Published online 23 October 2009

Nucleic Acids Research, 2010, Vol. 38, No. I e4
doi:10.1093/nar/gkp853

MMBGX: a method for estimating expression at
the isoform level and detecting differential
splicing using whole-transcript Affymetrix arrays

Ernest Turro'*, Alex Lewin', Anna Rose?, Margaret J. Dallman? and Sylvia Richardson’

"Department of Epidemiology and Public Health, Imperial College London, Norfolk Place, London W2 1PG and
2Centre for Integrative Systems Biology, Imperial College London, South Kensington, London SW7 2AZ, UK

Received September 7, 2009; Revised and Accepted September 23, 2009

ABSTRACT

Affymetrix has recently developed whole-transcript
GeneChips—‘Gene’ and ‘Exon’ arrays—which inter-
rogate exons along the length of each gene.
Although each probe on these arrays is intended
to hybridize perfectly to only one transcriptional
target, many probes match multiple transcripts
located in different parts of the genome or alterna-
tive isoforms of the same gene. Existing statistical
methods for estimating expression do not take
this into account and are thus prone to producing
inflated estimates. We propose a method, Multi-
Mapping Bayesian Gene eXpression (MMBGX),
which disaggregates the signal at ‘multi-match’
probes. When applied to Gene arrays, MMBGX
removes the upward bias of gene-level expression
estimates. When applied to Exon arrays, it can
further disaggregate the signal between alternative
transcripts of the same gene, providing expression
estimates of individual splice variants. We demon-
strate the performance of MMBGX on simulated
data and a tissue mixture data set. We then
show that MMBGX can estimate the expression of
alternative isoforms within one experimental condi-
tion, confirming our results by RT-PCR. Finally, we
show that our method for detecting differential
splicing has a lower error rate than standard exon-
level approaches on a previously validated colon
cancer data set.

INTRODUCTION

Oligonucleotide microarrays allow biomedical researchers
to estimate the expression of thousands of genes simultan-
eously through their mRNA transcripts. Labelled frag-
ments of the transcripts in the form of single-stranded
RNA or DNA are hybridized onto an array containing

hundreds of thousands of complementary DNA 25-mers
and then scanned. The colour intensities at each probe
reflect the degree of hybridization and form the raw data
used to make inference on transcript abundance in the
sample.

Traditional Affymetrix arrays, 3’ GeneChips, use
perfect match (PM) and mismatch (MM) probe pairs
that target the 3’-end of each gene of interest via its
RNA products. The PM probes match the target tran-
script exactly, whereas the MM probes match it exactly
but for a complementary base on the 13th position. The
purpose of the MM probes is to capture the degree to
which RNAs other than the target transcripts bind to
the corresponding PM probes (i.e. non-specific hybridiza-
tion). The probes on 3’-arrays have been found to exhibit
varying propensities to bind to target RNA according to
the base composition of their sequences (1) and methods
for estimating expression levels that incorporate probe
affinity effects have shown demonstrable advances over
methods in which these effects are ignored (2,3).

In whole-transcript arrays, PM probes are distributed
over the whole length of each gene and probe affinity
effects can be estimated according to GC content, the pro-
portion of G and C bases in the sequence. Rather than one
MM probe for each PM probe, they contain several
hundred ‘background probes’ for each of the 26 possible
GC proportions on the PM probes (4). In contrast with
existing methods, which use point estimates (5,6) or probe
filtering [cf. DABG in (7)] to account for non-specific
hybridization, we use the empirical distribution of the
GC-specific background probe intensities to fully incorpo-
rate the background noise uncertainty into our modelling
of the data (cf. Supplementary Figure S1).

Both 3’ and whole-transcript arrays contain probes that
map to multiple transcribed locations on the genome and
are therefore prone to hybridizing perfectly to transcripts
other than the intended target (Figure 1A). On the human
Gene 1.0 ST array, for instance, almost one in 10 gene-
targeting probesets contain one or more probes mapping
to non-target genes. If this effect is not accounted for,
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Figure 1. Illustration of the two types of multi-match probes.
(A) One probe shares a subsequence with two separate transcribed
regions. Such a probe would belong to two probesets—one targeting
each region. (B) Probes under the leftmost exon capture signal from
isoform 1, while the other probes capture signal from isoforms 1 and 2.
In order to estimate expression at the isoform level, probes should
be grouped into two probesets—one targeting each isoform. If both
isoforms are present in the sample, the probe signal will tend to be
higher at the multi-match probes than at the single-match probes.

signal extraction algorithms may yield biased results. This
bias is observed in real data where the PM intensities of
probes that map to multiple targets are on average
consistently higher than those of single-match probes
(Supplementary Figure S2).

An additional kind of multi-mapping may be modelled
in the denser Exon arrays: the mapping of probes to exons
belonging to different isoforms of the same gene, an effect
that may be exploited to detect alternative and differential
splicing (Figure 1B). Current methods for Exon arrays
(8,9) focus on detecting large changes in the expression
of individual exons relative to the gene. Thus they do
not detect nor quantify the abundance of each individual
isoform. Our model can directly estimate isoform-level
expression and therefore can be used to compare the
expression of variants between conditions and even
within one sample.

Bayesian hierarchical modelling provides a coherent
framework for making inference from data with a nested
structure. As such, it can be usefully applied to microarray
data (3,10,11), where parameters may be shared at differ-
ent levels, ranging from probes and probesets to array
samples and biological or technical conditions. Here, we
present a fully hierarchical Bayesian model for expression
analysis, MMBGX, that takes into account the design of
the new arrays and the one-to-many mappings between
probes and probesets. We have constructed graphs of
these mappings for two types of probesets. On the Gene
arrays, we use probesets that represent genes as annotated
by Affymetrix and on the Exon arrays, we use probesets
that represent genes or transcripts (i.e. isoforms) as
annotated by (12). We show evidence of the bias
incurred if multi-mapping is not taken into account and
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demonstrate the ability of MMBGX to disaggregate
the signal between various isoforms of the same gene.
The method provides posterior summaries for each
gene or transcript that encode the full uncertainty in the
expression parameter estimates and may be used to detect
differential expression (13). The implementation uses a
recently developed adaptive Markov chain Monte Carlo
(MCMC) algorithm (14) and shared-memory parallelism
to achieve good computational performance. In the
‘Results’ section, we assess the method using simulated
and real Gene array data, comparing our gene-level
results with those of two other widely available methods.
We then present the results of our transcript-level analysis
on a single-condition mouse Exon array data set and
validate some of our predictions by RT-PCR. Finally,
we compare MMBGX’s ability to detect differential
splicing between experimental conditions to a standard
exon-level approach by analysing a previously published
and validated colon cancer data set. Note that throughout
the article, we use the phrase ‘differential splicing’ to refer
to gene-normalized differential transcript expression,
which may involve more than one splice site, as well as
the usual meaning of gene-normalized differential inclu-
sion of a single exon. The MMBGX software package
and accompanying instructions are freely available from
http://bgx.org.ukhttp://bgx.org.uk.

MATERIALS AND METHODS
Re-annotation of Exon array probes

The Exon arrays contain a large superset of the probes in
the Gene arrays, covering virtually every known exon on
the target genomes, and thus permitting expression sum-
marization at the exon level. While exon and gene-level
expression summarization may reveal useful differences
in exon retention or exclusion patterns across samples,
it is the quantification of alternative splice variants—the
ultimate determinants of protein products—that is
biologically most interesting.

In order to address this challenge, we required a
re-annotation of the probes on the Exon arrays that
group them into probesets that target transcripts rather
than genes or exons. Our aim was to construct a graph
between probes and probesets largely based on the phe-
nomenon illustrated in Figure 1B. A solution was found
by combining the Ensembl database, which contains tens
of thousands of known transcripts, with X:Map (15),
which contains hits between Affymetrix probes and
Ensembl transcripts. In this way, probes are grouped
into probesets that target any number of transcripts, be
they alternative isoforms of the same gene or transcripts
from entirely separate genes.

Hierarchical model

Using the BGX method (3,11) for the analysis of 3
GeneChips as a starting point, we developed a new
model that (i) accounts for the use of global GC
content-specific background probes instead of probe-
specific MM probes and (ii) accounts for the complex
mapping between probesets and probes explicitly. Signal
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from multi-match probes is split in a logical way to obtain
unbiased estimates of expression at the gene level for Gene
arrays and the transcript or gene level for Exon arrays.
While probes may be grouped into probesets that target
genes as well as individual transcripts, for simplicity, we
refer to probeset targets only as ‘transcripts’ below.
Perfect match probe intensities, PMs, are modelled as
arising partly from specific hybridization, S (the signal),
and partly from non-specific hybridization, H, both of
which are probe (j), condition (¢) and replicate (r) specific:

P%cr = Sjcr + I_chr- 1

Note how, unlike Equation (4.1) in Hein et al. (11),
Equation (1) does not group probes into probesets, thus
accommodating for the fact that one or more transcripts
may contribute to the signal intensity observed at a PM
probe. Also, we do not assume an additional additive
error, as the model would then be overparameterized.
The quantity of interest is the unknown signal, S;.., and
Hj,, encapsulates the noise.

We wish to model the signal on the log-scale to account
for multiplicative error. In the simple case where a single
transcript g in condition ¢ is linked to the probe signal,
Sier, this suggests the model

IOg(S/‘cr) ~ N(I“Lg(”o'jr(’)’ 2

where .. is the probeset-level log expression measure,
G’ is an error term and in this case there is a one-to-
one mapping from probe j to probeset g.

We know from the multi-mapping structure, however,
that two or more transcripts may in fact contribute to the
signal. We therefore need to model the contribution of
each transcript to the signal of one probe. We assume
that the contribution to the signal and its variance is
additive on the real scale. This assumption is based on
the fact that the means and variances of multi-match
probes are consistently higher than those of single-match
probes (Supplementary Figure S2). Since the p,, and chz
parameters are on the log-scale but their contribution to
the signal are additive on the real scale, we need to
exponentiate before summing and finally go back to the
log-scale. Allowing for any number of transcript
contributions to the signal, the signal parameter, S,
therefore follows the following distribution:

log(Sjcr) ~ N(10g< Z Eug"), 10g Z e"ér))’ 3

g€G()) €G(j)

where G(j) indexes the set of transcripts matched by
probe j [see Figure 2 for graphical examples of G(j)].
When G(j) contains only one index, Equation (3)
reduces to the simpler Equation (2).

The non-specific binding parameter, H, log-transfor-
med, follows a GC content (k)- and array (r)- specific
normal distribution:

lOg(Hjcr) ~ N(VH];%S]%U)”)’ 4

where k(j) indexes the GC content category of probe ;.
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The mean and variance, i and Sfcg)c),, respectively,
are estimated empirically from the logarithms of the GC
content-specific background probes. While most methods
plug the median background measurement into the non-
specific hybridization parameter (in our case, Hj.) (5,6),
we allow a degree of variability, consistent with the
observed variability in background probe measurements
(Supplementary Figure S1). Thus, the model accounts for
PMs that are lower than the corresponding median back-
ground measurement through allowing a lower H, rather
than relying solely on a high error in the signal, which may
bias this error upwards.

We conclude the full specification of our model
by assuming priors similar to those used in BGX (11).
We place a U(0,15) prior on g, which amply covers
the range of possible expression values, a N(a.B.>)
prior on log(oy,) and a I'(1.2,0.2) prior on g.*. Note
that a lower bound of 0 on p’s prior restricts the mean
of S to a minimim value of 1 even though theoretically
it may be as low as 0. However, a comparison of
the model with an alternative less-computationally trac-
table model in which log(S+ 1) follows a truncated
normal distribution [as in (11)] showed that they gave vir-
tually indistinguishable results. Specifying a prior for o,
leads to slow mixing of the MCMC sampler, making
reliable inference computationally inefficient. We there-
fore developed an empirical Bayes algorithm that
estimates o, accurately and fix it to this value (see
Algorithm S1 in the Supplementary Data). In the
process, estimates of Sj.., Hi, Mg Og” and B2 are
computed and set to starting values for the respective
samplers in order to speed up convergence. The central
parameter of Equation (3), W, acts as the transcript-
level log expression measure.

Detecting differential splicing

Using the posterior distribution of log expression
for genes and their transcript variants, we devised the
following statistic as a measure of the probability of dif-
ferential splicing:

pi=P((kn — pnp) > (:ug(t)l - Mg(z)2)) 5

where . is the expression level of transcript ¢ in condition
c and () is the expression level of the gene containing
transcript 7 in condition ¢. The quantity p, is the posterior
probability that transcript ¢ is more up-regulated in con-
dition 1 relative to condition 2 than its corresponding
gene. Hence, values of p, close to 1/0 indicate over/
under-expression of transcript ¢ after normalizing for
gene-level expression changes. However, transcripts
expressed at very low levels in both conditions may
have p, close to 1 or 0 if other transcripts of the
gene are differentially expressed. Transcripts should
therefore be filtered out if their overall expression
level remains below the threshold (e.g. p,.<1.5 on the
natural log-scale), and if the probability that they are
up-regulated is within a certain range [e.g. P(Up
<H,1) €(0.05,0.95)].
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Figure 2. A cluster of interconnected probesets on the human Gene 1.0 ST array. The ellipses represent probesets and the dots represent probes.
Probesets are linked to their component probes by edges. For example, probeset 7926979, which probes a region on chromosome 10, and probeset
8132692, which probes a region on chromosome 7, share two probes. Probesets 7988175 and 7988206 are identical but nominally probe two separate
regions on chromosome 15. As an example of Equation (3), if j indexed either of the two probes linking probesets 7927979 and 8132692, then the

elements of G(j) would be the indices of probesets 7927979 and 8132692.

To compare differential splicing results per gene, we
define a gene-level quantity:
pg = max (max(plal _p[))’ 6

tet(g)

where #(g) is the list of non-filtered transcripts produced
by gene g. If a gene produces only one non-filtered tran-
script [i.e. [t(g)|=1], then that gene is filtered out as a
candidate for differential splicing. Restricting the set of
potential genes that can be called as being differentially
spliced reduces the chance of producing a false positive
result, even though in cases where unknown isoforms
are present, a false negative result may occur.

Normalization

Replicate GeneChip hybridizations exhibit variability of
non-biological origin. A popular method of bringing the
log-scale true signals into par is quantile normalization
(16), which forces the distribution of signals across
arrays to be exactly the same. Our models normalize
the arrays implicitly by assuming exchangeability of the

log-scale true signals for all replicates within conditions,
while allowing for array-specific distributions of the non-
specific hybridization terms. Specifically, chz captures
variability between probe-level signal, S;., within all
arrays belonging to the same condition.

Researchers may nonetheless prefer to use c,.~ as a
measure only of within-array variability and choose their
own preferred cross-array normalization method. This
can be achieved simply by setting each array to belong
to a different condition. Thus, array-specific expression
measures, [g.c = 1,...,4, where 4 is the number of
arrays, are obtained and can be subsequently normalized
using any preferred method.

2

Implementation and parallelism performance

A C+ + implementation of a MCMC algorithm was
written and incorporated into a freely available R
package (cf. http://r-project.org) called MMBGX.
The software outputs a thousand samples from the pos-
terior distribution of each parameter, thus providing a



PAGE50F 15

comprehensive measure of uncertainty associated with
each estimate.

Sampling algorithm. The parameters Sj., Hj., Mo and
G, in the model are estimated using a Random Walk
Metropolis—Hastings algorithm, where the full conditional
distributions are updated by proposing new values from a
Gaussian distribution centred on the current value and
accepted or rejected according to the Metropolis—
Hastings ratio. Since we set PM;., to be equal to the
sum of the probe-level signal parameter, S;.,, and the
non-specific hybridization parameter, Hj., we only need
to sample one of the two parameters in the MCMC
scheme. We do this for each probe by proposing a new
value S, and setting H';,, = PM;.,—S';,. The Adaptive
Metropolis-Within-Gibbs algorithm (14) is used during
the burn-in period to improve mixing efficiency of the
chains, as described in (3). The hyperprior on B.? is con-
jugate with the prior on o,2, allowing the hyperparameter
B.> to be sampled directly using a Gibbs algorithm.

Structure and input files. The MMBGX package contains
files describing the multi-mapping structure between
probes and probesets for the Gene and Exon arrays tar-
geting the human, mouse and rat genomes. The Gene
array structure files were constructed using Affymetrix’s
Transcript Cluster Annotation and Probe Group files
(available from http://affymetrix.com). The former was
used to produce a list of probesets matching the reference
genome only—that is, excluding alternative haplotypes
such as the COX or QBL assemblies—and the latter was
used to extract the probe—probeset mappings and deter-
mine the background probe Affy IDs. The Exon array
structure files were constructed using the Ensembl (12)
and X:Map (15) databases to determine probe—probeset
mappings at the Ensembl transcript and gene level and the
Probe Group files were used to map the PM and back-
ground probes to Affy IDs. The only necessary data inputs
to make inference using MMBGX are the experimental
CEL files containing the probe intensity measurements.
These may be read into R using the affy Bioconductor
package (http://bioconductor.org).

Shared-memory parallelism. In recent years there has been
a marked shift in focus by CPU manufacturers towards
multi-core and multi-CPU computing. As of 2008, most
high-end desktop or server computers contain eight cores
and trends suggest this quantity will continue to increase
exponentially. This development allows software designed
to solve problems through simultanecous computations
to be run in a much smaller amount of time.

MMBGX was adapted to take advantage of all
available cores using the OpenMP application program-
ming interface (http://openmp.org), which simplifies
the spawning of threads to be executed by each core.
By exploiting conditional independence relationships
between parameters, components of S, may be updated
simultaneously by multiple threads, followed by
components of p,. and cg(.z. For the update of B2, a sum-
mation over transcripts is parallelized and the component
sums reduced to a final result. Summations of various
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parameters throughout the MCMC for the purpose of
calculating mean estimates are also parallelized, while
output of trace values to file streams is partitioned as far
as possible. The result is a substantial speedup over the
serial version of the programme (Supplementary Figure
S3), allowing gene-level analysis on a modern 8-core
computer of human Gene and Exon arrays in ~20min
and 1h, respectively, and transcript-level analysis of
Exon arrays in ~2h. Since parameters are shared
between replicate arrays, the computation time for k
replicate arrays is less than k times the computation time
for one array. For instance, a transcript-level analysis
of four human exon replicates takes only 66% longer
(3h 20 min) than a single-array analysis.

Mouse Exon 1.0 ST arrays and RT-PCR

Bone marrow cells from male C57B1/6 mice (8-10 weeks
old, Harlan, UK) were differentiated into bone marrow
derived dendritic cells (BMDCs) in the presence of
20ng/ml GM-CSF in DMEM (Sigma, UK) + 10%
FCS + 100U penicillin/100 pg/ml streptomycin for §
days. On day 8, cells were replated on tissue culture
plates precoated with 10ug/ml human IgGl (Sigma,
UK) for 4h before cells were harvested and total RNA
isolated using the Absolutely RNA micro prep kit
(Agilent, UK). Three biological repeats were processed
separately for hybridization to mouse exon 1.0 ST chips
(Affymetrix, UK) according to the manufacturer’s
instructions.

For validation of MMBGX, 125ng total RNA from
BMDC:s treated as above was reverse transcribed (High
Capacity cDNA Archive Kit, Applied Biosystems, UK).
Primers for PCR were designed in exons flanking spliced
exons for genes to be validated. The primer sequences are
listed in Supplementary Data S1. PCR products were
amplified from 1pul cDNA in 35 cycles and analysed on
2% agarose gels.

RESULTS
Accounting for multi-mapping signal bias

The Affymetrix Gene array annotation files group probes
into probesets each targeting, with some exceptions
(Supplementary Data S2), a specific gene. However,
some probes match several transcribed regions of the
genome at once and are therefore assigned to multiple
probesets (Figure 1A). Such ‘multi-match’ probes should
not be treated as independent measurements of one gene
within one probeset because they capture the signal from
other unintended genes as well. In effect, the probe
intensities reflect the sum of each matching gene’s tran-
scription level. Algorithms that do not disaggregate the
signal accordingly are prone to yielding inflated expression
estimates. Since no widely available gene expression sum-
marization algorithm addresses this problem, researchers
sometimes discard multi-mapping probe measurements
from the analysis altogether. However, this cannot be
done within standard analysis software such as Partek
Genomics Suite (http://partek.com) (Partek Customer
Support, personal communication), as it requires the
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creation of special probe group files for the arrays.
Moreover, such a workaround removes the upward bias
but precludes the use of all the information contained in
the data, thus increasing the error in the expression
estimates. We performed a masked analysis using
MMBGX, by discarding probes matching to multiple
probesets. Supplementary Figure S4 shows the extent of
the increase in estimate errors. A large set of genes has to
be discarded in this type of analysis, since all probes of
each gene are multi-matching: 1196 for mouse, 1179 for
human and 614 for rat. However, the expression of genes
that are completely eliminated by masking can be well
estimated by MMBGX (Supplementary Figure S4).

We call probesets with at least one multi-match probe
‘multi-mapping probesets’. On the human Gene 1.0 ST
arrays, 9.4% of probesets are multi-mapping due to
3.7% of unique probes belonging to more than one
probeset. The relationships between probes and probesets
may be illustrated as a graph (Supplementary Figure S5).
Each cluster in the graph consists of a set of probesets
connected via a network of shared probes. A cluster
may be illustrated using ellipses to represent probesets
and dots to represent probes. Probesets are linked to
their component probes by edges and the number of
edges attached to a probe reflects the number of trans-
cripts it measures (Figure 2).

Probes that belong to multiple probesets targeting dif-
ferent genes (illustrated in Figure 1B) may bias upwards
the expression estimates of each gene. We assessed this
bias on the Gene arrays by comparing our model to a
‘naive’ version that treats each PM as uniquely matching
one locus even if it is assigned to multiple gene-targeting
probesets. This is in effect how other microarray analysis
software interpret the data. Using the human Gene 1.0 ST
array data set, available from Affymetrix, we implemented
our model and its naive version and confirmed that
the multi-mapping model splits the gene expression
signal across matching probes, whereas the naive model
ignores the multi-mapping networks and therefore
overestimates the signal (Figure 3).

>
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Log expression (MMBGX model)
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Performance on simulated data

We checked the algorithm and implementation for
correctness by comparing parameter estimates to true
simulated values. First we used the mapping structure
from the human Gene 1.0 ST array. We generated PM
probe data from the model for one array using
a.=0.25 b2 = 0.625, p,~U(1.58) and calculated
Yegrer and Si@” values using background probe data
from a real data set.

The log expression measure, [, is estimated well for
non-multi-mapping transcripts (Figure 4A) as is the signal
from multi-mapping probesets with at least one single-
match probe (Figure 4B). As expected, when there are
no single-match probes capturing signal purely from the
intended transcript, there is increased variability and
shrinkage towards the mean at low and high levels of
Ug. (Figure 4C). This is due to the inherent ambiguity of
the relative contributions of signal from highly
overlapping multi-mapping probesets. To make sure that
this shrinkage did not lead to misleading results, we
verified that the Monte Carlo Standard Error (MCSE)
on the estimates for probesets with no single-match
probes was higher than for probesets with at least one
single-match probe (Figure 4D). Indeed, 95% of the true
simulated p,. values fell within a central 95% credible
intervals obtained from the estimated p,. posterior
distributions.

The Ensembl/X:Map transcript mappings to the
human Exon 1.0 ST array were also used to simulate
data as above. The probe—probeset graph is far more
interconnected for the Exon arrays than for the Gene
arrays, with about half the probesets being composed of
<10% single-match probes (Supplementary Figure S6).
The expression signal is recovered very well for probesets
containing at least 10% single-match probes and it is only
for the highly multi-mapping probesets that shrinkage
becomes significant (Supplementary Figure S7). Again,
this did not give rise to misleading results, as the central
95% credible intervals obtained from the .. posterior

Log expression (naive model)

T T T T T
0 2 4 6 8

Log expression (MMBGX model)

Figure 3. Scatterplots of the log expression measures obtained from Gene array data between the MMBGX model and a naive version that treats
each probe as uniquely matching one probeset. (A) The scatterplot for probesets with non-multi-mapping probes, and (B) the scatterplot for multi-
mapping probesets. Expression intensities for non-multi-mapping probesets are approximately on the y = x line, while the expression intensities for

multi-mapping probesets are overestimated by the naive model.
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Figure 4. Plots showing the ability of MMBGX to recover gene-level log expression values from simulated human Gene array data. (A) The
scatterplot shows that the model implementation recovers the simulated expression values, [, for non-multi-mapping probesets accurately; (B)
the scatterplot shows that the expression for multi-mapping probesets with one or more probes that uniquely match the intended transcript is also
well-estimated; (C) the scatterplot shows that the expression for multi-mapping probesets with no probes that uniquely match the intended transcript
has higher variance and shrinkage towards the mean at low and high levels of expression, L; (D) the density lines show that the shrunk estimates of
lge (i.e. those hailing from multi-mapping probesets with no single-match probes) have a higher MCSE than the non-shrunk estimates (i.e. hailing

from multi-mapping probesets with at least one single-match probe).

distributions contained the true simulated value in ~95%
of cases.

Differential gene expression

Gene array mixture data set. To test the performance of
MMBGX on real Gene array data, we analysed a human
Gene 1.0 ST array data set, available from Affymetrix,
which was produced from various mixtures of brain and
heart RNA samples. A single RNA pool was created for
nine mixture levels, 0/100, 5/95, 10/90, 25/75, 50/50, 75/25,
90/10, 95/5,100/0, all of which were hybridized to three
replicates except for the 50/50 mixture, which was
hybridized to nine replicates.

A comparison of the pure brain with the pure
heart pools should neatly differentiate brain from heart-
expressed transcripts. A closer inspection of these
transcripts across all mixture levels should indicate a pro-
gressive increase in brain-expressed transcripts and a pro-
gressive decrease in heart-expressed transcripts.

MMBGX was run on the full data set and the two
extreme conditions—pure brain and pure heart—were
compared. Using differences in the posterior distributions
of the log expression parameter, we were able to clearly
distinguish brain- and heart-specific genes (Figure 5).
We also found that the log expression of genes predicted
to be brain specific follow a consistent upward trend as the
brain sample proportion increases and a consistent
downward trend as the heart sample proportion decreases,
as expected. Transcripts occurring in equal abundance in
the two pure conditions have flat intensities across mixture
levels (Figure 6).

Comparison with RMA and PLIER. One of the arrays in
the pure heart sample was analysed using the methods
provided in the Affymetrix analysis software, RMA (17)
and PLIER (5), in addition to MMBGX. There was good
concordance between the three methods for non-multi-
mapping probesets (Figure 7), despite a small subset of
probesets having a much lower PLIER expression value

on the log-scale than either RMA or MMBGX (data not
shown). The typical shrinkage induced by MMBGX for
low values was already observed in BGX (11). However,
the purpose of the comparisons is to contrast multi-
mapping and non-multi-mapping probesets. As expected,
the multi-mapping probeset estimates are inflated by
RMA and PLIER relative to MMBGX as these
methods do not split the signal according to the multiple
probe matches on the genome. Conversely, when RMA
and PLIER are compared with each other, no significant
difference between the multi-mapping and non-multi-
mapping expectation lines is observed as neither method
takes into account the multi-mapping structure of the
chips.

Estimation of isoform expression within one sample and
validation by RT-PCR

When applied to Exon arrays, MMBGX has the ability to
estimate the abundance of specific isoforms of each gene,
even within a single sample. Thus, MMBGX offers a more
fine-grained evaluation of the composition of mRNA
products than gene- or exon-level approaches. In order
to show that our approach is able to discern the abun-
dance of alternative variants, we ran MMBGX on the
Exon array data set described in the section ‘Materials
and Methods’ section, including three additional
treatments besides IgGl, and used the estimates to
create two groups of genes fulfilling certain criteria. The
first group contains genes with two highly expressed
isoforms, thus we expect RT-PCR to detect both
transcripts. The second group consists of genes with two
transcripts expressed at very different levels. For this
group, we expect RT-PCR to produce a very bright
band for the higher expressed transcript and a faint
band or possibly no band at all for the lower expressed
transcript. As the gel images were virtually identical for
the four treatments, only the results for IgG1 are shown.
Primer sequences used for the RT-PCR experiments are
listed in Note S1 in the Supplementary Data.
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For the first validation group, we picked genes that
had two transcripts with mean log expression values
above 6 in one of the conditions, resulting in a list of 36
genes. We then excluded genes with transcripts that did
not share flanking exons or were otherwise unsuitable for
testing by RT-PCR, leaving a selection of seven genes.
cDNA of three out of the seven genes was then amplified
to check the presence of both isoforms. Figure 8A shows,
for each variant in each gene, the full posterior
distributions of p, their exonic structure and the corre-
sponding RT-PCR products. The expression of two
isoforms of Cd97 and Clec5a are confirmed by two clear
bands of correct size for each gene. For B4galtS, we were
also able to detect the two predicted isoforms, although

Frequency
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0.0 0.2 0.4 0.6 0.8 1.0
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Figure 5. Histogram of the probability that the expression value of a
transcript is greater in the pure brain sample than in the pure heart
sample. The two peaks at 0 and | capture the brain- and heart-
expressed transcripts, respectively, while the hump in the centre
represents genes that are expressed equally in both tissues.
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there was a notable difference between the two bands and
the abundance of the spliced isoform appeared to be lower
than anticipated.

For the second validation group, we picked genes
with exactly two annotated transcripts with mean log
expression values differing by at least 5.5 in one of the
conditions, resulting in a list of 27 genes. As before, the
list was narrowed down by filtering genes which were
unsuitable for testing by RT-PCR, leaving a selection of
seven genes. We chose three genes with non-overlapping
distribution curves of the two isoforms and used RT-PCR
to check whether the correct prediction of the higher
expressed isoform could be confirmed. In each of the
three cases the highly expressed transcript was correctly
identified (Figure 8B). The transcript with a low predicted
expression level in Csf2rb2 yielded a faint band, whereas
the Racl and Slc23a2 transcripts with predicted low levels
of expression could not be detected. Our results show that
MMBGX is able to estimate the expression of alternative
isoforms within one sample. Other currently available
methods used on Exon arrays are designed to find differ-
ential splicing between conditions and therefore cannot be
tested on this data (cf. next section).

Differential splicing and comparison to exon-level
methods on a colon cancer data set

Comparisons between MMBGX, which works at the
Ensembl transcript level, with methods that work at the
exon level pose two major difficulties. First, an exon that is
predicted to be differentially spliced by an exon-level
method may not be listed as being alternatively included
by transcripts on Ensembl. This is advantageous in that it
restricts the search space to only known events thereby
reducing the false positive rate, but it is disadvantageous
if it prevents the detection of real events in a sample.
Second, an alternatively spliced exon may belong to or
be skipped by several Ensembl transcripts. Therefore,
ecach time an exon is declared to be differentially
spliced by an exon-level method and RT-PCR verification
is performed, we need to group the Ensembl transcripts by

05 10 15

Normalised p

Mixture level

Figure 6. Plots showing MMBGX log expression values of three types of genes at different brain/heart mixture levels. Fifty transcripts for which
P(ugo—Hg <0) = 0, P(ugo—py <0) = 1 and 0.45 < P(ugo—Hg < 0) <0.55) were randomly chosen and defined as ‘brain-expressed’, ‘heart-expressed’
and ‘equally-expressed’. The group mean of the nine mixture levels was subtracted from the nine values for each group of fifty transcripts and plotted
(A—C). As expected, the intensities of (A) brain-, (B) equally and (C) heart-expressed transcripts are upward-sloping, flat and downward-sloping
respectively, showing that MMBGX is adequately capturing concentration changes.
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Figure 7. (A—C) Density contours of scatterplots comparing expression measures obtained by MMBGX, RMA and PLIER. Separate contours are
plotted for multi-mapping (red) and non-multi-mapping (black) probesets. Both RMA and PLIER have a tendency to overestimate expression values
for multi-mapping probesets relative to MMBGX, as they ignore the fact that some probes map to multiple regions on the genome. There is no
perceptible difference in the plots comparing RMA with PLIER between multi-mapping and non-multi-mapping probesets. This is because neither

method takes into account the multi-mapping structure of the chips.

whether or not they include the exon and the flanking
exons targeted by the primers. In the example shown in
Figure 9, a detection of differential splicing for exon 2 by
an exon-level method needs to be compared with the
MMBGX probability of differential splicing of transcript
A and the set of transcripts C and D. Each set of
transcripts relates to one gel band, even though there
may be variation within the set (e.g. between transcripts
C and D). Any transcripts that do not include the exons
matching the primers (e.g. transcript B), are not targeted
by RT-PCR.

Comparison  between MMBGX and the Splicing
Index. Despite these difficulties, we attempted a broad
comparison between existing methods and MMBGX by
analysing a previously published colon cancer data set
(18). Although several methods exist to detect differential
splicing at the exon—probeset level (8,9), they are all
variations on a similar approach. Namely, they search
for deviations in the fold change at the exon—probeset
level from the expected fold change observed at the
gene—probeset level. The most commonly used metric is
the Splicing Index (7): the log fold change of the gene—
normalized intensities of exon—probesets between
conditions. The data set presented in (18) consists of 10
paired normal/tumour human Exon array samples. The
authors initially filtered their exon-probesets by applying
a r-test between conditions in the Splicing Index. After
RT-PCR testing of 42 candidates drawn from this list,
extra filters were applied in order to maximize the rate
of true positives, resulting in a list of 168 candidate
genes (provided by the authors in their Supplementary
File 3).

Out of the 42 genes tested by RT-PCR, 13 showed some
evidence of differential splicing. In addition, eight further
genes that had been previously reported as being differen-
tial spliced in colon tumours but were not significant in
their workflow were also tested by RT-PCR. Of these,
three tested positive. Therefore, in total, 50 genes were
tested by RT-PCR and 16 of those produced evidence of
differential splicing between normal tissues and tumours.

We ran MMBGX on both sets of arrays at the tran-
script and the gene level. Out of 35913 Ensembl genes,
10825 are known to produce more than one isoform.
After filtering out genes expressing only one transcript
in this data set, this list was reduced to 4928 genes,
which we shall refer to as the ‘multi-isoform set’. Of
the 168 candidates declared significant by Gardina et al.
(18), 95 belong to this ‘multi-isoform set’ and shall be
referred to as the ‘Gardina subset’. Out of the set of 16
genes positively validated by RT-PCR, 15 belong to the
‘multi-isoform set’ (all except LGRS, which Ensembl
currently lists as producing only one isoform) and shall
be referred to as the ‘RT-PCR validated subset’.

In order to compare results per gene, we consider the
quantity p, defined in the Dectecting differential splicing
section. Figure 10 shows a histogram of p,, for the ‘multi-
isoform set’ (that is, all genes that MMBGX declares to be
expressing more than one transcript, whether differentially
spliced or not). Also shown are the two subsets: the
‘Gardina subset’” and the ‘RT-PCR validated subset’.
The genes in the ‘Gardina subset’ tend to have higher
values of p, than the ‘multi-isoform set’ as a whole,
showing that genes declared significant in the Gardina
workflow will also tend to be declared significant by
MMBGX. Note, however, that the ‘Gardina subset’
includes many events that tested negative by RT-PCR.
The ‘RT-PCR validated subset’ of genes tend to have an
even higher value of p, than the ‘Gardina subset’, showing
that MMBGX agrees even better with the validated
RT-PCR results.

Comparison between MM BGX and the RT-PCR results of
the Gardina data set. We further present a more detailed
comparison of the MMBGX and RT-PCR results,
working at the transcript level, as MMBGX is designed
to do. Gel images were provided in Gardina et al., for 12
of the 16 positively validated genes (the nine validated
genes from the Gardina workflow that the authors con-
sidered to be convincing and three additional validated
genes that had been previously reported). Amongst the
12 genes, there are 27 gel bands. Each band corresponds
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Figure 8. Verification of isoform-level predictions by RT-PCR. Two groups of genes from mouse Exon array data were selected for validation by
RT-PCR. For each gene the posterior density of the log expression parameter, p, the exonic structure for two isoforms (not to scale) and length of
the corresponding PCR products are shown. Black: full length isoform, pink: spliced isoform. Below, agarose gels of RT-PCR products are shown.
RT-PCR was repeated at least three times and a representative gel is shown. (A) Genes with two isoforms with a mean log expression value greater
than 6 in one of the conditions. Both isoforms can be detected for all three genes. (B) Genes with two transcripts with a difference in mean log
expression of at least 5.5 between the isoforms in one of the conditions. The isoforms that were predicted to have higher expression levels were

correctly identified as shown by RT-PCR.

to the inclusion or exclusion of a set of exons and
the flanking primers. In order to compare with the
MMBGX results, we have to find the groups of transcripts
which contain or skip that exon, and also contain the
flanking exons targeted by the primers. Hence, for each
gel band we have a group of one or more corresponding
transcripts.

MMBGX provides a richer level of output than exon-
level methods. Many genes have several transcripts con-
taining a particular exon but differing at other sites.
MMBGX is able to distinguish between these transcripts.

For example, Figure 11 shows the posterior densities
of the MMBGX log expression measure of three
ATP2B4 transcripts in the normal and tumour conditions.
Transcripts ENST00000391954 and ENST00000341360
include exon 21 and are down-regulated in the tumour

samples, while transcript ENST00000357681 skips exon
21 and is up-regulated. This is consistent with the gel
image, which shows less brightness of the band corre-
sponding to inclusion of exon 21 in the tumour samples
and vice versa for the band corresponding to exclusion of
exon 21. Moreover, we can tell from the shape and
support of the density plots that the signal observed in
the shorter gel band is dominated by the expression
of ENST00000341360 rather than ENSTO00000391954,
illustrating the richness of information provided by the
MMBGX output. This kind of information cannot be
obtained using exon-level statistics such as the Splicing
Index, as they do not discriminate between transcripts
that share a significant differentially spliced exon.

Table 1 shows the 27 gel bands and transcript groups
for these 12 genes. Also shown is the direction of the
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Figure 9. Illustrative schematic of the structure of four variants. Each
exon is targeted by one exon—probeset. If differential splicing is pre-
dicted for exon 2, RT-PCR primers may be designed matching flanking
exons | and 3. The resulting short gel product would show the expres-
sion of transcript A, while the long product would show the total
expression of the two transcripts C and D. Any transcripts that do
not include the exons matching the primers, in this case transcript B,
are not targeted by RT-PCR.

relative expression change indicated by MMBGX and RT-
PCR. For the RT-PCR, Aggy is defined for each gel band:
—, 0 or + for decrease, no change and increase, respec-
tively, in the tumour samples. For MMBGX, there is a
measure per transcript, with Ayympgx = + indicating
p:<0.5 and Aympgx = — Indicating p, > 0.5). The
table includes max(p,,1 —p,). Large values of this
quantity indicate that MMBGX considers transcript 7 to
be differentially spliced with high probability (subject to
filtering). The table also indicates whether or not each
transcript is filtered according to the criterion in the
‘Decting differential splicing’ section. In order to assess
the agreement between MMBGX and the RT-PCR
results, we give a label to each gel band. Where Aggy is
either + or —, if all non-filtered transcripts have the
correct sign of Aympgx and at least one is significant,
we label the agreement as ‘good’. If all non-filtered
transcripts have the wrong sign of Ayvmpegx and at least
one is significant, we label the agreement as ‘contradic-
tory’. If none of the transcripts are significant, we label
the agreement as ‘non-significant’. If significant transcripts
corresponding to the same band have different Ayvpaxs
the band 1is labelled ‘inconclusive’. Finally, where
Aggr = 0, the agreement is labelled as ‘good’ only if all
transcripts are not significant. These labels are given in the
last column of Table 1.

Altogether, 24 bands were scored by us. The MMBGX
results for 10 bands agreed well with the RT-PCR, 9 were
non-significant, 3 were inconclusive and 2 were contradic-
tory. Three of the bands did not match any transcripts
listed on the Ensembl database. Only the MMBGX
results for two of the bands, both relating to ITGB4, con-
tradicted the RT-PCR validation in direction of change.
Note that the Gardina workflow did not pick up ITGB4
as a candidate for differential splicing since it was part
of the eight previously reported genes (cf. Figure 12), sug-
gesting that the microarray data contradicts the RT-PCR
data for this gene.

Out of the 50 genes tested, 34 produced negative RT-
PCR results for differential splicing. Of these, 17 genes had
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Figure 10. Barplot of the probability of differential transcript use, p,.
for genes in the ‘multi-isoform set’, the ‘Gardina subset’ and the
‘RT-PCR validated subset’. Genes in the ‘Gardina subset’ tend to
have a higher value of p, than the ‘multi-isoform set’ as a whole.
The ‘RT-PCR validated subset’ of genes tend to have even higher
values of p, than the ‘Gardina subset’.

incompatible Ensembl annotation. These probesets either
mapped to an intron, an exon shared by all transcripts of a
gene, a gene with only one isoform, a promoter exon or a
poly-A termination exon. As such, these events could not
be incorrectly called by MMBGX, illustrating one of the
strengths of restricting the search to known isoforms. Out
of the remaining 17 genes, only three, FAM44B, GBA and
CDHI11 were declared significant by MMBGX. However,
in the case of CDH11 the significant result was due to only
a small difference in the up-regulation of the two alterna-
tive isoforms (FC of 1.55 for ENST00000268603 and FC
of 1.21 for ENST00000268602). This is shown in detail in
Supplementary Table S1.

Comparison between MMBGX, COSIE and
FIRMA. Finally, we analysed the data set using two
recent exon-level methods, COSIE (19) and FIRMA (9),
which have been shown to improve upon the original
Splicing Index. We obtained COSIE presplicing indices
and FIRMA scores for each exon-level probeset and
calculated the P-values for a difference in means using
paired t-tests. For each method, we estimated two
thresholds for the P-values based on a false discovery
rate (FDR) of 0.2 and 0.3 using Storey’s method (20).
For each of the 12 positively validated genes for which
gel images were provided, we checked whether the exon-
probesets targeting the validated differentially spliced
exons had P-values below the threshold. If so, the genes
were declared true positives, otherwise they were declared
false negatives. For the 36 negatively validated genes, we
counted those with any probeset P-value below the thresh-
old as false positives and the others as true negatives.
From the results in Figure 12, we can see that in terms
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Table 1. MMBGX results for all the Ensembl transcripts targeted by the RT-PCR experiments for which gel images are available in Gardina et al.

Gene RT-PCR band AGEL Ensembl transcript AMMBGX max(p;,1—p,) FC Filtered Result
ACTNI1 Incl Ex19a not Ex19b + ENSTO00000193403 + 0.977 +0.6 N Good
Incl Ex19b not Ex19a — Not available
ATP2B4 Incl Ex21 — ENSTO00000391954 — 1 —2.1 N Good
ENSTO00000341360 — 0.99 —0.7 N
ENST00000367218 4F 0.875 +0.12 Y
Skip Ex21 4 ENSTO00000357681 4 1 +2.5 N Good
VCL Incl Ex19 - ENSTO00000211998 - 0.700 +0.02 N Non-significant
Skip Ex19 + ENSTO00000372755 + 0.803 +0.67 Y Non-significant
CALDI1 Ex5-Ext + Ex6 — ENSTO00000361675 — 0.998 —0.33 N Good
Incl Ex6 — ENST00000361388 - 0.673 —0.03 Y Non-significant
ENST00000393118 — 0.77 —0.15 N
Skip Ex6 4F ENSTO00000361901 4 0.998 +1.15 N Good
SLC3A2 Incl Ex2,3.4 + ENSTO00000377892 + 0.801 +1.11 N Good
Incl 2 Exons ENSTO00000377890 + 0.791 +0.47 Y Non-significant
ENSTO00000377891 + 1 +0.12 Y
Incl 1 Exon + Not available
Skip Ex2,3,4 — ENST00000377889 — 1 +0.08 Y Non-significant
COLG6A3 Incl Ex6 4F ENST00000295550 — 0.603 +0.66 Y Inconclusive
ENST00000347401 — 0.972 —-1.3 N
ENSTO00000392005 4F 0.558 +0.75 N
ENST00000353578 4F 0.614 +0.96 N
ENST00000392004 — 1 +0.07 Y
ENSTO00000392003 — 0.997 +0.06 Y
Skip Ex6 0 ENSTO00000346358 4F 0.726 +1.43 N Good
CTTN Incl Exl11 + ENSTO00000301843 + 0.681 +0.46 N Non-significant
Skip Ex11 - ENSTO00000346329 - 0.930 +0.06 Y Non-significant
ENSTO00000376561 - 0.856 +0.13 Y
FN1 Incl Ex25 — ENSTO00000354785 — 0.543 +0.69 N Good
ENST00000323926 — 0.861 +0.62 N
Skip Ex25 0 ENST00000359671 4 0.609 +1.20 N Good
ENST00000336916 - 0.514 +1.07 N
ENST00000356005 4F 0.567 +0.76 N
ENST00000346544 4 0.782 +0.40 Y
ENSTO00000345488 4F 0.582 +0.68 N
ENST00000357867 4F 0.738 +0.39 N
ENST00000357009 - 0.615 +0.38 N
TPM1 Incl Ex8 not Ex7 - Not available
Incl Ex7 not Ex8 + ENST00000267996 — 0.996 —2.44 N Inconclusive
ENSTO00000357980 + 0.949 +1.36 N
ENSTO00000334895 + 0912 0.00 N
CD44 Incl Ex12,13,14 4+ ENST00000352818 — 0.787 +0.37 N Non-significant
Skip All Variable Exons — ENST00000263398 = 0.725 +0.61 N Non-significant
RACI1 Incl Ex4 + ENST00000356142 + 0.996 +1.11 N Good
Skip Ex35 - ENSTO00000348035 - 0.964 +0.23 N Inconclusive
ENSTO00000396729 + 0.692 +0.78 N
ITGB4 Incl Ex35 — ENST00000200181 4 0.995 +1.02 N Contradictory
Skip Ex35 4 ENST00000339591 - 0.995 —0.13 N Contradictory

For each gene, two or more gel bands are listed. Each band matches a set of Ensembl transcripts for which various MMBGX results are
shown. The fourth column shows whether there is agreement in the relative direction of change in transcript use between MMBGX and the
gel image. The fifth column gives the probability of differential transcript use, while the sixth column gives the fold change for each transcript.
Transcripts with predicted expression close to zero in both conditions are marked as filtered. The concordance between the MMBGX results
and the RT-PCR validation is shown in the right-most column. Genes above the thick line were significant in the Gardina workflow, while genes

below it were not.

of the true negatives, COSIE and FIRMA gave equivalent
results but that COSIE performed slightly better for
detecting true positives. MMBGX outperformed both in
terms of power, finding 7 out of the 12 positively validated
genes, whereas for a similar level of false positives, COSIE
only found 3. These results are shown in detail in
Supplementary Tables S2 and S3.

To summarize, amongst the 46 genes tested by RT-PCR
(the 12 positives where a gel image was provided and the
34 negatives), 38 MMBGX results agreed and 6 disagreed
(where a gene with a ‘good’ result and no ‘contradictory’

results counts as an agreement), giving an error rate of
0.14. The Gardina workflow method agreed on 14 genes
and disagreed on 32, giving an error rate of 0.73. Hence,
the MMBGX results are much more consistent with the
RT-PCR results, despite the fact that the candidates for
RT-PCR testing were chosen on the basis of the Gardina
workflow method. MMBGX also outperformed COSIE,
which had an error rate of 0.26 (FDR <0.2) and 0.50
(FDR <0.3) and FIRMA, which had an error rate of
0.28 (FDR <0.2) and 0.54 (FDR <0.3). These results
are shown in Figure 12.



PaGe 13 0F 15

Nucleic Acids Research, 2010, Vol. 38, No. 1 e4

ATP2B4 ATP2B4 ATP2B4
ENST00000391954 (incl Ex21) ENST00000341360 (incl Ex21) ENST00000357681 (skip Ex21)
< — <
— Normal — Normal o | = Normal
---- Tumour ---- Tumour a7 ---- Tumour )
8] ™ |
0 1
= = 2 :
a ] a - o
—— — 0 ;o
o'—/—/\:.
Ly - o . oV | N
T T T T T T T T T T T T S T T T T T
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Posterior probability of log expression Posterior probability of log expression Posterior probability of log expression
ﬂ —Incl| B2l
ATP2B4
Ex20/22 ™ +=Skip Bx21

Colon Tumour Samples

Normal Colon Samples

Figure 11. Densities of the posterior probabilities of log expression for three ATP2B4 transcript variants are shown. The two transcripts that include
exon 21 are down-regulated in the tumour samples, while the transcript that skips exon 21 is up-regulated in the tumour samples. This corresponds to
evidence from RT-PCR validations, where the band that includes exon 21 is brighter in the tumour samples than in the normal samples and vice

versa for the band that excludes exon 21 [image taken from (18)].

DISCUSSION
Non-specific hybridization and probe-affinity effects

Our model treats non-specific hybridization at the probe
level as exchangeable within groups of probes with similar
GC content. Each GC content category k(j) captures
probe j’s affinity effect through the means and variances
of the log-scale background intensities, Y. and (Si(])cr‘
However, it has been shown—albeit in the case of
RNA-DNA hybridizations on 3’ chips—that probe
affinity effects depend not only on overall GC content
but also on the precise positioning of each of the bases
on an oligonucleotide (1). If a different predictor of affinity
than GC content is preferred, it can be incorporated into
MMBGX by binning the background probes according to
this predictor and mapping the PM’s to the appropriate
bin. Therefore, while in this article we used Affymetrix’s
simple GC content-based scheme, more sophisticated
schemes can be integrated into the models in a straight-
forward way.

Sequence-specific effects in Affymetrix microarrays have
to date been modelled as part of the background noise by
exploiting information in the MM probes on 3'-arrays
or the background probes on whole-transcript arrays
(e.g. GCRMA, PLIER, MMBGX). However, it is reason-
able to assume that these effects apply not only to the
non-specific hybridization component of the probe
intensities, but also to the signal component. Some
methods have included multiplicative probe effects (e.g.
RMA) to account for systematic effects between probes,
but these do not use the sequence information for each
probe. In future work, we aim to refine our method by
incorporating GC-specific affinity effects in the modelling
of the probe-level signal as well as the non-specific
hybridization.

42 out of 168 genes 8 additional
in Gardina workflow previously reported
tested by RT-PCR genes
| 50 genes tested by RT-PCR |
16 positive 34 negative
12 positive with .
gels provided 34 negative

: :

Gardina workflow: 9+, 3— 29+, 5—
MMBGX: 7+, 5— 3+, 31—
COSIE (FDR<0.2) 3+, 9— 3+, 31—
COSIE (FDR<0.3) 6+, 6— 17+, 17—
FIRMA (FDR<0.2) 1+, 11— 2+, 32—
FIRMA (FDR<0.3) 4+, 8— 17+, 17—

Figure 12. A schematic of the MMBGX validation of the colon cancer
data set and its comparison to the Gardina workflow. Out of 168 genes in
the Gardina workflow, 42 were validated by RT-PCR as were an addi-
tional eight genes picked because they had been reported in previous
studies. Gel bands for 12 positively validated genes were provided by
Gardina et al., nine from their workflow and three from previous
studies. The MMBGX and Gardina workflow results for the 12 positively
validated genes and 34 negatively validated genes are shown.

Reliance on comprehensive transcript annotation

Transcript-level analysis relies on the comprehensiveness
of the annotations used. If a transcript is highly abundant
in a sample but is not targeted by a specific probeset,
the signal from a different but similar transcript may
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be overestimated, yielding a false positive. In cases where
an unknown real transcript is highly abundant in a sample
and contains all the exons in a smaller Ensembl transcript,
the Ensembl transcript acts as an unbiased proxy for the
real transcript. Conversely, if an Ensembl transcript is
more extensive than a real, unknown and highly
abundant transcript, the Ensembl transcript acts as a
downward-biased proxy due to its inclusion of
unexpressed exons. Therefore, it is advisable to use
MMBGX in conjunction with an effective exon-level
method, such as COSIE, to ensure that novel events are
not missed. At the time of writing, the human and mouse
Exon arrays were found to target 52743 and 40420
Ensembl transcripts, respectively, and newly verified
transcripts are being added on a regular basis. Thus,
with each revision of Ensembl, the chance of being con-
founded by an unknown transcript is reduced. The rat
genome, with only 34006 known transcripts, has been
less extensively annotated, so caution should be exercised
when interpreting MMBGX results from rat data.
Naturally, alternative sources of annotation may be used
to construct the MMBGX probe—probeset structure files
and interrogate a more extensive, although possibly less
established, set of transcripts.

Comparison to methods for custom-built junction
arrays and tiling arrays

Other methods have been developed that rely on
custom-built arrays with junction probes and cannot
straightforwardly be applied to Exon arrays. GenASAP
estimates the expression of alternative isoforms uniquely
distinguishable by inclusion or exclusion of a single
predefined cassette exon (21). DECONYV, like MMBGX,
tries to disaggregate the signal at probes targeting multiple
transcripts but requires arrays specifically designed to
capture predefined gene structures (22). The principal
advantage of using Exon arrays and MMBGX relative
to custom junction arrays and these approaches is that,
as improved transcript annotation becomes available,
MMBGX may be incorporated into a re-analysis of the
data without needing to redesign the array and repeat the
experiment. More recently, ahierarchical Bayesian model
(23) has been proposed to estimate isoform expression
using tiling arrays. A very large number of arrays (91 in
the case of 5-bp offsets along the human genome) are
required for a single sample, however, which may make
the approach impractical.

CONCLUSION

We have presented a fully hierarchical Bayesian model
to estimate expression values from whole-transcript
GeneChip microarrays. It is, to our knowledge, the first
method to use the multi-mapping structure between
probes and probesets to split the expression signal in a
logical way and to model Exon array data at the transcript
rather than the gene or exon level. MMBGX uses the rich
transcriptional annotation on the Ensembl databases to
detect and quantify the expression of alternative splice
variants. With successive Ensembl releases, predictions
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can be updated and improved accordingly. Given the
established importance of alternative splicing to the
proteome (24), we hope that MMBGX will prove useful
in characterizing the roles of alternative isoforms in dif-
ferent tissues and species during normal development and
in disease.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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