abstract feature maps in the inference stage, and the uncertainty map is
used to refine the segmentation results.

In this study, we propose a CNN-based stochastic tracking algorithm for the extraction
of coronary arteries from 3 to D CCTA, which is inspired by recently introduced methods
utilizing a spherical local image patch-based CNN [16] and the adaptive particle filtering
method [10]. The proposed method uses tangent patches on a spherical surface as an input
of the CNN model, and the robust vesselness probability squashed by a softmax function
is utilized as a likelihood function in our particle filtering framework. Our transition priors
consider variations in both direction changes and intensity distributions of patches. Further,
we present the robust bifurcation detection model based on clustering the particles.

Our contribution is the development of a fully automatic method to track coronary
arteries. The deep neural network is integrated with a particle filtering framework. The
particles are re-used to identify the bifurcation site by clustering the particles for every
time-step. In terms of accuracy, the method shows a higher performance compared with
existing methods. The proposed method can eventually provide all the centerlines as a tree
structure given CT images.
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2. Methods
2.1. Tracking Scheme

Coronary arteries found in 3D CCTA are thin, elongated, and tree-structured objects.
Our system aims at recovering the vascular centerlines with the tree structure as a chain
of sphere centers XT = {x0, . . . , xT} that are estimated given the observation and the
stationary image Yt = Y, ∀t. The recursive fashion of Maximum a Posteriori (MAP)
estimation is a feasible solver for the most probable path of the coronary artery [22].
Thereafter, a Monte-Carlo approximation is varied out for the posterior distribution p(Xt|Y)
using the weighted population of Nt discrete samples St = {x(i)t , w(i)

t }
NT
i=1. A weight w(i,j)

t+1 is

evaluated from the posterior distribution in Equation (1). The state x(i)t is a discrete location

at time-step t, and x(i,j)t+1 denote the potential successors of x(i)t . When considering x(i,j)t+1 ,

the orientation ~d(i,j)t can be retrospectively fixed as shown in Figure 1a, and the associated

weight w(i,j)
t+1 is computed as follows:

w(i,j)
t+1 ∝ w(i)

t p(Y|x(i,j)t+1)p(x(i,j)t+1 |x
(i)
t ) (1)

where p(Y|x(i,j)t+1) and p(x(i,j)t+1 |x
(i)
t ) are the likelihood and the transition prior, respectively.

Using the principle of sequential importance resampling (SIR) at every time-step t, we
estimated the posterior distribution in two steps: prediction and update. In the prediction
step, the NT samples {x(i,j)t+1 , w(i,j)

t+1} are drawn from the previous distribution {x(i)t , w(i)
t }.

In the update step, the samples are weighted by Equation (1). The result would be the
weighted new population {x(i)t+1, w(i)

t+1}. For the centerline estimation, we can estimate and
update the state xt as,

x̂t = x̂t−1 + γ
NT

∑
i=1

w(i)
t−1

~d(i)t−1 (2)

where γ denotes the step size, and ||~d(i)t−1|| = 1.

Figure 1. Vascular geometric model: (a) the edge of the sphere (drawn as circle in this figure)

indicates the potential successive samples of x(i)t , e.g., x(i,j)t+1 , and direction ~d(i,j)t+1 are retrospectively

fixed considering x(i,j)t+1 . (b) The likelihood function is approximated by employing a 2D tangent
patch-based convolutional neural network. The tangent patches Φ can be achieved using the direction
~d(i,j)t as normal and the centroid location x(i,j)t+1 . When the tangent patch is well aligned to the main
direction, the cross-sectional shape of the coronary artery in the patch image will be near-circular (red).
Otherwise, the cross-sectional shape will be irregular (blue). A simple CNN can learn for these small
patch images, and the robust vesselness measure is possible to accomplish by the trained network.

2.2. Likelihood Approximator p(Y|x(i,j)t+1)

Our likelihood function is designed to provide reliable and robust vesselness probabil-
ities. The likelihood function is approximated by the local patch-based CNN in Figure 2a.
We utilize the softmax values of the CNN to obtain the vesselness probabilities. Consider-
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ing a successoral location x(i,j)t+1 , the tangent patch images Φ(i,j)
t can be achieved, where the

patch’s centroid and the normal are x(i,j)t+1 and ~d(i,j)t . Then,

p(Y|x(i,j)t+1) ≈ p(y = 1| fθ(Φ
(i,j)
t )) = Softmax( fθ(Φ

(i,j)
t ))IN-VESSEL (3)

where fθ is a deep CNN parametrized by θ. The parameter θ is highly optimized by training
with 170,000 local patch images as described in detail in Section 3.1. As shown in Figure 1b,
the cross-sectional shape of the coronary artery is near-circular when the normal of the
tangent patch is well aligned to the main direction of the coronary artery; otherwise, the
cross-sectional shapes of coronary arteries appear irregular . The original purpose of the
CNN for the training was to classify the patches into in-vessel (y = 1) and out-of-vessel
(y = 0) classes. We directly used the output of the softmax function in Equation (3) for the
likelihood term and in Equation (1) for our tracking scheme.

Figure 2. (a) The local tangent patch images are used for the input of CNN used for classification
into ‘in-vessel’ and ‘out-of-vessel’, and (b) the samples on spheres with two steps and their measured
weights are also visualized with a color scale (blue-red). The ground truth is co-visualized (blue line).

2.3. Transition Prior p(x(i,j)t+1 |x
(i)
t )

Our transition prior is assumed to be the first-order Markovian model in Equation (4).
We mainly have two priors with independent variables considering direction variations
and the similarity of the adjacent patch-images for vascular dynamics.

p(x(i,j)t+1 |x
(i)
t ) = p(~d(i,j)t , Φ(i,j)

t |~d(i)t−1, Φ(i)
t−1)

= p(~d(i,j)t |~d(i)t−1)p(Φ(i,j)
t |Φ(i)

t−1) (4)

where p(~d(i,j)t |~d(i)t−1) and p(Φ(i,j)
t |Φ(i)

t−1) in Equation (4) are the prior functions for directional
changes and the intensity variation of the patch images between adjacent time-steps.

From the GT centerlines in our database, the angle values by < ~dt, ~dt+1 > can be
sampled to construct a detailed histogram; furthermore, the p(~d(i,j)t |~d(i)t−1) term is directly
valuated using the learned angle histogram as shown in Figure 3a.

Furthermore, the patch images have an intuitive feature in that the coronary arter-
ies appear circular, whereas the local intensity distributions from the proximal to distal
parts of coronary arteries do not change significantly. Based on these characteristics, we
employed Jensen–Shannon divergence to measure the distance between two local image
distributions as,

D(P||Q) =
1
2

KL(P||M) +
1
2

KL(Q||M) (5)

where KL(P||Q) = ∑
x∈X

P(x)log(
P(x)
Q(x)

) and M = 1
2 (P + Q). Distributions P and Q in

Equation (5) are the normalized image histograms Π(i,j)
t and Π(i)

t−1 converted from the



Sensors 2021, 21, 6087 5 of 13

local patches Φ(i,j)
t and Φ(i)

t−1 as shown in Figure 3b,c. D(P||Q) can have [0, 1] values for a
similarity distance, with values near zero indicating a similarity between distributions and
positive values indicating divergence in distribution. Thereafter, we mapped the distance
values to a weighting function [23]:

wΦ(x) =

{
2(x)3 − 3(x)2 + 1, if 0 ≤ x ≤ 1
0, otherwise

(6)

wΦ in Equation (6) is a polynomial function to approximate the probability given the
distribution similarity as,

p(Φ(i,j)
t |Φ(i)

t−1) = wΦ(λD(Π(i,j)
t ||Π(i)

t−1)) (7)

where λ(= 6) is a scale factor for the probability calibration. Overall, our transition prior
p(x(i,j)t+1 |x

(i)
t ) in Equation (7) prefers that the direction and intensity distribution do not

change significantly.

Figure 3. As prior information, the tracker prefers to change the directions smoothly so that the
image distribution between adjacent time-steps do not change significantly. A directional prior
distribution learned from ground truth (a) can be directly used in our method, and the local patches
are simply converted to an intensity distribution form (b,c) for distance measure using Jensen–
Shannon divergence.

2.4. Majority-Minority (M&m) System for Bifurcation Detection

In the case of vessels with a single structure, the posterior distribution is clearly higher
around the center of the vessel; an example can be seen in Figure 4c. However, at the
branching point, higher values are mapped in two places, as seen in Figure 4d. Thus, it is
not easy to determine the direction of the main vessel at the branching site. For every step t,
the proposed method utilizes only the important samples Ωt ⊂ St, leading to a geometrical

splitting of the important samples into K = 2 clusters Ωt,k ⊂ Ωt, Ωt,k = {w(i)
t,k , c(i)t,j }

||Ωt,j ||
i=1

by density-based spatial clustering of applications with noise (DBSCAN) [24] visualized

in Figure 4e. The weighted average µt,k = Σ||Ωt,k ||
i=1 w(i)

t,k c(i)t,k becomes the centroid of cluster

Ωt,k, where the weight w(i)
t,k is normalized such that Σ||Ωt,k ||

i=1 w(i)
t,k = 1. Let ~vt,k = µt,k − x̂t be

the candidate direction. The K directions ~vt,k are used to determine whether the state is on
a branching site or not by computing the angle θ = cos−1〈~vt,k=1,~vt,k=2〉. If the θ is higher
than a specific angle α, then the current state is on a branching site.
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Figure 4. (a) A geometry of bifurcating site. (b) Particles and the posterior distribution are visualized
after multiple tracking steps. (c) Posterior distribution during tracking in 1-D vessel structure.
(d) Posterior distribution on branching site. (e) Important split particles.

The θ responses along the trajectory during tracking are plotted in Figure 5. There are
some high peaks when the tracker passes branching sites, compared to a weak signal and
small variations in other places. At such branching sites, the tracker continues in the main
vessel direction depending on the size of clusters. The tracker recognizes the direction of
the main vessel using the bigger cluster Ωt,M while storing the direction using the smaller
cluster Ωt,m in the stack for the branch vessels, as shown in Figure 4a. Ωt,m are used for
the new seed points for branch vessels. The process for tracking multiple vessels as a tree
structure is fully automatically performed.

Figure 5. Angle trends along the centerline: the peaks represent branching sites.

2.5. Stopping Criterion

We introduced a likelihood measurement p(Y|Φ(i)
t ) in Equation (3), which purely

indicates a probability of vesselness. We assume that the summation of the likelihoods
measured from all particles at the coronary distals converges to zero, as the tracking goes
to more distal parts. We used this assumption as a stopping criterion τt = ∑Nt

i=0 p(Y|Φ(i)
t )

where 0 ≤ τt ≤ Nt. The algorithm is forced to track the coronary artery from its ostium to
time step (t = 130) to check how τt changes on every time-step t. As shown in Figure 6,
clearly different trends are observed from where a coronary exists to where a coronary
does not exist. We terminate the tracking when τt < β.
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Figure 6. The responses of τt along the centerline: the low values with small variations are observed
after around t = 85.

3. Experiment and Result

The particle filtering framework with CNN (Deep-PF) was implemented in Python us-
ing TensorFlow library. Experiments were performed using an NVIDIA Titan Xp GPU. Our
framework extracts a single vessel at an average of 7.6 s. Our method was evaluated and
compared with the three commercial workstations (Xelis Cardiac 3D, by INFINITT [25],
and Vitrea, by vital image [26], QAngioCT, by Medis [27]) and the recently introduced
stochastic methods (AS [28], AAPF [10]) on eight CT images with thirty two coronary ves-
sels provided in MICCAI 2008 Coronary Artery Tracking Challenge (CAT08) dataset [29].
Note that it was difficult to compare AAPF directly, as it was tested on 50 private cases. For
each dataset that was tested, the network parameter and prior distribution were learned
on the remaining seven cases using Leave-One-Out rule.

3.1. Training Patch-Based CNN

To train the patch-based CNN introduced in Section 2.2, we collected 170,000 local
patches from the centerline ground truth (GT) [29]. From each image, four types of vessels
(RCA, LCA, LCX, and one branch) were annotated by two medical experts in GT. A single
vessel consisted of centerline locations and radiuses for time-step t as {xt, yt, zt, rt}t=0:L.

An even number of local patches from the proximal (t ≈ 0) to distal parts (t ≈ L)
are sampled for all vessel scales as shown in Figure 7a. At a specific time-step t, the local
patch images are randomly sampled considering the system noise φ ∼ U[0, 2π), and
θ ∼ N(0, σ2

θ ) for the sphere parameters. We labeled y = 1 for the patches whose centroids
lie inside the vessels of radius rt; otherwise, we labeled them as y = 0. Then, 85,000 patch
images were evenly sampled for each class for the class balance. In total, 170,000 local
patch images were sampled for training data by varying vessel types, radius, and patients.
For example, LAD, LCX, RCA, a branch can be one of the vessel types, and the radius scale
can vary from 2.5 mm to 0.8 mm.

A simple CNN architecture was employed for learning the local patch images, and
the architecture required a 32 × 32 of input image, three convolution layers with 32, 64
and 128 channels, and three fully connected layers with 512, 256 and 2 neurons for binary
classification. ReLU activation function was used for all the layers.

We trained this simple CNN with 170,000 local patches, and used the softmax values
as uncertainties for the likelihood function in Equation (3). Training for the CNN model
takes about 90 minutes with the GPU, TITAN XP 12GB.
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Figure 7. Examples of tangent planes: (a) The cross-sections of coronary arteries are near circular in
the patches that are well aligned to the main direction of coronary arteries. (b) The cross-sections of
coronary arteries have arbitrary shapes in the patches that are not aligned to the main direction of
coronary arteries.

3.2. Initialization and Parameters

The method is automatically initialized using the seed points (coronary ostia) as x0

and x1, and an initial main direction as ~d0 = x1 − x0 by the identification method [30]. We
fixed the other parameters as NT = 200, λ = 6, α = 50◦, β = 5 for the experiment.

3.3. Evaluation on a CCTA Database

The robustness and accuracy were evaluated based on the criteria and the public
dataset introduced in [29]. The proposed method was applied on eight patients, 32 vessels
for the quantitative evaluation, and the dataset is described in Table 1. From each image, GT
centerlines of four types of vessels (RCA, LCA, LCX, and one branch) are included. Each
image is reconstructed to 512 × 512 × [297, 423] voxels with the range of isotropic voxel
size from (0.287 mm × 0.287 mm × 0.287 mm) to (0.371 mm × 0.371 mm × 0.371 mm).
The CCTA images in this public dataset are focused on hearts, and the distributions of the
Hounsfield unit (HU) for regions of coronary arteries are similar for all images thanks to
the contrast injection.

Table 1. Results of the centerline extraction from CAT08 training set.

Dataset
Image Details and Measures

Image Quality Calcium Score OV OT AI

0 Moderate Moderate 0.93 0.93 0.27
1 Moderate Moderate 0.93 0.94 0.49
2 Good Low 0.92 0.87 0.34
3 Poor Moderate 0.90 0.92 0.48
4 Moderate Low 0.97 0.98 0.31
5 Poor Moderate 0.89 0.89 0.29
6 Good Low 0.95 0.97 0.47
7 Good Severe 0.83 0.85 0.38

Average 0.92 0.93 0.36

For the evaluation metrics [29], a point of the GT centerline is marked as true positive
reference (TPR) if the distance to at least one of the points connected on the centerline result
by a method to be evaluated is less than the radius, otherwise, a point of the centerline
GT is marked as false negative (FN). Then, a point of the centerline result by a method is
marked as true positive method (TPM) if there is at least one point on the GT centerline at a
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distance less than the radius defined at the GT point; otherwise, the point of the centerline
result is marked as false positive (FP). Then, the evaluation metrics are defined as below,

• OV: Total overlap, ||TPM||+||TPR||
||TPM||+||TPR||+||FN||+||FP|| .

• OT: OV of the extracted centerline with the clinically relevant part of the vessel
(radius ≥ 1.5 mm), which indicates how well the method is able to track the section of
the vessel that is assumed to be clinically relevant. Vessel segments with a diameter of
1.5 mm or larger are assumed to be clinically relevant [31,32].

• AI: The average inside accuracy metric (AI) measures the average distance between the
reference, A(x) =

√
1/nΣ(d(p(x), pi))2, and extracted centerline for automatically

extracted points that are within the radius of the reference centerline.

4. Evaluation and Results

In this study, we proposed a deep CNN with particle filtering method (Deep-PF) for
extraction of coronary arteries from CT images. Table 1 shows the average overlap and
accuracy results for each of the eight datasets. In terms of overlap, Deep-PF obtained an
average OV of 92% and an average OT of 93%. In terms of accuracy, Deep-PF obtained
AI of 0.36 mm, which is similar to the typical width of a voxel, but smaller than the
spacing between slices in the dataset. The extracted coronary tree by Deep-PF and the GT
centerlines are co-visualized in Figure 8, and some examples from the results are visualized
in Figure 9.

Figure 8. (a) The results of tree extraction by the proposed method have not only main coronary
artery but also some small branches, (b) ground truth has only three main coronary arteries, and
(c) ground truth and the result by Deep-PF is visualized.

Three workstations were compared with Deep-PF in Table 2. In the case of Vitrea [26],
the centerline is not provided directly; however, it provides the segmentation region of
the coronary artery without any user-interaction. The centerlines were manually obtained
based on the automatically extracted segmentation regions. Therefore, the OV and OT
corresponding to the length of the detected region are comparable. In the case of xelis [25],
the centerlines were extracted based on the semi-automatic algorithm, and we gave multiple
seed points. In the case of QAngioCT [27], the centerlines were extracted without any
interaction. It was possible to make a comparison by referring to the method AS (active
search) [28], which employed the experiment with the same measures and dataset. In the
comparison presented in Table 2, the Deep-PF showed the best performance in OV and
OT, which is a measure of the extent to which the coronary artery is tracked. In terms of
accuracy, all methods have small values (0.23 mm–0.36 mm), which is smaller than the
typical width of a voxel or similar to one in the dataset, and the AAPF method showed the
highest accuracy (AI). However, the accuracy of Deep-PF can be improved by centerline
refinement through post-processing. Overall, Deep-PF shows a higher performance of
coronary artery extraction as an approach combining Deep CNN with particle filtering.
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Figure 9. The results of three example cases (top) and overlap with ground truth (bottom, blue):
(a) some FP area in the middle of the detected trajectory (b) the excessively tracked coronary artery
(c) the well detected case.

Table 2. Comparison with other methods including commercial workstations. All the methods are compared with the same
public dataset, 8 patients, 32 vessels, described in Table 1, except the AAPF method. AAPF used 51 private CT images.

Solver

QAngioCT [27] Xelis [25] Vitrea [26] AS [28] AAPF [10] Deep-PF

Measure
OV 0.86 0.78 0.86 0.84 0.86 0.92
OT 0.88 0.80 0.89 0.88 0.92 0.93
AI 0.36 - - - 0.25 0.36

5. Discussion

In this paper, we have presented a method for a robust centerline extraction method
using CNN and particle filtering framework. Tangent patches reflect the features of the
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cross-sectional shape of coronary arteries that are circular in appearance. CNN can learn
these features and provide a robust vesselness probability. Our particle filtering framework
is a novel design that uses CNN as a likelihood function. Furthermore, we have presented
a robust bifurcation detection model by clustering the particles. The proposed method can
automatically extract all the centerlines as a tree structure.

AAPF [10] is based on a highly optimized coronary artery tracking approach by
improving the original particle filtering framework. However, AAPF still uses image-
gradient-based hand-crafted features for the likelihood function. On the other hand, the
proposed method uses CNN to measure vesselness probability with a more sophisticated
and large number of features. However, since both methods use local information sequen-
tially, it is very challenging near the distal part of vessels. The proposed method showed
slightly higher performance by minimizing the problem of early stopping or over-tracking
by reducing uncertainty at the distal part of the vessels.

In recent studies, Wolterink et al. [16] proposed a 3D patch-based CNN that inde-
pendently classifies the local orientation of a coronary artery, and the method shows the
accurate performance. On the other hand, the proposed method is designed to minimize
the computation cost to evaluate each particle using 2D patches since particle filtering
is a population-based approach. From the perspective of observing image information.
In fact, the quantity of the contextual information from the multiple 2D tangent patches
is not small compared to a single 3D boxed patch. The use of a 3D boxed patch has the
advantage to observe the structural contextual information around the tracker, while the
use of multiple 2D tangent planes allows the tracker to observe the contextual information
around a wider area. However, there is a clear difference in the tracking approach between
the 3D patch-based CNN [16] and the proposed method. In the case of 3D patch-based
CNN, a local direction with the highest probability is directly chosen by a single 3D patch
for each step, and the direction is not dependent on the previous direction. Whereas the
proposed method estimates an optimal direction with multiple particles and the particle
filtering framework enables the first-order Markovian property to consider the previous
states, which can prevent leakages to other organs or non-coronary vessels.

A limitation of the proposed method may arise when the coronary arteries have long
missing regions due to severe complex coronary lesions. The tracker may terminate earlier,
which is critical for achieving an accuracy score. This is actually a common limitation
that may occur in other tracking-based methods. Even though the proposed method
shows a higher performance compared with other tracking-based methods, it has the same
limitations. Furthermore, the prior functions in our method make the trajectories smoother,
which leads the tracker to be generally more robust. In spite of this advantage, the tracker
may leak to other organs if there are very sharply curved vessels. Furthermore, detecting
the terminal point is a common challenge of all tracking-based methods because these
methods eventually find the local maximal path. To improve these concerns, a graph-based
global approach may be an alternative, but there is a limit to its practical use because the
computation cost is too high. An eclectic alternative may be policy-based reinforcement
learning methods that approximate a global solution.

Deep reinforcement learning (DRL) is one feasible solver for the sequential decision
process. DRL can ideally learn and search near-global paths quickly, which is demonstrated
from the literature [33–36]; however, it is still not simple to learn every scenario of the coro-
nary arteries, thus its accuracy is still incomparable with the state-of-the-art methods [18].
The learned policy by DRL, nevertheless, may be helpful for tracking-based methods by
hybridizing local and global perspectives.

6. Conclusions

In this study, we proposed a deep learning-based tracking method for the extraction of
coronary arteries from CT images. The proposed method shows best performances as 0.92,
0.93 and 0.36 for OV, OT, AI, respectively. However, this approach still offers potential for
improvement. We are currently improving our method to combine with the policy-based
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guidance from deep reinforcement learning, and planning to test the method with more
CT images to validate its robustness.

Funding: This research was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (1345332282), and Institute
of Information & communications Technology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT) (No. 1711126000, Active Machine Learning based on Open-set training for
Surgical Video).

Institutional Review Board Statement: No human or animal studies were carried out by the authors
for this article. The institutional review board approved this study and waived the requirement for
informed consent due to its retrospective design.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lesage, D.; Angelini, E.D.; Bloch, I.; Funka-Lea, G. A review of 3D vessel lumen segmentation techniques: Models, features and

extraction schemes. Med. Image Anal. 2009, 13, 819–845. [CrossRef] [PubMed]
2. Bibiloni, P.; González-Hidalgo, M.; Massanet, S. A survey on curvilinear object segmentation in multiple applications. Pattern

Recognit. 2016, 60, 949–970. [CrossRef]
3. Lorenz, C.; Renisch, S.; Schlathoelter, T.; Buelow, T. Simultaneous segmentation and tree reconstruction of the coronary arteries

in MSCT images. In Medical Imaging 2003: Physiology and Function: Methods, Systems, and Applications; International Society for
Optics and Photonics: Bellingham, WA, USA, 2003; Volume 5031, pp. 167–177.

4. Lorigo, L.M.; Faugeras, O.D.; Grimson, W.E.L.; Keriven, R.; Kikinis, R.; Nabavi, A.; Westin, C.F. Curves: Curve evolution for
vessel segmentation. Med. Image Anal. 2001, 5, 195–206. [CrossRef]

5. Wink, O.; Niessen, W.J.; Viergever, M.A. Minimum cost path determination using a simple heuristic function. In Proceedings
of the 15th International Conference on Pattern Recognition (ICPR-2000), Barcelona, Spain, 3–7 September 2000; Volume 3,
pp. 998–1001.

6. Olabarriaga, S.D.; Breeuwer, M.; Niessen, W.J. Minimum cost path algorithm for coronary artery central axis tracking in CT
images. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin/Heidelberg,
Germany, 2003; pp. 687–694.

7. Wink, O.; Niessen, W.J.; Viergever, M.A. Multiscale vessel tracking. IEEE Trans. Med. Imaging 2004, 23, 130–133. [CrossRef]
8. Shim, H.; Kwon, D.; Yun, I.D.; Lee, S.U. Robust segmentation of cerebral arterial segments by a sequential Monte Carlo method:

Particle filtering. Comput. Methods Programs Biomed. 2006, 84, 135–145. [CrossRef]
9. Lesage, D.; Angelini, E.D.; Bloch, I.; Funka-Lea, G. Medial-based Bayesian tracking for vascular segmentation: Application to

coronary arteries in 3D CT angiography. In Proceedings of the 2008 5th IEEE International Symposium on Biomedical Imaging:
From Nano to Macro, Paris, France, 14–17 May 2008; pp. 268–271.

10. Lesage, D.; Angelini, E.D.; Funka-Lea, G.; Bloch, I. Adaptive particle filtering for coronary artery segmentation from 3D CT
angiograms. Comput. Vis. Image Underst. 2016, 151, 29–46. [CrossRef]

11. Kalaie, S.; Gooya, A. Vascular tree tracking and bifurcation points detection in retinal images using a hierarchical probabilistic
model. Comput. Methods Programs Biomed. 2017, 151, 139–149. [CrossRef]

12. Jeon, B.; Jang, Y.; Shim, H.; Chang, H.J. Identification of coronary arteries in CT images by Bayesian analysis of geometric relations
among anatomical landmarks. Pattern Recognit. 2019, 96, 106958. [CrossRef]

13. Uslu, F.; Bharath, A.A. A recursive Bayesian approach to describe retinal vasculature geometry. Pattern Recognit. 2019, 87, 157–169.
[CrossRef]

14. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.; Van Ginneken, B.; Sánchez, C.I.
A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [CrossRef]

15. Kim, S.; Jang, Y.; Jeon, B.; Hong, Y.; Shim, H.; Chang, H. Fully Automatic Segmentation of Coronary Arteries Based on Deep
Neural Network in Intravascular Ultrasound Images. In Intravascular Imaging and Computer Assisted Stenting and Large-Scale
Annotation of Biomedical Data and Expert Label Synthesis; Springer: Berlin/Heidelberg, Germany, 2018; pp. 161–168.

16. Wolterink, J.M.; van Hamersvelt, R.W.; Viergever, M.A.; Leiner, T.; Išgum, I. Coronary artery centerline extraction in cardiac CT
angiography using a CNN-based orientation classifier. Med. Image Anal. 2019, 51, 46–60. [CrossRef]

17. Jung, S.; Lee, S.; Jeon, B.; Jang, Y.; Chang, H.J. Deep learning cross-phase style transfer for motion artifact correction in coronary
computed tomography angiography. IEEE Access 2020, 8, 81849–81863. [CrossRef]

18. Zhang, Y.; Luo, G.; Wang, W.; Wang, K. Branch-aware double DQN for centerline extraction in coronary CT angiography. In
International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin/Heidelberg, Germany,
2020; pp. 35–44.

http://doi.org/10.1016/j.media.2009.07.011
http://www.ncbi.nlm.nih.gov/pubmed/19818675
http://dx.doi.org/10.1016/j.patcog.2016.07.023
http://dx.doi.org/10.1016/S1361-8415(01)00040-8
http://dx.doi.org/10.1109/TMI.2003.819920
http://dx.doi.org/10.1016/j.cmpb.2006.09.001
http://dx.doi.org/10.1016/j.cviu.2015.11.009
http://dx.doi.org/10.1016/j.cmpb.2017.08.018
http://dx.doi.org/10.1016/j.patcog.2019.07.003
http://dx.doi.org/10.1016/j.patcog.2018.10.017
http://dx.doi.org/10.1016/j.media.2017.07.005
http://dx.doi.org/10.1016/j.media.2018.10.005
http://dx.doi.org/10.1109/ACCESS.2020.2991445


Sensors 2021, 21, 6087 13 of 13

19. Salahuddin, Z.; Lenga, M.; Nickisch, H. Multi-resolution 3d convolutional neural networks for automatic coronary centerline
extraction in cardiac CT angiography scans. In Proceedings of the 2021 IEEE 18th International Symposium on Biomedical
Imaging (ISBI), Nice, France, 13–16 April 2021; pp. 91–95.

20. Kong, B.; Wang, X.; Bai, J.; Lu, Y.; Gao, F.; Cao, K.; Xia, J.; Song, Q.; Yin, Y. Learning tree-structured representation for 3D coronary
artery segmentation. Comput. Med. Imaging Graph. 2020, 80, 101688. [CrossRef] [PubMed]

21. Chen, F.; Wei, C.; Ren, S.; Zhou, Z.; Xu, L.; Liang, J. Coronary Artery Lumen Segmentation in CCTA Using 3D CNN with Partial
Annotations. In Proceedings of the 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), Nice, France, 13–16
April 2021; pp. 1107–1111.

22. Doucet, A.; De Freitas, N.; Gordon, N. An introduction to sequential Monte Carlo methods. In Sequential Monte Carlo Methods in
Practice; Springer: Berlin/Heidelberg, Germany, 2001; pp. 3–14.

23. McPheeters, G.W.C.; Wyvill, B. Data structure for soft objects. Vis. Comput. 1986, 2, 227–234.
24. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X.; others. A density-based algorithm for discovering clusters in large spatial databases

with noise. KDD 1996, 96, 226–231.
25. INFINITT. Available online: https://www.infinitt.com/ (accessed on 7 September 2021).
26. Vital. Available online: https://www.vitalimages.com/ (accessed on 7 September 2021).
27. Medis. Available online: https://www.medis.nl/ (accessed on 7 September 2021).
28. Han, D.; Shim, H.; Jeon, B.; Jang, Y.; Hong, Y.; Jung, S.; Ha, S.; Chang, H.J. Automatic coronary artery segmentation using active

search for branches and seemingly disconnected vessel segments from coronary CT angiography. PLoS ONE 2016, 11, e0156837.
[CrossRef] [PubMed]

29. Schaap, M.; Metz, C.T.; van Walsum, T.; van der Giessen, A.G.; Weustink, A.C.; Mollet, N.R.; Bauer, C.; Bogunović, H.; Castro, C.;
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