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    Introduction 
 Epithelial cells transition from an epithelial to a mesenchymal 

phenotype during normal development ( Thiery, 2002 ;  Lee et al., 

2006 ). This phenomenon is referred to as an epithelial-to-

mesenchymal transition (EMT) and is tightly regulated by acti-

vators and repressors ( Affolter et al., 2003 ). EMTs that drive 

development are critical for events such as gastrulation, neural 

crest cell migration, and wound healing ( Savagner, 2001 ;  Grunert 

et al., 2003 ;  Thiery and Sleeman, 2006 ). During EMT, cells often 

decrease expression of E-cadherin and increase expression of 

N-cadherin ( Thiery, 2003 ;  Lee et al., 2006 ). In addition, they lose 

epithelial polarity, gain the expression of mesenchymal mark-

ers, and become highly motile ( Thiery, 2003 ;  Lee et al., 2006 ). 

We have shown that cadherin switching is necessary for the in-

creased cell motility that accompanies EMT ( Maeda et al., 2005 ) 

and that inhibiting N-cadherin up-regulation prevents tubulo-

genesis ( Shintani et al., 2006b ). 

 EMT-like transitions also occur in tumor cells when they 

change from a benign to an aggressive phenotype, although they 

often do not fully change to mesenchymal cells ( Grunert et al., 

2003 ). The extent of EMT varies and is often transient, occurring 

at the invasion front of metastatic tumors ( Grunert et al., 2003 ). 

Although they may not express all the genes that typify full-

blown EMT, many tumor cells respond to inducers of EMT by 

changing their shape, displaying a scattered phenotype, becom-

ing highly motile, and undergoing a cadherin switch ( Islam et al., 

1996 ;  Pishvaian et al.,1999 ;  Tomita et al., 2000 ;  Feltes et al., 

2002 ;  Grunert et al., 2003 ). A switch to N-cadherin expression 

by tumor cells promotes motility, invasion, and metastasis 

( Nieman et al., 1999 ;  Hazan et al., 2000 ;  Hulit et al., 2007 ). 

 EMT is initiated by signals originating from outside the 

cell, including growth factors and ECM molecules ( Savagner, 

2001 ;  Lee et al., 2006 ). Triggers for normal EMT vary tremen-

dously depending on the tissue and context ( Thiery and Sleeman, 

2006 ). For example, hepatocyte growth factor induces EMT in 

early development and during cardiac cushion formation but 

T
umor cells undergo epithelial-to-mesenchymal tran-

sition (EMT) to convert from a benign to a malignant 

phenotype. Our recent focus has been signaling 

pathways that promote EMT in response to collagen. 

We have shown that human pancreatic cancer cells respond 

to collagen by up-regulating N-cadherin, which promotes 

tumor growth, invasion, and metastasis. Initial character-

ization showed that knocking down c-Jun NH 2 -terminal 

kinase prevented N-cadherin up-regulation and limited 

tumor growth and invasion in a mouse model for pancre-

atic cancer. The current study was designed to understand 

the pathway from collagen to N-cadherin up-regulation. 

Initiation of the signal requires two collagen receptors, 

 � 2 � 1 integrin and discoidin domain receptor (DDR) 1. 

Each receptor propagates signals through separate path-

ways that converge to up-regulate N-cadherin. Focal ad-

hesion kinase (FAK) – related protein tyrosine kinase (Pyk2) 

is downstream of DDR1, whereas FAK is downstream of 

 � 2 � 1 integrin. Both receptor complexes rely on the p130 

Crk-associated substrate scaffold. Interestingly, Rap1, but 

not Rho family guanosine triphosphatases, is required for 

the response to collagen I.

 Collagen I – mediated up-regulation of N-cadherin 
requires cooperative signals from integrins 
and discoidin domain receptor 1 
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ing expression of N-cadherin, and overexpressing N-cadherin 

promotes tumor growth, invasion, and metastasis in an ortho-

topic mouse model for pancreatic cancer. In addition, inhibiting 

N-cadherin up-regulation in response to collagen prevents cell 

scattering and motility in vitro and limits tumorigenesis. Fur-

thermore, inhibiting N-cadherin function with the N-cadherin 

antagonist ADH1 also decreases cell motility and limits tumori-

genesis ( Shintani et al., 2008a ). Thus, it is clear that up-regulat-

ing N-cadherin expression promotes an aggressive phenotype in 

pancreatic cancer. 

 We have previously shown that inhibiting JNK activity 

in pancreatic cancer cells prevents N-cadherin up-regulation, 

cell scattering, and cell motility in response to collagen I, 

whereas inhibiting PI3K signaling does not ( Shintani et al., 

2006a ). In addition, expressing short hairpin RNA (shRNA) 

against JNK1 prevents N-cadherin expression and limits tumori-

genesis in the orthotopic model. Thus, it is clear that signaling 

downstream of collagen I is complex and plays a signifi cant role 

in tumor cell behavior, especially in highly fi brotic cancers like 

pancreatic cancer. 

 The current study was designed to understand the signals 

that promote up-regulation of N-cadherin and cell scattering in 

human pancreatic cancer cells in response to collagen I. We found 

that initiation of the signal requires two collagen receptors, 

 � 2 � 1 integrin and discoidin domain receptor (DDR) 1 and that 

each receptor propagates signals through separate pathways that 

converge to up-regulate N-cadherin expression. 

 Results 
 BxPC3 cells scatter in response to 
collagen I but not fi bronectin 
 From our previous studies, we knew that the interaction of hu-

man pancreatic cancer cells with collagen I leads to activation of 

JNK1, which promotes scattering and N-cadherin up-regulation. 

To investigate the pathways responsible for these activities, we 

fi rst examined the interactions with collagen that initiate the sig-

nal. We showed that the only integrin collagen receptor expressed 

by these cells is  � 2 � 1 (Fig. S1 A, available at http://www.jcb

.org/cgi/content/full/jcb.200708137/DC1; and not depicted). This 

is in agreement with published studies showing that  � 2 � 1 is the 

functional integrin collagen receptor expressed by BxPC3 cells 

( Grzesiak and Bouvet, 2006 ). BxPC3 cells expressed very low 

levels of the fi bronectin receptor  � 5 � 1 (Fig. S1 A), presenting 

the possibility that they may respond to collagen but not fi bro-

nectin simply because they do not express an appropriate recep-

tor for fi bronectin. Thus, we overexpressed  � 5 integrin in these 

cells to form the  � 5 � 1 integrin receptor ( Fig. 1 B ). The surface 

level of  � 5 was roughly equivalent to the level of  � 2 (Fig. S1 B). 

As we have shown in the past, BxPC3 cells scattered when plated 

on collagen but not when plated on plastic or fi bronectin ( Fig. 1 A , 

a – c). Cells overexpressing  � 5 integrin continued to scatter on 

collagen ( Fig. 1 A , e) and did not scatter on fi bronectin ( Fig. 1 A , f) 

even though they expressed signifi cant levels of  � 5 integrin 

( Fig. 1 B ).  Fig. 1 C  shows that mock-transduced BxPC3 cells 

plated on collagen had phosphorylated FAK, whereas the level 

of phosphorylated FAK in parental cells plated on fi bronectin 

inhibits EMT and, thus, prevents fi brosis during repair of adult 

kidney injury ( Zavadil and Bottinger, 2005 ). The matrix metallo-

proteinase – 28 induces EMT by proteolytically releasing 

E-cadherin from the cell surface and activating latent TGF �  

( Zavadil and Bottinger, 2005 ). Other proteases can induce EMT 

by activating distinct downstream signals ( Radisky et al., 2005 ; 

 Zhang et al., 2007 ). Growth factors like FGF and hepatocyte 

growth factor act through phosphatidylinositol 3 kinase (PI3K) 

to activate Rac and Cdc42 and inactivate Rho, which results in 

reorganization of the actin cytoskeleton, leading to EMT-like 

events ( Lee and Kay, 2006 ;  Lee et al., 2006 ). 

 Perhaps the best-studied inducer of EMT is TGF � , which 

binds to serine/threonine receptor kinases that signal through 

Smads to regulate EMT-specifi c genes ( Shi and Massague, 

2003 ;  ten Dijke and Hill, 2004 ;  Zavadil and Bottinger, 2005 ). 

TGF �  can also participate in Smad-independent pathways that 

involve Par6- and Smurf1-mediated degradation of RhoA, lead-

ing to dissolution of tight junctions and actin reorganization, 

which contribute to EMT ( Barrios-Rodiles et al., 2005 ;  Moustakas 

and Heldin, 2005 ;  Ozdamar et al., 2005 ). The signals that initi-

ate EMT-like changes in cells and the downstream pathways are 

diverse. Because these pathways play a signifi cant role in the 

behavior of tumor cells, it is critical that we have a complete 

understanding of the signals. 

 In addition to soluble proteins that initiate EMT, ECM 

molecules have been shown to induce similar changes in epi-

thelial cells. For example, forced expression of hyaluronan by 

normal MDCK cells promotes EMT by inducing matrix me-

talloproteinase production and activating PI3K ( Zoltan-Jones 

et al., 2003 ). Several laboratories, including our own, have 

shown that collagen I induces EMT-like changes in various cell 

types. For example, Tiam1/Rac signaling promotes motility in 

MDCK cells plated on collagen I but not other substrates, and 

this activity is regulated by PI3K ( Sander et al., 1998 ). Pancre-

atic cancer is highly invasive and metastatic ( Baumgart et al., 

2005 ) and is characterized by extensive deposition of collagen I 

( Imamura et al., 1995 ;  Linder et al., 2001 ;  Bachem et al., 2005 ). 

Pancreatic cancer cells cultured in collagen I gels form looser 

aggregates than the same cells cultured in Matrigel ( Yamanari 

et al., 1994 ) and grow as scattered individual cells on collagen I, 

in contrast to the small clusters of cells that are seen on non-

coated dishes ( Armstrong et al., 2004 ). In addition, pancreatic 

cancer cells undergo Src-dependent morphological transforma-

tion in response to plating on collagen I ( Menke et al., 2001 ) 

and activate FAK, which then associates with  � -catenin to acti-

vate  � -catenin/LEF1 target genes such as c-myc and cyclin D1 

( Koenig et al., 2006 ). 

 We recently showed that mouse mammary epithelial cells 

up-regulate N-cadherin and undergo EMT in response to colla-

gen I through a pathway involving integrins, PI3K, Rac1, and 

JNK and that the response to collagen I is much like the re-

sponse of these cells to other EMT-inducing stimuli ( Shintani 

et al., 2006b ). Likewise, human lung cancer cells respond to 

collagen I by increasing production of active TGF � , which then 

promotes EMT-like changes through canonical Smad signaling 

( Shintani et al., 2008b ). We also showed that human pancreatic 

cancer cells respond to collagen I by scattering and up-regulat-
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Pyk2, which can also signal downstream of integrins, and BxPC3 

cells plated on collagen I showed increased phosphorylation of 

Pyk2 ( Fig. 2 A , e, lanes 1 and 2), we knocked down its expression 

in BxPC3 cells expressing FRNK ( Fig. 2 C , d, lanes 3 and 4). 

These cells did not show increased phosphorylation of either 

FAK or Pyk2 in response to collagen I ( Fig. 2 C , a – d). Impor-

tantly, cells knocked down for Pyk2 and expressing FRNK did 

not scatter ( Fig. 2 B , h) nor did they up-regulate N-cadherin in re-

sponse to collagen I ( Fig. 2 C , e). To rule out the possibility that 

Pyk2 alone was suffi cient to transmit the signal from collagen I, 

we knocked it down in parental BxPC3 cells and showed that 

these cells also had only a partial response to collagen I ( Fig. 2 B , 

i – j). These experiments suggested that activation of integrins in 

response to collagen I transmits signals through both FAK and 

Pyk2. To verify this, we compared phosphorylation of FAK and 

Pyk2 in parental BxPC3 cells plated on collagen I to that of 

BxPC3 cells knocked down for integrin  � 1. We were surprised to 

fi nd that knocking down integrin  � 1 prevented phosphorylation 

of FAK ( Fig. 2 A , c, lanes 3 and 4) but had little effect on 

phosphorylation of Pyk2 ( Fig. 2 A , e, lanes 3 and 4). 

 The response of BxPC3 cells to collagen I 
requires both integrins and DDR1 
 The data in  Fig. 2  suggested that both FAK and Pyk2 are in-

volved in collagen I – induced changes and that FAK, but not 

Pyk2, is downstream of integrin activation. Most epithelial 

 tumor cells (including BxPC3) express another collagen recep-

tor, DDR1, which is a not an integrin receptor but rather is 

a receptor tyrosine kinase that binds to and is activated by 

was similar to that of cells plated on plastic. When the cells over-

expressed  � 5, they still activated FAK in response to collagen; 

however, they now also activated FAK in response to fi bronectin. 

Thus, merely activating FAK is not suffi cient to promote scatter-

ing. We concluded from these experiments that BxPC3 cells ob-

tain specifi c signals from exposure to collagen I that they do not 

receive from fi bronectin, even though the integrin receptors are 

activated on either substrate. 

 Interaction with collagen I activates both 
FAK and Pyk2 
 To directly examine the role of integrin  � 1 in the response 

to collagen I, we used shRNA to knock down its expression 

( Fig. 2 A , a). Cell scattering in response to collagen I was par-

tially, but not completely, prevented ( Fig. 2 B , a – d). In addition, 

shRNA against integrin  � 1 only partially prevented the up-

regulation of N-cadherin in response to collagen I ( Fig. 2 A , b). 

shRNA against integrin  � 2 had the same effect as shRNA against 

integrin  � 1, whereas shRNA against integrin  � 5 had no effect 

(unpublished data). Using phase microscopy to document a par-

tial response can be subjective. Thus, the criteria we considered 

were an increase in the number of single cells and a decrease in 

colony size. In addition, an important and less subjective criterion 

was a decrease in the up-regulation of N-cadherin in response to 

collagen I. 

 To go one step down the pathway from integrins, we ex-

pressed a dominant-negative form of FAK (FRNK). Interestingly, 

FRNK also showed only a partial inhibition of cell scattering 

( Fig. 2 B , f). Because BxPC3 cells express the FAK homologue 

 Figure 1.    Overexpression of integrin  � 5 in 
BxPC3 cells.  (A) BxPC3 cells (a – c) or integrin 
 � 5 – overexpressing BxPC3 cells (d – f) were cul-
tured on noncoated (a and d), collagen I – coated 
(b and e), or fi bronectin-coated (c and d) 
dishes. Bar, 100  μ m. (B) 30  μ g of protein from 
mock or integrin  � 5 – overexpressing BxPC3 
cells (2 d after seeding) was resolved by SDS-
PAGE and blotted for integrin  � 5 (Int  � 5) or 
tubulin. (C) 60  μ g of protein from mock or 
integrin  � 5 – overexpressing BxPC3 cells (4 h 
after seeding) was resolved by SDS-PAGE and 
blotted for phospho-FAK (p-FAK; Y577), total 
FAK (t-FAK), or tubulin.   
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did not scatter ( Fig. 3 C , f) and did not up-regulate N-cadherin 

( Fig. 3 D , c). 

 To ensure we were studying a pathway relevant to pancre-

atic cancer and not specifi c to a single pancreatic cancer cell 

line, we showed that several pancreatic cancer cells respond 

similarly to collagen I but not to other substrata ( Shintani et al., 

2006a ) and that several pancreatic cancer cell lines express 

DDR1 (Fig. S3 A, available at http://www.jcb.org/cgi/content/

full/jcb.200708137/DC1). We further showed that knocking down 

DDR1 in Capan-1 cells reduced, but did not eliminate, their re-

sponse to collagen I (Fig. S3, B and C). 

 Because it required knocking down both integrin  � 1 and 

DDR1 to completely block the response to collagen I and we saw 

the same effect only when inhibiting signaling through both FAK 

and Pyk2, we asked whether Pyk2 was downstream of DDR1 

rather than integrin  � 1. Knocking down integrin  � 1 had little ef-

fect on Pyk2 phosphorylation ( Fig. 2 ). Thus, we examined the 

activation of FAK and Pyk2 in cells knocked down for DDR1. 

In mock cells FAK and Pyk2 were phosphorylated in response to 

collagen I as expected ( Fig. 4 A ). In cells knocked down for 

DDR1, FAK phosphorylation was similar to that of control cells, 

collagen ( Vogel et al., 2000 ). When BxPC3 cells were cultured 

on plastic, DDR1 had very low levels of tyrosine phosphory-

lation ( Fig. 3 A ). However, when cells were plated on collagen I, 

DDR1 was phosphorylated similarly to cells treated with 

soluble collagen I ( Fig. 3 A , lanes 3 and 4). Soluble collagen I 

has been previously shown to activate DDR1 ( Vogel et al., 

2000 ). We next showed that knocking down expression of 

DDR1 using shRNA inhibited collagen-induced cell scatter-

ing and partially prevented collagen I – mediated up-regulation 

of N-cadherin ( Fig. 3 ). As with the experiments described in 

 Fig. 2 , a partial response to collagen I is diffi cult to document 

with a single low-magnifi cation phase micrograph. Thus, we 

have provided additional fi elds of view (Fig. S2 A, available 

at http://www.jcb.org/cgi/content/full/jcb.200708137/DC1). 

In addition, we have shown that the small colonies of cells 

seen on collagen continue to display cell – cell border staining 

for E-cadherin (Fig. S2 B). These experiments suggested to us 

that it was the combination of signals from DDR1 and integrin  � 1 

that produced the full response of BxPC3 cells to collagen I. 

To test this idea, we knocked down DDR1 and integrin  � 1 in 

the same cells. When these cells were plated on collagen they 

 Figure 2.    Inhibition of integrin signaling in 
BxPC3 cells.  (A) RIPA extracts (30  μ g of pro-
tein) from cells expressing shEGFP (control) or 
shIntegrin  � 1 (shInt � 1) cultured on noncoated 
or collagen I – coated dishes for 2 d were re-
solved by SDS-PAGE and blotted for integrin 
 � 1 (a), N-cadherin (b), or tubulin (f). 60  μ g 
of protein from cells cultured on noncoated or 
collagen I – coated dishes for 4 h was blotted 
for phospho-FAK (Y577; c), total FAK (d), or 
phospho-Pyk2 (Y579/Y580; e). (B) BxPC3 
cells expressing shEGFP (a and b), shIntegrin 
 � 1 (c and d), FRNK (e and f), both FRNK and 
shPyk2 (g and h), or shPyk2 alone (i and j) 
were cultured on noncoated (a, c, e, and g) or 
collagen I – coated (b, d, f, and h – j) dishes for 
2 d. Bar, 100  μ m. (C) RIPA extracts from cells 
expressing shEGFP or both shPyk2 and FRNK 
were blotted for phospho-FAK (Y577; a), total 
FAK (b), phospho-Pyk2, (Y579/Y580; c), total 
Pyk2 (d), N-cadherin (e), or tubulin (f).   
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 P130 Crk-associated substrate (CAS) 
functions as a scaffold to facilitate 
signaling from collagen I to JNK 
 The next objective of this study was to determine how the signal 

gets from FAK/Pyk2 to JNK. Signaling cascades often involve 

scaffolds, and p130CAS plays a crucial role in controlling integ-

rin-dependent processes ( Chodniewicz and Klemke, 2004 ). 

In addition, the SH3 domain of p130CAS binds FAK and 

Pyk2 leading to activation of JNK ( Tanaka and Hanafusa, 1998 ; 

 Blaukat et al., 1999 ). Thus, we asked if DDR1 was also capable 

of binding to p130CAS. Coimmunoprecipitation showed that 

DDR1 was in a complex with p130CAS, and this association was 

increased when cells were plated on collagen I ( Fig. 5, A and B ). 

 p130CAS function is dependent on tyrosine phosphory-

lation of its substrate domain (SD). It has been previously reported 

that p130CAS SD fused to an Src kinase domain [Src*/CAS(SD)] 

acts as a dominant negative by blocking p130CAS-mediated sig-

naling events including JNK activation ( Kirsch et al., 2002 ). 

The control for this dominant-negative form of p130CAS is SrcKM/

CAS(SD), in which the Src component has an inactive kinase do-

main (K295M). Expression of this latter construct does not pro-

mote tyrosine phosphorylation of the p130CAS SD ( Kirsch et al., 

2002 ). To ask if p130CAS is necessary for collagen I – dependent 

signaling, we expressed dominant-negative p130CAS in BxPC3 

cells and examined the response to collagen I. Overexpression 

of Src*/CAS(SD) prevented N-cadherin up-regulation ( Fig. 5 C ), 

whereas SrcKM/CAS(SD)-infected cells up-regulated N-cadherin 

similarly to mock infected cells ( Fig. 5 C , top). In addition, 

cell scattering was prevented by overexpressing Src*/CAS(SD) 

but not by the inactive SrcKM/CAS(SD) ( Fig. 5 D ). These data 

show that p130CAS plays a crucial role in collagen I – mediated 

cell scattering as well as up-regulation of N-cadherin and, 

whereas phosphorylation of Pyk2 was attenuated. When we 

knocked down both DDR1 and integrin  � 1, phosphorylation of 

both FAK and Pyk2 was prevented ( Fig. 4 A ). Together, these 

data suggest that BxPC3 cells receive two signals from collagen I, 

one initiated by integrin  � 1 and propagated through FAK and 

the other initiated by DDR1 and propagated through Pyk2. 

Although the suggestion that Pyk2 may be downstream of DDR1 

is novel, it has been previously reported that Pyk2 can be acti-

vated by other receptor tyrosine kinases ( Park et al., 2004 ). 

Co immunoprecipitation showed that DDR1 interacts with 

Pyk2 and that DDR1 is in a complex with Pyk2 but not with FAK 

( Fig. 4 B ). In addition, the amount of Pyk2 that coimmunoprecipi-

tated with DDR1 was slightly higher when cells were plated on 

collagen than when they were plated on plastic. When we immuno-

blotted the DDR1 immunoprecipitation reactions for p-Pyk2, we 

did not see a convincing signal. However, it is likely this antibody 

would not be able to detect the small amount of Pyk2 present in 

the immunoprecipitation reaction. 

 We previously reported that JNK is necessary for colla-

gen-induced changes in BxPC3 cells ( Shintani et al., 2006a ). 

Thus, it was important here to determine the effect on JNK acti-

vation of knocking down integrin  � 1, DDR1, FAK, and Pyk2. 

 Fig. 4 C  shows that knocking down individual components of 

these pathways either had no effect or slightly lowered the acti-

vation of JNK but that knocking down integrin  � 1 together 

with DDR1 or expressing dominant-negative FAK together with 

knocking down Pyk2 completely prevented JNK phosphoryla-

tion in response to collagen. Thus, the signal to scatter and up-

regulate N-cadherin in response to collagen is multifaceted and 

requires both integrin  � 1 and DDR1 collagen receptors together 

with their respective downstream partners FAK and Pyk2, which 

together propagate a signal to JNK. 

 Figure 3.    DDR1 is necessary for collagen I – 
induced changes in BxPC3 cells.  (A) BxPC3 cells 
were extracted in TNE buffer 12 h after plat-
ing on noncoated or collagen I – coated dishes. 
600  μ g of protein was immunoprecipitated 
with nonspecifi c rabbit IgG or anti-DDR1 rab-
bit pAb and blotted with anti-phosphotyrosine 
mAb (PY20) or anti-DDR1 pAb. TNE extracts 
from cells stimulated with soluble collagen 
type I (sol col; 50  μ g/ml) for 120 min served as 
a positive control (lane 4). (B) RIPA extracts 
(30  μ g of protein) from cells expressing shEGFP 
or shDDR1 and cultured on noncoated or 
 collagen I – coated dishes for 2 d were resolved 
by SDS-PAGE and blotted for DDR1, N-cadherin, 
or tubulin. (C) BxPC3 cells expressing shEGFP 
(a and b), shDDR1 (c and d), or both shDDR1 
and shIntegrin  � 1 (e and f) were cultured 
on noncoated (a, c, and e) or collagen I – 
coated (b, d, and f) dishes for 2 d. Bar, 100  μ m. 
(D) RIPA extracts (30  μ g of protein) from cells 
expressing shEGFP or both shDDR1 and shInte-
grin  � 1 and cultured on noncoated or collagen I – 
coated dishes for 2 d were blotted for DDR1 (a), 
integrin  � 1 (b), N-cadherin (c), or tubulin (d).   
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N-cadherin up-regulation, we asked if Rap1 might be a relevant 

GTPase in our system. Rap1 was activated when cells were plated 

on collagen I ( Fig. 6 A ) and Rap1GAP prevented cell scattering 

and N-cadherin up-regulation ( Fig. 6, B and C ). Because Rap1 

plays a role in cell attachment and spreading, the Rap1GAP-

expressing cells had a delayed attachment on all substrata ( Fig. 6 B ). 

However, it is clear that the cells formed colonies on collagen 

I rather than remaining as single cells, as did the mock cells. 

In addition, there was no difference in the localization of E-cadherin 

in cells expressing Rap1GAP, whether they were plated on non-

coated or collagen I – coated coverslips (Fig. S2 B). Furthermore, 

cells expressing Rap1GAP were prevented from increasing their 

level of phosphorylated JNK in response to collagen I ( Fig. 6 D ). 

These data implicate Rap1 in a pathway from the cell surface 

through FAK/Pyk2/p130CAS to JNK to mediate cell scattering 

and up-regulation of N-cadherin in response to collagen I. 

 The MLK3-MKK7-JNK1-cJun cascade 
plays a crucial role in the response 
to collagen I 
 We recently reported that MAPK kinase (MKK)7/JNK1 signal-

ing is important for the response of BxPC3 cells to collagen I 

( Shintani et al., 2006a ). Thus, in this study we focused on sig-

naling between Rap1 and MKK7. MKKs are activated by MKK 

kinases (MAP3Ks). several MAP3Ks have been reported and 

we prepared shRNAs to knock down many of these, including 

MEK kinases 1, 2, 3, and 4, TGF �  activated kinase 1, apoptosis 

signal – regulating kinases 1 and 2, mixed lineage kinases (MLKs) 

1, 2, and 3, dual leucine zipper kinase, and leucine zipper ki-

nase, using sequences from K. Taira ’ s Laboratory (University of 

Tokyo, Tokyo, Japan; unpublished data). The only shRNA that 

prevented cell scattering and N-cadherin up-regulation targeted 

MLK3 ( Fig. 7, A and B ). To confi rm this, we used a second in-

dependent shRNA and obtained identical results. Importantly, 

knocking down MLK3 reduced JNK activity, as indicated by 

decreased phosphorylation of a cJun substrate in an in vitro 

kinase assay ( Fig. 7 C ). 

 Thus far, we have characterized a novel signaling pathway 

initiated by interactions with collagen I that requires both integ-

rin and DDR1, is propagated through FAK and Pyk2, requires 

the p130CAS scaffold, and requires Rap1 GTPase. The out-

come is activation of JNK1, using the upstream kinases MKK7 

and MLK3. To confi rm that activated JNK1 up-regulates ex-

pression of N-cadherin, we expressed constitutively active JNK1 

in BxPC3 cells. It has been reported that fusing MKK7 to JNK1 

results in constitutive JNK1 activity and activates c-Jun in the 

absence of any stimulus ( Zheng et al., 1999 ). The JNK1 portion 

of the fusion protein is phosphorylated on both Thr 183  and Tyr 185  

residues by the MKK7 portion of the fusion protein. Over-

expression of MKK7-JNK1 increased N-cadherin expression even 

when cells were plated on noncoated dishes, whereas a control 

construct with kinase-dead MKK7 did not, showing that activa-

tion of JNK is suffi cient to up-regulate N-cadherin ( Fig. 8 ). 

Interestingly, overexpression of MKK7-JNK1 did not induce 

cell scattering on noncoated dishes, indicating that although 

JNK1 activation is necessary for cell scattering, it is not suffi -

cient to induce cell scattering in the absence of a collagen I 

together with data already in the literature, suggest that p130CAS 

serves as a scaffold for signaling complexes comprised of integ-

rin  � 1 and DDR1 in the plasma membrane and FAK and Pyk2 in 

the cytosol. 

 Inhibition of Rap1 prevents the response 
to collagen I 
 It is common for signals downstream of cell adhesion to be me-

diated by small GTPases, usually Rac1 ( Kooistra et al., 2007 ). 

When we expressed dominant-negative Rac1 (Rac1N17) in 

BxPC3 cells, we saw no effect on the ability of the cells to re-

spond to collagen I (Fig. S4, available at http://www.jcb.org/

cgi/content/full/jcb.200708137/DC1). Likewise, we saw no ef-

fect when we expressed dominant-negative Cdc42 (Cdc42N17). 

Even the Cdc42-Rac interactive binding (CRIB) domain of p21-

activated kinase (PAK1), which inhibits both Rac1 and Cdc42 

( Arthur et al., 2004 ), did not prevent scattering or up-regulation 

of N-cadherin in response to collagen I, ruling out these 

GTPases (Fig. S4). 

 It has been previously reported that the Pyk2 – p130CAS 

complex activates JNK through C3G-Rap1 ( Blaukat et al., 1999 ). 

Because the obvious candidate GTPases Rac1 and Cdc42 did 

not appear to play a role in collagen I – induced scattering and 

 Figure 4.    Collagen I signals through DDR1-Pyk2 in BxPC3 cells.  (A) RIPA 
extracts (60  μ g of protein) from cells expressing shEGFP, shDDR1, or both 
shDDR1 and shIntegrin  � 1 and cultured on noncoated or collagen I – coated 
dishes for 4 h were resolved by SDS-PAGE and blotted for phospho-FAK 
(Y577; a), total FAK (b), phospho-Pyk2 (Y579/Y580; c), or total Pyk2 (d). 
(B) 1 mg of protein from BxPC3 cells extracted 4 h after plating on 
noncoated or collagen I – coated dishes was immunoprecipitated with rab-
bit IgG or anti-DDR1 rabbit pAb and blotted for total Pyk2, total FAK, or 
DDR1. (C) RIPA extracts (60  μ g of protein) from cells expressing shEGFP, 
shDDR1, both shDDR1 and shIntegrin  � 1, FRNK, or FRNK together with 
shPyk2 and cultured on noncoated or collagen I – coated dishes for 4 h 
were resolved by SDS-PAGE and blotted for phospho-JNK (T183/Y185) or 
total JNK1. Immunoblots for p-JNK were quantifi ed by densitometry using 
Photoshop and normalized to immunoblots for total JNK1. Shown is the ratio 
of phospho-JNK/total JNK for cells on collagen I – coated dishes divided 
by the ratio of phospho-JNK/total JNK for cells on noncoated dishes. 
The data represent the mean and standard deviation from three independent 
experiments.   
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of cJun (cJun-DN) in BxPC3 cells that not only prevented up-

regulation of N-cadherin in response to collagen I but also 

decreased its expression on noncoated dishes ( Fig. 8 C ). In addi-

tion, overexpression of cJun-DN prevented cell scattering in re-

sponse to collagen I ( Fig. 8 D ). 

 Discussion 
 Studies from our laboratory and others have shown that various 

cell types undergo aspects of EMT in response to collagen in 

the ECM. The Collard laboratory showed that Ras-transformed 

stimulus ( Fig. 5 B ). These data are consistent with our previous 

studies ( Shintani et al., 2006a ) and with data in Fig. S5 (avail-

able at http://www.jcb.org/cgi/content/full/jcb.200708137/DC1) 

showing that artifi cially up-regulating N-cadherin also did not 

induce cell scattering in the absence of a collagen I signal, indi-

cating that up-regulation of N-cadherin is necessary, but not suf-

fi cient, for cell scattering. 

 The classical downstream target of JNK is cJun; however, 

JNK does have other cellular targets ( Bogoyevitch and Kobe, 

2006 ). To determine if activation of c-Jun is necessary to up-

regulate N-cadherin, we overexpressed a dominant-negative form 

 Figure 5.    p130CAS plays a key role in col-
lagen I – induced changes in BxPC3 cells.  
(A) 600  μ g of protein from BxPC3 cells 12 h 
after plating on noncoated or collagen I – coated 
dishes was immunoprecipitated with rabbit 
IgG or anti-DDR1 rabbit pAb and blotted for 
p130CAS or DDR1. (B) 600  μ g of protein from 
BxPC3 cells 12 h after plating on noncoated or 
collagen I – coated dishes was immunoprecipitated 
with mouse IgG or anti-p130CAS mouse mAb 
and blotted for DDR1 or p130CAS. (C) BxPC3 
cells expressing the neomycin resistance gene 
(mock), Src*/CAS(SD) (dominant-negative 
p130CAS), or SrcKM/CAS(SD) (inactive con-
trol for dominant-negative p130CAS) were 
extracted in RIPA buffer 2 d after plating on 
noncoated or collagen I – coated dishes. 30  μ g 
of protein was resolved by SDS-PAGE and 
blotted for N-cadherin, myc tag (to detect 
p130CAS), or tubulin. (D) Mock BxPC3 cells 
(a and b), cells expressing Src*/CAS(SD) 
(c and d), or cells expressing SrcKM/CAS(SD) 
(e and f) were cultured on noncoated (a, c, 
and e) or collagen I – coated dishes (b, d, and f) 
for 2 d. Bar, 100  μ m.   

 Figure 6.    Rap1GAP prevents collagen I – 
induced changes in BxPC3 cells.  (A) 1 mg of 
protein from BxPC3 cells 4 h after plating on 
noncoated, collagen I – coated, or fi bronec-
tin-coated dishes was incubated with GST-
Ral-GDS – coupled beads and resolved by 
SDS-PAGE. Rap1-GTP, total Rap1, Rap2-GTP, 
and total Rap2 were detected by Rap1 and 
Rap2 blots. The ratio of Rap1-GTP/total Rap1 
is shown above the gel. (B) Mock BxPC3 cells 
or cells expressing Rap1GAP were cultured 
on noncoated (a and c) or collagen I – coated 
(b and d) dishes for 2 d. Bar, 100  μ m. (C) Mock 
BxPC3 cells or cells expressing Rap1GAP were 
extracted and blotted for N-cadherin (a), fl ag 
(to detect Rap1GAP; b), or tubulin (c). Rap1 
pulldown assays were performed as described 
in A (d and e). The ratio of Rap1-GTP/total 
Rap1 is shown (nd, none detected). (D) Mock 
BxPC3 cells or cells expressing Rap1GAP were 
extracted and blotted for p-JNK (T183/Y185) 
and total JNK1. The ratio of p-JNK/t-JNK is 
shown above the gel. Bands corresponding to 
p-JNK indicated (arrow).   
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N-cadherin expression and increased metastasis in an animal 

model for pancreatic cancer ( Shintani et al., 2006a ). In this 

case, the cellular changes require JNK activity but not Rac. 

Thus, the response of cells to collagen varies among different 

cell types. 

 Understanding collagen I – induced changes in cellular be-

havior is critical because many disease states, including chronic 

kidney disease, lung fi brosis and several cancers, are character-

ized by extensive deposition of collagen I, which contributes sig-

nifi cantly to disease progression ( Zeisberg et al., 2001, 2002 ;  Liu, 

2004 ;  Keating et al., 2006 ;  Shintani et al., 2006a ;  Ross et al., 

2007 ). Our laboratory and others have shown that up-regulation 

of N-cadherin has a profound effect on the ability of tumor cells 

to invade and metastasize ( Nieman et al., 1999 ;  Hazan et al., 2000 ; 

MDCK cells were induced to form E-cadherin – mediated junc-

tions when plated on fi bronectin or laminin, but not on colla-

gen, and that the response to collagen was dependent on Tiam1 

and Rac ( Sander et al., 1998 ). Our laboratory showed that 

mouse mammary epithelial cells (NMuMG) respond to colla-

gen by up-regulating N-cadherin and increasing cell motility 

( Shintani et al., 2006b ) and that these changes were dependent 

on PI3K, Rac, and JNK. In another study, we showed that hu-

man lung epithelial cells undergo similar changes in response 

to collagen, but in this case, collagen induces the cells to re-

lease active TGF � 3, which induces EMT via canonical TGF �  

signaling ( Shintani et al., 2008b ). We have recently shown 

that human pancreatic cancer cells also respond to collagen 

by undergoing EMT-like changes, including up-regulation of 

 Figure 7.    MLK3 is necessary for collagen I – 
induced changes in BxPC3 cells.  (A) 30  μ g of 
protein from BxPC3 cells expressing shEGFP 
or shMLK3 extracted 2 d after plating on 
noncoated or collagen I – coated dishes was 
resolved by SDS-PAGE and blotted for total 
MLK3, N-cadherin, or tubulin. (B) BxPC3 cells 
expressing shEGFP (a and b) or shMLK3 
(c and d) were cultured on noncoated (a and c) 
or collagen I – coated (b and d) dishes for 2 d. 
Bar, 100  μ m. (C) In vitro kinase assays were 
performed using cells expressing shEGFP or 
shMLK3. Kinase activity was detected using 
p-c-Jun pAb (S73).   

 Figure 8.    JNK1/cJun activation plays a cru-
cial role in collagen I – mediated changes in 
BxPC3 cells.  (A) Mock BxPC3 cells or cells 
expressing MKK7-JNK1 (constitutively active 
JNK1) or MKK7-KM-JNK1 (inactive control) 
were extracted 2 d after plating on noncoated 
or collagen I – coated dishes. 30 or 60  μ g of 
protein was blotted for N-cadherin, HA tag 
(to detect MKK7/JNK1), or tubulin. (B) BxPC3 
cells expressing MKK7-JNK1 (a and b) or 
MKK7-KM-JNK1 (c and d) were cultured on 
noncoated (a and c) or collagen I – coated 
(b and d) dishes for 2 d. Bar, 100  μ m. (C) 30  μ g 
of protein from mock BxPC3 cells or cells ex-
pressing dominant-negative cJun (cJun-DN) 
were extracted 2 d after plating on noncoated 
or collagen I – coated dishes, resolved by SDS-
PAGE, and blotted for N-cadherin, total cJun, 
or tubulin. (D) Mock BxPC3 cells (a and b) or 
cells expressing cJun-DN (c and d) were cul-
tured on noncoated (a and c) or collagen I –
 coated (b and d) dishes for 2 d. Bar, 100  μ m.   



1285COLLAGEN-INDUCED EMT REQUIRES INTEGRINS AND DISCOIDIN DOMAIN RECEPTOR 1  •  SHINTANI ET AL.

 DDR1 is in a complex with Pyk2 and 
p130CAS 
 When integrins interact with substrate, they cluster in the mem-

brane and recruit complexes of proteins to form the structure 

known as a focal adhesion and to transduce signals that promote 

changes in cellular behavior and phenotype. A central protein 

in this signaling/structural complex is the nonreceptor tyrosine 

kinase FAK, which binds to integrin-associated proteins like 

paxillin and talin ( Schaller et al., 1992 ;  Schlaepfer and Hunter, 

1998 ). FAK is autophosphorylated upon integrin clustering, re-

cruiting additional kinases that further phosphorylate FAK to 

create binding sites for other downstream proteins including the 

p130CAS scaffold. Pyk2 is structurally homologous to FAK 

and shares  � 45% amino acid identity ( Schlaepfer and Hunter, 

1998 ). Although Pyk2 can become associated with integrins 

upon engagement with ECM proteins, its activation has also 

been tied to multiple other cellular activities including stress 

( Orr and Murphy-Ullrich, 2004 ). In this paper, we show for the 

fi rst time that Pyk2 is in a complex with the receptor tyrosine 

kinase DDR1. In addition, we show that activation of Pyk2 is 

essential for pancreatic cancer cells to undergo the full response 

to collagen I and that Pyk2 is phosphorylated in pancreatic can-

cer cells knocked down for integrin  � 1. These data suggest that 

Pyk2 is activated specifi cally by its interaction with DDR1. 

 FAK and Pyk2 share many common signaling partners, in-

cluding the scaffold protein p130CAS. ( Orr and Murphy-Ullrich, 

 Cavallaro et al., 2002 ;  De Wever et al., 2004 ;  Maeda et al., 2005 ; 

 Shintani et al., 2006a ). Thus, the purpose of the current study 

was to delineate the signaling pathways that are activated when 

pancreatic cancer cells are in contact with collagen I to promote 

N-cadherin up-regulation. Our study had four novel fi ndings. 

First, the response of pancreatic cancer cells to collagen I requires 

cooperation between two separate collagen receptors, one an in-

tegrin receptor and the other the receptor tyrosine kinase DDR1. 

Second, the FAK homologue Pyk2 is activated by DDR1 and this 

activation is essential for the full response of BxPC3 cells to 

collagen I. This is the fi rst study to report an interaction between 

DDR1 and Pyk2. Third, p130CAS likely serves as a scaffold for 

the entire signaling complex. Fourth, we have defi ned a pathway 

downstream of the p130CAS signaling module that includes the 

small GTPase Rap1 rather than the usual suspects, Rac and 

Cdc42, and signals through MLK3 to MKK7 and ultimately 

JNK1 to promote up-regulation of N-cadherin ( Fig. 9 ). 

 Integrins and DDR1 cooperate in 
collagen I – mediated EMT in BxPC3 cells 
 Cells can interact with collagen using two different receptor fami-

lies, the integrins and discoidin domain tyrosine kinase receptors. 

Integrins  � 1 � 1,  � 2 � 1, and DDR1 are the epithelial cell receptors 

for collagen I ( Hynes, 2002 ;  Vogel et al., 2006 ). It has been pro-

posed that integrins cooperate with other receptors to amplify or 

modulate signals, and one type of cooperation is receptor co-

ordination, in which two or more receptors contribute components 

that are necessary for the downstream event ( Miranti and Brugge, 

2002 ). The results of our study suggest that integrin  � 1 and DDR1 

coordinately activate JNK to up-regulate N-cadherin expression 

and promote cell scattering. Knocking down  � 1 integrin expression 

or DDR1 expression alone each partially inhibited up-regulation 

of N-cadherin expression. However, it was necessary to knock 

down both receptors in the same cell to completely prevent up-

regulation of N-cadherin expression in response to collagen I. 

Likewise, knocking down one receptor or the other partially pre-

vented cell scattering, but it was not until we prevented expression 

of both receptors that the cells remained in compact epithelial 

colonies when plated on collagen I. Integrin coordination with 

receptor tyrosine kinases has been reported. For example, integ-

rin interaction with fi bronectin increases the synthesis of PIP2 to 

enhance the breakdown of PIP2 in response to PDGF, which am-

plifi es downstream signaling by the PDGF receptor ( McNamee 

et al., 1993 ). In addition, integrins have been reported to coordinate 

with other adhesion receptors. For example, the formation of 

focal adhesions in fi broblasts adhering to fi bronectin requires the 

ligation of two separate fi bronectin receptors,  � 5 � 1 integrin and 

syndecan-4 ( Wilcox-Adelman et al., 2002 ). The binding sites on 

fi bronectin for integrins and syndecan are separate domains, and 

cells plated on fragments of fi bronectin that contain only the inte-

grin binding site will attach but will not make focal adhesions, 

nor will they organize actin stress fi bers ( Saoncella et al., 1999 ). 

Thus, coordination between integrins and receptor tyrosine ki-

nases, and coordination between integrins and other ECM recep-

tors have been reported. However, this is the fi rst study to report 

coordination between integrin collagen receptors and the DDR1 

tyrosine kinase collagen receptor. 

 Figure 9.    Model of the signaling pathway active in BxPC3 cells from col-
lagen I outside the cell to induction of cell scattering and up-regulation of 
N-cadherin.    
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 Signaling from Rap1 to JNK1 
 In the signaling cascades leading to JNK, there are two mem-

bers of the MKK family called MKK4 and 7, which are imme-

diately upstream ( Guo and Giancotti, 2004 ). BxPC3 cells lack 

MKK4 ( Wang et al., 2004 ;  Shintani et al., 2006a ) and knocking 

down MKK7 inhibits collagen I – mediated up-regulation of 

N-cadherin. Upstream of MKKs, several different members of the 

MAP3K family have been identifi ed. In the current study, we 

used shRNA targeted to a dozen MAP3Ks, and the only shRNA 

constructs that prevented cell scattering and N-cadherin up-

regulation in response to collagen I were those that targeted 

MLK3. Thus we are proposing here that MLK3 is directly up-

stream of MKK7 in our system. 

 Summary 
 We have presented data and discussion supporting a pathway 

that includes both novel and previously validated components 

( Fig. 9 ). This paper is the fi rst to report cooperation between 

the integrin and DDR1 collagen receptors to promote EMT-like 

changes in a tumor cell. Likewise, it is the fi rst to report DDR1 

activating Pyk2. In this paper, we propose that p130CAS serves 

as a scaffold to bring together a complex of the collagen recep-

tors and their respective downstream effectors, FAK and Pyk2. 

Another unique feature of this pathway is the involvement of 

the small GTPase, Rap1. Future studies in our laboratory will be 

focused on determining if we can interfere with various compo-

nents of this pathway to prevent pancreatic cancer progression 

in our orthotopic model for pancreatic cancer. 

 Materials and methods 
 Reagents, antibodies, and cultured cells 
 All reagents were obtained from Sigma-Aldrich or Thermo Fisher Scientifi c 
unless otherwise indicated. Mouse mAb against E-cadherin (HECD-1) was a 
gift from M. Takeichi (RIKEN Center for Developmental Biology, Kobe, 
Japan). Mouse mAb against N-cadherin (13A9) has been previously de-
scribed ( Johnson et al., 1993 ). Anti-FAK phosphospecifi c (Y577) rabbit 
polyclonal antibody (pAb), anti-Pyk2 phosphospecifi c (Y579/Y580) rabbit 
pAb, and anti-JNK phosphospecifi c (T183/Y185) rabbit pAb were ob-
tained from Invitrogen. Anti – integrin  � 1 mouse mAb, anti-FAK mouse mAb, 
anti-Pyk2 mouse mAb, anti-phosphotyrosine (PY20) mouse mAb, anti-p130CAS 
mouse mAb, anti-JNK1 mouse mAb, and anti-Rap2 mouse mAb were ob-
tained from BD Biosciences. Anti-DDR1 rabbit pAb (C-20), anti-Rap1 rabbit 
pAb, and anti-MLK3 rabbit pAb were obtained from Santa Cruz Biotechno l-
ogy, Inc. Anti – c-Jun rabbit pAb and anti – human integrin  � 2 mouse mAb 
(HAS3) were obtained from Cell Signaling Technology. Anti – integrin  � 5 
rabbit pAb and anti – human integrin  � 5 mouse mAb (SAM-1) were obtained 
from EMD. Anti – human integrin  � 1 mouse mAb (4B4) was obtained from 
Beckman Coulter. Anti-tubulin mouse mAb was obtained from Developmen-
tal Studies Hybridoma Bank. Anti-myc epitope mouse mAb (9E10) was a 
gift from K. Green (Northwestern University, Chicago, IL). 

 Human BxPC3 has been previously described ( Shintani et al., 2006a ). 
Capan-1, Panc-1, and CFPAC were obtained from American Type Culture 
Collection. Cells were maintained in DME or RPMI containing 10 or 20% 
(Capan-1) FBS (Hyclone). Substrate-coated dishes and rat tail collagen I 
were obtained from BD Biosciences. Serum was reduced to 1% to examine 
signals primarily from adhesion to ECM. 

 Detergent extraction, SDS-PAGE, immunoblot, immunoprecipitation, and 
kinase assays 
 Monolayers of cultured cells were extracted with radioimmunoprecipitation 
assay (RIPA) buffer (50 mM Tris-HCl, pH 8.0, 1% Nonidet P-40, 0.5% so-
dium deoxycholate, 0.1% SDS, 150 mM NaCl, 2 mM phenylmethylsulfo-
nyl fl uoride, and 0.2 U/ml aprotinin) for SDS-PAGE or Tris/NP40/EDTA 
(TNE) buffer (10 mM Tris-HCl, pH 8.0, 0.5% Nonidet P-40, and 1 mM 
EDTA) and immunoprecipitated as previously described ( Wahl et al., 2003 ). 

2004 ). We further show that Pyk2 is associated with DDR1, 

which is in a complex with p130CAS. p130CAS has been shown 

to scaffold proteins that activate JNK and ERK, which are up-

stream activators of transcription factors responsible for regula-

tion of genes involved in cell survival, transformation, migration, 

and invasion ( Defi lippi et al., 2006 ). When we expressed a dom-

inant-negative form of p130CAS in pancreatic cancer cells, up-

regulation of N-cadherin expression in response to collagen I 

was completely prevented, suggesting that p130CAS plays a 

central role in this response. We showed that integrin or DDR1 

binding to collagen each initiated only a partial response to col-

lagen I, suggesting that the two partial responses are integrated 

by p130CAS to produce the full response. Thus, in this paper 

we suggest that cooperation between integrin  � 1 and DDR1 

may be caused by a large complex of proteins interacting with 

the p130CAS scaffold. This complex includes the receptors in-

tegrin and DDR1 together with their immediate downstream 

effectors, FAK and Pyk2, respectively. 

 Signaling from p130CAS to up-regulation 
of N-cadherin expression 
 Signals downstream of ECM interactions typically involve small 

GTPases of the Rho family ( Kooistra et al., 2007 ). Surprisingly, 

when pancreatic cancer cells interacted with collagen I, domi-

nant-negative Rac1, dominant-negative Cdc42, or the CRIB do-

main of PAK1, which is expected to inhibit the activity of both 

Rac1 and Cdc42 ( Arthur et al., 2004 ), did not prevent up-regu-

lation of N-cadherin. It has been previously reported that the 

small GTPase Rap1 can activate JNK downstream of a complex 

that involves Pyk2 and p130CAS ( Blaukat et al., 1999 ). Indeed, 

in our system Rap1 was activated when cells were plated on 

collagen I, and inhibiting Rap1 function prevented cell scatter-

ing and N-cadherin up-regulation in response to collagen I. 

Rap1 can be activated by integrins, receptor tyrosine kinases, 

G protein – coupled receptors, and other extracellular stimuli, and 

its activation, like that of other small GTPases, infl uences nu-

merous cellular processes ( Arthur et al., 2004 ). Of particular in-

terest to our study, Rap1 has been shown to mediate inside/out 

integrin signaling by controlling integrin affi nity for substrate 

and integrin clustering within the membrane ( Caron et al., 2000 ; 

 Reedquist et al., 2000 ;  Bos, 2005 ). In addition, Rap1 plays a 

role in the organization of adherens junctions ( Bos, 2005 ).  Dro-
sophila melanogaster  cells mutant for Rap1 show disorganized 

adherens junctions and increased invasion into surrounding tis-

sues ( Knox and Brown, 2002 ), which has been confi rmed in 

mammalian cells ( Yajnik et al., 2003 ;  Price et al., 2004 ). These 

studies place Rap1 in an interesting position to coordinate sig-

naling emanating from cell – cell adhesion systems with those 

cells obtained from their extracellular environment. A recent 

study ( Zhang et al., 2006 ) implicated Rap1GAP, a negative reg-

ulator of Rap1 function, as a tumor suppressor that is frequently 

lost during pancreatic cancer progression and showed that over-

expressing Rap1GAP limited tumor growth and metastasis in 

an orthotopic mouse model for pancreatic cancer. These authors 

did not investigate expression of N-cadherin in their pancreatic 

cancer model, but it would be interesting to examine cadherin 

switching in their model. 
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.org/cgi/content/full/jcb.200708137/DC1. 
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