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ABSTRACT

Covalent attachment of intercalating agents to
triplex-forming oligonucleotides (TFOs) is a prom-
ising strategy to enhance triplex stability and bio-
logical activity. We have explored the possibility
to use the anticancer drug daunomycin as triplex
stabilizing agent. Daunomycin-conjugated TFOs
(dauno-TFOs) bind with high affinity and maintain
the sequence-specificity required for targeting
individual genes in the human genome. Here, we
examined the effects of two dauno-TFOs targeting
the c-myc gene on gene expression, cell proliferation
and survival. The dauno-TFOs were directed to
sequences immediately upstream (dauno-GT11A)
and downstream (dauno-GT11B) the major transcrip-
tional start site in the c-myc gene. Both dauno-TFOs
were able to down-regulate promoter activity and
transcription of the endogenous gene. Myc-targeted
dauno-TFOs inhibited growth and induced apoptosis
of prostate cancer cells constitutively expressing
the gene. Daunomycin-conjugated control oligonuc-
leotides with similar sequences had only minimal
effects, confirming that the activity of dauno-TFOs
was sequence-specific and triplex-mediated. To test
the selectivity of dauno-TFOs, we examined their
effects on growth of normal human fibroblasts,
which express low levels of c-myc. Despite their
ability to inhibit c-myc transcription, both dauno-
TFOs failed to inhibit growth of normal fibroblasts
at concentrations that inhibited growth of prostate

cancer cells. In contrast, daunomycin inhibited
equally fibroblasts and prostate cancer cells. Thus,
daunomycin per se did not contribute to the anti-
proliferative activity of dauno-TFOs, although it
greatly enhanced their ability to form stable tri-
plexes at the target sites and down-regulate c-myec.
Our data indicate that dauno-TFOs are attractive
gene-targeting agents for development of new cancer
therapeutics.

INTRODUCTION

Purine-rich sequences representing potential target sites
for triplex-forming oligonucleotides (TFOs) are scattered
throughout the human genome and are particularly over-
represented in gene regulatory regions (1). The high density
of target sequences in genome coupled to their sequence-
specificity makes TFOs attractive molecules to target indi-
vidual genes and modulate their function (2,3). This approach
can provide the means to design gene-targeted molecules that
might be used to study a variety of DNA-associated processes
and might have therapeutic applications for human diseases
(3,4). TFOs acting as transcriptional repressors might down-
regulate expression of over-active genes in cancer cells and
be a valid alternative to current treatment modalities with the
advantage of higher selectivity and lower toxicity. With this
intent, we have investigated TFOs as tools to down-regulate
expression of genes, like c-myc, which are frequently over-
expressed in human cancers (5,6). Myc-targeted TFOs reduced
c-myc expression and were able to induce growth arrest and
death of cancer cells (5,6).
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Although TFOs have been successfully used by others and
us in cell-free and cellular systems, various factors limit
their efficiency as gene-targeting agents and transcriptional
repressors in cells (3,4). Efficient cellular and nuclear delivery
is a major obstacle to overcome since sufficient amounts
of TFOs need to reach the nucleus in order to drive triplex
DNA formation. Another critical challenge is to improve the
stability of triple helical complexes formed on chromatin-
associated targets. Rapid dissociation of the complex would
prevent any biological effect of TFOs. An approach to increase
triplex stability is to attach DNA intercalating agents, like
acridine and psoralen, to TFOs (2,3). TFO-intercalator con-
jugates have been shown to maintain sequence-specificity
and induce triplex-mediated effects in different experimental
contexts (2,3).

Our groups have recently explored the possibility to
enhance triplex stability and biological efficacy of TFOs by
attaching an anthracycline molecule like daunomycin (7-9).
Anthracyclines are commonly used and very effective anti-
cancer drugs (10). Unlike other DNA intercalators, anthra-
cyclines intercalate into DNA with the anthraquinone
moiety nearly perpendicular to the double helix (11). One
end of the anthraquinone (ring D) reaches the major groove,
while the other end (ring A), to which the aminosugar is
attached, reaches the minor groove (11,12). TFOs were linked
at their 5 end to ring D of the anthraquinone, preserving
both the orientation of the intercalating moiety and the
alignment of the TFO in the major groove of the double
helix (7-9). An initial study with a daunomycin-conjugated
TFO (dauno-TFO) focused on an 11 bp purine-rich sequence
immediately upstream the P2 promoter of the c-myc gene (9).
The unmodified 11mer TFO formed a very unstable complex.
The dauno-TFO, named dauno-GT11A, bound to the
target sequence with much greater stability affording binding
in near-physiological conditions (i.e. 37°C and neutral pH).
The presence of the DNA intercalator did not affect sequence-
specificity of dauno-GT11A as shown by electrophoretic
mobility shift assay (EMSA) and footprinting experiments
(9). Moreover, unlike the non-conjugated TFO, dauno-
GT11A was active in cells, blocking promoter reporter activity
and transcription of the endogenous gene (9).

In the present study we investigated the potential of dauno-
TFOs for biological applications and evaluated the effects of
dauno-GT11A and a new myc-targeted TFO, dauno-GT11B,
on target gene expression, cell proliferation and survival in
normal and cancer cells. Both dauno-TFOs were able to inhibit
c-myc transcription. Furthermore, they inhibited growth and
induced apoptosis of prostate cancer cells, while normal cells
had minimal effects. The effects of myc-targeted dauno-TFOs
were sequence- and target-specific, and clearly distinct from
the non-specific cytotoxicity of free daunomycin. Our data
indicate that attachment of daunomycin increases DNA bind-
ing and improves activity of TFOs in cells. Dauno-TFOs could
be attractive gene-targeting and cancer therapeutic agents.

MATERIALS AND METHODS
Cell lines and oligonucleotides

Human prostate cancer cells DU145, PC3 and LNCaP cells
were maintained in RPMI 1640, 22Rvlin T-Medium and
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primary cultures of normal human fibroblasts in DMEM, all
supplemented with 10% heat-inactivated fetal bovine serum.
Phosphodiester oligonucleotides conjugated at the 5" end to
daunomycin and with a propanediol tail at the 3’ end were
synthesized and purified as described previously (7,9,13).

EMSA

Binding assays were performed as described (9). The
pyrimidine-rich strands of the c-myc target sequences were
5" end labeled with [7-32P]ATP and annealed to the com-
plementary strand (9). TFOs were incubated with the radio-
labeled targets for 18 h at 37°C in 90 mM Tris-borate (pH 8.0)
and 10 mM MgCl, (TBM buffer). Binding was determined
by gel electrophoresis under non-denaturing conditions
using TBM as running buffer and maintaining the gel tem-
perature at 20°C (9). The upper strand of target A was
5'-TGGCGGGAAAAAGAACGGAGGGAGGGATCGC-3’
and that of target B was 5'-AGAGCTGCGCTGCGGGCG-
TCCTGGGAAGGGAGATCCGGAG-3'. (Underlined bases
indicate TFO binding sites.)

Luciferase reporter gene constructs

The p262-Myc reporter vector has been described previously
(9). Cells (2 x 104/we11) were plated in 48-well plates and
grown for 24 h prior to transfection with p262-Myc
(100 ng), pRL-SV40 (10 ng) and 1 uM of oligonucleotides
using  DOTAP (Roche Diagnostics GmbH, Mannehim,
Germany) as described (9). Cells were harvested 24 h later
to measure Firefly and Renilla luciferase activity using Dual-
luciferase assay system (Promega Corporation, Madison WI,
USA). The pRL-SV40 vector was used to monitor transfection
efficiency. Data were expressed as percentage of luciferase
activity in TFO-treated cells compared to cells incubated
with an equal concentration of control oligonucleotide.

RNA and protein analysis

Cells (1.5 x 105/well) were seeded in 6-well plates and trans-
fected 24 h later with oligonucleotides using DOTAP as
described (9). Myc RNA and protein levels were determined
using semi-quantitative RT-PCR ( Invitrogen, Carlsbad, CA,
USA) and immunoblotting as described (9). To look at the
effects of dauno-TFOs on exogenous c-myc expression, cells
were transfected with a c-myc expression vector (PMT-2T-
Myc) or an empty vector (PMT-2T) along with the oligo-
nucleotides. After 24 h, cells were harvested and cell lysates
prepared for immunoblotting. Antibodies against c-myc (clone
9E10, Santa Cruz Biotechnology, Santa Cruz, CA, USA),
o-tubulin (Oncogene Research Products, San Diego, CA,
USA) and peroxidase conjugated secondary antibodies
(Amersham, Biosciences, Little Chalfont, Buckingamshire,
UK) were used for immunoblotting. To examine c-myc expres-
sion by FACS, cells were washed and incubated in 100 pl of
fixation medium (Caltag Laboratories, Burlingame, CA, USA)
for 15 min at 37°C followed by 1 min on ice. Cells were
recovered by centrifugation at 900 g for 5 min and incubated
in ice-cold 90% Methanol for 30 min. Cells were then incub-
ated with the anti-c-myc antibody for 45 min at room temper-
ature followed by 30 min incubation with fluorescein
isothiocyanate (FITC)-labeled anti-mouse secondary antibody
(BD Biosciences, Heidelberg, Germany) and examined
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by FACS (FACSCalibur, BD Biosciences, Heidelberg,
Germany). The percentage of c-myc expressing cells was
determined using Cell Quest software (BD Biosciences,
Heidelberg, Germany).

Uptake of daunomycin-conjugated TFOs

Cells (1.5 % 105/WCH) were seeded in 6-well plates and
transfected 24 h later with dauno-TFOs using DOTAP (9).
After 24 h, cells were harvested, washed twice with ice-
cold phosphate-buffered saline (PBS) containing 1% fetal
bovine serum and then examined by FACS (9). The percentage
of daunomycin positive cells and mean fluorescent intensity
were calculated using the Cell Quest software. For fluores-
cence microscopy, cells were grown on glass coverslips and
transfected with 1 uM of dauno-TFO using DOTAP or treated
with DOTAP alone. After 24 h, cells were washed twice with
PBS, fixed with 4% formaldehyde and counterstained with
DAPI. Coverslips were transferred to microscopy slides and
cells were examined using a fluorescence microscope
equipped with a DAPI and Texas red filter sets.

Cell proliferation

Cells (1 x 103lwell) were seeded in 96-well plates and
transfected with oligonucleotides using DOTAP (14). Free
daunomycin (Sigma Aldrich, Steinheim, Germany) was
dissolved in sterile water, diluted and added directly to the
culture medium at the desired concentrations. The number of
viable cells was measured after 96 h by a colorimetric assay
with MTT tetrazolium salt (Sigma Aldrich, Steinheim,
Germany) as described previously (14). To assess clonogenic
potential, cells transfected with oligonucleotides were plated
at a low density (1 x 103/Well) in 6-well plates (14). Colonies
were stained with crystal violet and counted after 8—10 days.
All the experiments were repeated at least three times and
Student’s z-tests were performed to assess statistical signific-
ance of the differences among treatment groups.

Apoptosis

To measure apoptotic cell death, cells transfected with
oligonucleotides were stained with FITC-Annexin-V (Bender
MedSystem GmbH, Vienna, Austria) for 10 min at room
temperature and then analyzed by FACS without PI staining.
A 488 nm excitation was used with a 515 nm bandpass filter
for detection of FITC-Annexin-V and a 610 nm bandpass filter
for detection of intracellular dauno-TFO. The percentages of
Annexin-V and daunomycin positive cells were determined
using Cell Quest software. Cells not stained with Annexin-V
or daunomycin were used as negative controls.

RESULTS
Target sites of daunomycin-conjugated TFOs

Figure 1 shows the position of the two TFO target sites relative
to the major transcriptional start site (P2 promoter) in the
c-myc gene (15). Dauno-GT11A is directed to a purine-rich
sequence (5-GGAGGGAGGGA-3') overlapping binding sites
of transcription factors (e.g. Spl, MAZ, Ets and E2F) known
to regulate the activity of the P2 promoter (9). The second
TFO, dauno-GT11B, is directed to a purine-rich sequence
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Figure 1. Triplex DNA formation by daunomycin-conjugated TFOs in the
c-myc gene promoter. (A) Target sites in the c-myc promoter. Target A is
an 11 bp sequence located 40 bp upstream of the P2 promoter. The 11 bp target
B sequence is about 100 bp downstream the P2 promoter. (B) Sequence of
dauno-TFOs and control oligonucleotides. Both dauno-GT11A and dauno-
GT11B were designed to bind in antiparallel orientation to the purine-rich
strand of the respective targets. Dauno-CO11 and dauno-GT11C are control
oligonucleotides unable to form triplex DNA with sequences in the c-myc
promoter. (C) EMSA. Oligonucleotides corresponding to the pyrimidine-
rich strands of target A (lower panel) and target B (upper panel) were
5" end labeled with [y-**P]ATP and annealed to the complementary strand.
Duplex DNA (1 nM) was incubated for 18 h at 37°C with the indicated
concentrations of either dauno-GT11A or dauno-GT11B. Gel electrophoresis
was carried out under non-denaturating conditions. Positions of duplex and
triplex DNA are indicated.

(5'-GGGAAGGGAGA-3') downstream of the transcription
start site. This sequence does not overlap known transcription
factor binding sites. Binding to this site, dauno-GT11B
could block transcription elongation or interfere indirectly
with the assembly an active transcription complex. Two
dauno-oligonucleotides, dauno-CO11 and dauno-GT11C,
were used as controls in the study (Figure 1B). Dauno-
CO11 matched in parallel orientation a sequence adjacent
to the dauno-GT11A binding sequence (9,16). Dauno-
GT11C was identical in sequence to dauno-GT11A but it
was linked to daunomycin via the amino sugar (9). Both con-
trol dauno-oligonucleotides were unable to form triplex DNA
within the c-myc promoter and transcription of the gene (9).

Binding of daunomycin-conjugated GT11B to
the target site

Binding of dauno-GT11A was extensively characterized by
EMSA and footprinting in a previous report (9). Dauno-
GT11A bound with high affinity and specificity to DNA con-
taining the target sequence, while binding was completely
abolished on a mutated target (9). Binding of dauno-GT11B
was assessed by EMSA under similar conditions. Incubation of
dauno-GT11B with its target (target B) resulted in the forma-
tion of triplex DNA (Figure 1C, upper panel). Dauno-GT11B
did not bind to the non-complementary target A at concentra-
tions up to 10 uM (Figure 1C, lower panel). Similarly, dauno-
GT11A bound to the complementary target A (Figure 1C,
lower panel), but did not bind to the non-complementary target
B (Figure 1C, upper panel). Affinity of the two dauno-TFOs



for the respective targets was similar, while both TFOs did not
bind to the non-complementary targets even though they had
very similar sequences. Binding of dauno-TFOs was clearly
driven by the oligonucleotide sequence and required perfect
matching with the target. Thus, the presence of daunomycin
did not affect the ability of dauno-TFOs to discriminate
between sites with high sequence similarity.

Inhibition of promoter activity and transcription of
the c-myc gene by dauno-GT11B

To determine whether the new myc-targeted TFO, dauno-
GT11B, was able to affect c-myc transcription in cells, we
investigated its effects on promoter activity using luciferase
reporter assays. The p262-Myc reporter, which contained the
target sequences for both dauno-GT11A and dauno-GT11B,
was transfected in normal fibroblasts along with oligonuc-
leotides and a control vector. After 24 h, luciferase activity
was measured in cell extracts. As shown in Figure 2A, incuba-
tion of cells with either dauno-GT11A or dauno-GT11B
resulted in reduced reporter activity. Similar results were
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obtained with dauno-GT11A and dauno-GT11B in prostate
cancer cell lines [ref. (9) and data not shown]. Control
dauno-oligonucleotides were inactive in these assays
[Figure 2A and ref. (9)].

Next, we evaluated the effects of dauno-GT11B on tran-
scription of the endogenous c-myc gene. DU145 cells were
transfected with oligonucleotides and c-myc RNA was meas-
ured 24 h later. The level of c-myc RNA was reduced in cells
treated with dauno-GT11B compared to mock-transfected
cells (Figure 2B). A similar level of inhibition was seen
with dauno-GT11A, while the control dauno-GT11C had no
effect on c-myc expression (Figure 2B). Incubation of cells
with dauno-GT11B reduced c-myc protein level as shown
by FACS (Figure 2C) and western blotting (Figure 2D).
Mean fluorescence intensity in TFO-treated cells was reduced
~2-fold compared to untreated control cells (Figure 2C).
Moreover, the fraction of cells with high c-myc level in the
untreated cell population was considerably reduced upon
incubation with dauno-GT11B. Dauno-CO11 had no effect
on c-myc expression (Figure 2C). Thus, both dauno-TFOs
reduced endogenous c-myc RNA and protein levels in

D-GT11B
D-CO11

Cell number

Control

MYC expression

c-myc-[ G .

c-myc-

Figure 2. Inhibition of c-myc transcription by daunomycin-conjugated TFOs. (A) Luciferase reporter assay. Normal fibroblasts were transfected for 4 h with the
p262-Myc reporter, pRL-SV40 and 1 uM of dauno-CO11, dauno-GT11A or dauno-GT11B. Luciferase activity was measured after 24 h. Data are presented as percent
of luciferase activity compared to cells transfected with control oligonucleotide. *P < 0.05 compared to control trasfected cells. (B) RT-PCR. DU145 cells were left
untreated (lane 1) or transfected with 1 uM of dauno-GT11C (lane 2), dauno-GT11A (lane 3) and dauno-GT11B (lane 4). Total RNA was extracted after 24 h. c-myc
and B-actin RNA were determined by RT-PCR. (C) DU 145 cells were left untreated (Control) or transfected with 1 uM of dauno-CO11 or dauno-GT11B. Cells were
harvested after 24 h and c-myc protein level was examined by FACS. (D) DU 145 cells were transfected with 1 uM of dauno-COL11 (lane 1) or dauno-GT11B (lane 2).
Cell lysates were prepared after 24 h and c-myc protein level examined by western blot. (E) DU145 cells were transfected with 1 uM of the oligonucleotides along
with either PMT-2T-Myc or PMT-2T. c-myc protein level was determined 24 h later by western blot. Lane 1, PMT-2T-Myc and dauno-CO11; lane 2, PMT-2T and
dauno-CO11; lane 3, PMT-2T-Myc and dauno-GT11A; lane 4, PMT-2T and dauno-GT11A.
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DU145 cells. On the other hand, dauno-TFOs did not affect
c-myc expression in transiently transfected cells expressing
the gene from a heterologous promoter, while still able to
reduce expression of the endogenous gene (Figure 2E).
The level of non-target proteins, like Ets1, which has similar
sequences in its promoter region, was not affected by dauno-
TFOs, suggesting a certain degree of target-selectivity [data
not shown and ref. (9)].

Antiproliferative effects of daunomycin-conjugated
TFOs in prostate cancer cells

The c-myc gene is over-expressed in many cancers, including
prostate cancer (15,17,18). Studies with transgenic mice
indicate that c-myc has an important role in development
of prostatic intraepithelial neoplasia and invasive adeno-
carcinomas (19). Elevated expression of c-myc contributes
also to the androgen-independent phenotype of prostate cancer
cells (20). Reducing c-myc levels is sufficient to cause growth
arrest and death of cancer cells in culture and tumor regression
in mice (18,21,22). Thus, dauno-TFOs that reduce c-myc
expression might be able to inhibit proliferation of prostate
cancer cells. To test this hypothesis, we evaluated the effects
of the myc-targeting dauno-TFOs on growth of prostate cancer
cells that express the gene constitutively (20). Cells were
transfected with the oligonucleotides for 4 h and then incub-
ated for additional 96 h before measuring viable cell number
by a colorimetric assay. As shown in Figure 3, both dauno-
TFOs inhibited growth of DU145 and PC3 prostate cancer
cells with ICsy of ~0.5 uM (P < 0.01 at 0.5 and 1 uM

compared to both untreated and control treated cells). Similar
results were obtained in LNCaP and 22Rv1 prostate cancer
cells that were inhibited ~60-70% by 0.5 uM of dauno-TFOs.
The control dauno-CO11 and dauno-GT11C had minimal
effects on cell growth (<20% inhibition) without statistically
significant differences with respect to untreated control
cells (Figure 3). The lack of activity of control oligonuc-
leotides that were conjugated to daunomycin but lacked
triplex-forming ability indicated that the effects of dauno-
TFOs were not related to toxicity of daunomycin and likely
triplex-dependent.

Studies were also done to determine the ability of dauno-
TFOs to inhibit colony forming ability of prostate cancer
cells. DU145 cells were transfected with oligonucleotides
and then plated in tissue culture dishes at a low cell density
to assess colony formation in anchorage-dependent conditions
(Figure 4A). Cells treated with dauno-TFOs gave rise to a
number of colonies significantly lower than cells treated either
with DOTAP alone or control oligonucleotide (Dauno-
GT11A, 66 = 2%; Dauno-GT11B, 58 + 1%; Dauno-COl11,
91 £ 5%; P < 0.05). Colonies formed by cells transfected
with dauno-GT11A and dauno-GT11B were also considerably
smaller than those formed by mock- and control-transfected
cells (Figure 4B).

Daunomycin-conjugated TFOs induced apoptosis
in prostate cancer cells

To investigate the mechanisms underlying the effects of
dauno-TFOs on prostate cancer cells, we examined their
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Figure 3. Inhibition of prostate cancer cell growth by daunomycin-conjugated TFOs. Prostate cancer cells DU145 (A and C) and PC3 (B) were transfected for
4 h with the indicated oligonucleotides using DOTAP. Viable cell number was determined after 96 h using MTT assays. Data are presented as percentage of
viable cells compared to untreated control cells and are mean + SD of triplicate samples from representative experiments. *P < 0.01 compared with untreated and

control-transfected cells.
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Figure 4. Reduced colony forming ability of prostate cancer cells treated with daunomycin-conjugated TFOs. DU 145 cells were transfected with DOTAP alone or
1 uM dauno-CO11, dauno-GT11A or dauno-GT11B. Cells were counted and plated to determine colony forming ability in anchorage-dependent conditions.
Colonies were stained with crystal violet after 8—10 days and counted. (A) Percentage of colonies relative to mock-transfected cells. Data are mean + SD of triplicate
samples from a representative experiment. *P < 0.05 compared to untreated and control-transfected cells. (B) Colonies formed by control and dauno-TFO-treated

cells from a representative experiment.
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Figure 5. Induction of apoptotic cell death by daunomycin-conjugated TFOs in prostate cancer cells. DU145 cells were left untransfected (control) or transfected
with 1 uM of dauno-CO11 and dauno-GT11B. After 24 h cells were harvested, stained with FITC-Annexin-V and analyzed by FACS to detect FITC and daunomycin

positive cells.

ability to induce cell death. Because of the presence of the
anthraquinone chromophore, we could examine simultan-
eously the amount of intracellular dauno-TFOs and percentage
of apoptotic cells (Annexin-V positive cells) by flow cyto-
metry and correlate cellular uptake with the induction
of cell death. Figure 5 shows Annexin-V staining and
daunomycin positivity in mock-transfected, dauno-COl1
and dauno-GT11B transfected cells. Only few cells were
Annexin-V positive (~6%) in the population of mock-
transfected cells. The fraction of Annexin-V positive cells
among cells transfected with dauno-COl11 was similar
(~7%) to that of mock-transfected cells. The percentage of
Annexin-V positive cells was more than double (~15%) in
cells transfected with dauno-GT11B (Figure 5). A similar
percentage (~16%) was seen with an identical dose of

dauno-GT11A (Figure 6). In all cases, ~80% of cells had
taken up the oligonucleotides. It should be noted that the
Annexin-V staining probably underestimates the number of
cells undergoing apoptosis because it detects preferentially
cells at the early stages of the process, while cells that have
progressed to later stages might be missed. In addition, other
non-apoptotic mechanisms might contribute to cell growth
inhibition and cell death.

The experiment shown in Figure 6 examines further the
relationship between TFO uptake and cell death at increasing
doses of dauno-TFO. Cellular uptake of dauno-TFO increased
as function of the dose of dauno-TFO as indicated by the
increased mean cell fluorescence intensity and number of
daunomycin positive cells (Figure 6A and B). Moreover,
there was a direct relationship between mean cell fluorescence
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Figure 6. Cellular uptake and apoptosis in daunomycin-conjugated TFO-treated prostate cancer cells. DU145 cells were transfected with increasing
concentrations of dauno-GT11A. FITC-Annexin-V staining and daunomycin uptake were measured by FACS. (A) Scatter plots of Annexin-V and daunomycin
staining distribution. (B) Fluorescence intensity distribution in control and dauno-TFO-treated cells. (C) Plot of mean cell fluorescent intensity as function of
dauno-TFO concentration. (D) Percentages of Annexin-V positive cells at increasing doses of dauno-TFO.

intensity (i.e. amounts of intracellular dauno-TFO) and the
number of cells undergoing apoptosis (Figure 6C and D).
At each dose, a larger fraction of Annexin-V positive cells
were also positive for daunomycin, suggesting that cells
undergoing apoptosis were predominantly those that had
taken up the oligonucleotide.

Daunomycin-conjugated TFOs are selective toward
cancer cells

Dauno-TFOs inhibited growth of prostate cancer cells
constitutively expressing high levels of c-myc. Selective
down-regulation of c-myc should be minimally toxic to
cells that express the gene at low levels. On the contrary, if
the antiproliferative effects of dauno-TFOs were due to non-
specific effects of either the oligonucleotide or daunomycin,
even low expressing cells would likely be affected. To address
this point, primary cultures of normal human fibroblasts,
which express low levels of c-myc (23), were transfected
with dauno-TFOs or control oligonucleotides using DOTAP
and growth was measured by a colorimetric assay. Under these
conditions, normal fibroblasts took up dauno-TFO with an
intracellular distribution similar to that seen in prostate cancer
cells (Figure 7). In both cell types dauno-TFO accumulated in
the cytoplasm as intensely fluorescent perinuclear foci and in
nucleus with a more diffuse staining (Figure 7). The total
amount of intracellular dauno-TFOs determined by FACS
was also similar in normal fibroblasts and prostate cancer
cells (Figure 8A). Furthermore, promoter reporter assays
showed that dauno-TFOs were able to bind and block the
target sequences in the c-myc promoter (Figure 2A) and

immuno-blot analysis confirmed their ability to reduce endo-
genous c-myc expression in normal fibroblasts (Figure 8B).
Despite their ability to inhibit c-myc transcription, dauno-
TFOs did not have any effect on the growth of normal
fibroblasts (Figure 8C). This was in striking contrast with
daunomycin that was similarly toxic to prostate cancer cells
and normal fibroblasts (Figure 8D). Thus, unlike daunomycin,
myc-targeted dauno-TFOs were selective toward cancer cells
expressing c-myc constitutively and less effective against
normal cells. These data also indicated that the antiprolifer-
ative activity of dauno-TFOs was related to their ability to
target the c-myc gene and not to non-specific toxicity of the
conjugates.

DISCUSSION

Various factors affect the activity of TFOs in biological
systems, including limited stability and rapid dissociation of
triple helical complexes formed on chromatin-associated
targets (2,24,25). Modifications of oligonucleotide chem-
istry and attachment of intercalating agents can be used to
enhance formation and stability of triplex DNA in cells.
We have recently explored the possibility of enhancing triplex
stability by linking an anthracycline molecule to TFOs (7-9).
Anthracyclines, like daunomycin, are potent DNA inter-
calators (10-12). Attachment of daunomycin to the 5’ end
of a TFO led to a considerable increase in triplex stability
in vitro under near-physiological conditions and activity
in cells (9). Unlike the unmodified TFO, the 11mer dauno-
TFO directed to a sequence immediately upstream of the
c-myc P2 promoter bound with high affinity to the target
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Figure 7. Uptake and intracellular distribution of daunomycin-conjugated TFOs in normal fibroblasts and prostate cancer cells. Fibroblasts (A and B) and DU145
cells (C and D) were treated with DOTAP alone (upper panels) or transfected with 1 UM of dauno-TFO using DOTAP (lower panels). After staining with DAPI, cells
were examined on fluorescence microscope and images collected using DAPI and Texas red filter sets. Merged images of control and TFO-treated cells are shown.
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Figure 8. Activity of daunomycin-conjugated TFOs in normal human fibroblasts. (A) Fibroblasts were mock-transfected (Control) or transfected with 1 uM of
dauno-TFO (Dauno-TFO) using DOTAP and cellular uptake determined by FACS. (B) Cells were transfected with dauno-GT11A, dauno-GT11B or dauno-CO11
and viable cell numbers determined by MTT assays after 96 h. (C) Fibroblasts were left untreated (lane 1) or transfected with 1 pM of dauno-GT11A (lane 2) and
dauno-GT11B (lane 3). After 24 h, c-myc protein level was determined by immunoblotting. (D) Fibroblasts, DU145 and PC3 prostate cancer cells were incubated with

daunomycin. Viable cell numbers were determined after 96 h by MTT assays.
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DNA and inhibited transcription of the gene (9). A similar
effect of daunomycin on triplex stability was seen in cell-free
systems with TFOs designed both in antiparallel and parallel
orientation (7,8,13). These data, along with recent improve-
ments in synthesis of daunomycin-conjugated oligonuc-
leotides (8,13), indicate that attachment of an antracycline
moiety is a feasible and effective approach to enhance binding
and efficacy of TFOs. In the present study, we evaluated the
biological activity of two myc-targeted dauno-TFOs and their
potential for in vivo applications as gene-targeting and anti-
cancer agents. Our study shows that myc-targeted dauno-TFOs
were effective transcriptional repressors and exhibited strik-
ingly selective antiproliferative and pro-apoptotic activity
toward cancer cells. Both dauno-GT11A and dauno-GT11B
caused growth inhibition, reduced clonogenic potential and
apoptotic cell death in prostate cancer cells with minimal
effects on normal human fibroblasts. Dauno-TFOs directed
to genes over-expressed in cancer cells, therefore, might be
developed as gene-targeted cancer therapeutics.

The dauno-TFOs tested in this study were directed to dis-
tinct sites in the c-myc gene. Dauno-GT11A could interfere
with transcription factors binding to sequences overlapping or
adjacent to the TFO binding site (16), while dauno-GT11B,
which is directed to a site downstream of the transcription
start site, could interfere with the assembly of the initiation
complex or block the elongation of c-myc transcripts. Both
dauno-TFOs formed very stable triplexes in vitro and inhibited
promoter activity and expression of c-myc to similar extents.
Although it is difficult to rule out completely alternative
mechanisms of action, like an aptameric effect, multiple
lines of evidence support the conclusion that the activity
of dauno-TFOs was sequence-specific and consistent with a
triplex-mediated mechanism. The interaction of dauno-TFOs
with the respective targets in vitro was strictly sequence-
dependent as shown by the inability to bind to non-
complementary targets despite close sequence homology
[Figure 2A and ref. (9)]. Control oligonucleotides, which
were unable to form triplex DNA with sequences in the
c-myc promoter, did not inhibit c-myc transcription and did
not have any effect on cell growth and survival. Their inability
to induce any relevant biological effect excluded non-
sequence-specific activity of dauno-TFOs. Oligonucleotides
can also induce non-target specific effects via sequence-
dependent mechanisms, e.g. acting as aptamers (26-28).
The control dauno-GT11C had a sequence identical to
dauno-GT11A and very similar to dauno-GT11B. However,
it was unable to bind to DNA because of the different mode
of attachment to the daunomycin (9). Consistent with its
inability to form triplex DNA, dauno-GT11C did not have
any activity on promoter reporter, transcription, cell growth
and viability. Thus, these results ruled out both sequence
and non-sequence dependent mechanisms that might lead to
non-specific activity of dauno-TFOs. In conclusion, the
activity of dauno-TFOs appeared to be consistent with a
triplex-mediated mechanism and dependent upon down-
regulation of the target gene. We cannot rule out that other
mechanisms—e.g. topoisomerase II-mediated DNA cleavage
(29) or secondary DNA damage induced by the DNA inter-
calator (30)—might contribute to the activity of dauno-TFOs
in addition to transcription inhibition. However, based on
the present evidence, any additional effect would still be

dependent on the primary mechanism, i.e. triplex-directed
binding at the target site in the c-myc promoter.

Since daunomycin is a potent cytotoxic drug, one must be
particularly careful while considering the basis of the anti-
proliferative activity of dauno-TFOs. However, our data argue
against the possibility that the antiproliferative and pro-
apoptotic effects of dauno-TFOs were due to toxicity of the
daunomycin moiety. When daunomycin was conjugated to
oligonucleotides unable to form triplex DNA either because
of the nucleotide sequence (dauno-CO11) or mode of attach-
ment (dauno-GT11C), we did not observe cytotoxicity. This
was consistent with the fact that the conjugated oligonuc-
leotide modified the biophysical and biochemical properties
of daunomycin affecting, e.g. cellular uptake and intracellular
trafficking of daunomycin (9). Here, we show that the cellular
activities of dauno-TFOs were also different from that of free
daunomycin and strictly dependent on the oligonucleotide
component and not the anthracycline moiety. This might be
a direct consequence of the different DNA binding properties
of daunomycin and dauno-TFOs. The presence of the
oligonucleotide is likely to prevent random intercalation of
daunomycin into DNA as it has been shown with other inter-
calating agents (31,32). Unlike free daunomycin, dauno-TFOs
bound in vitro only at sites where the oligonucleotide found
a perfect match with the target duplex [Figure 2 and ref. (9)].
Repulsion between the oligonucleotide and the duplex appar-
ently prevents binding and intercalation of daunomycin at
sites with non-matching sequences.

Another point of concern is that short oligonucleotides,
like those used in this study, might not bind to unique sites
in the genome. The shorter the oligonucleotide sequence, the
higher is the probability to find similar targets at other sites
in the genome (1). Furthermore, the presence of daunomycin
with its triplex stabilizing effect could reduce the ability of
dauno-TFOs to discriminate between matching and non-
matching sequences, increasing the probability of binding
to multiple sites in the genome. The latter possibility seems
less likely since in vitro binding experiments showed that
dauno-TFOs maintained a high discriminating power, similar
to that of unmodified TFOs, and argue against a reduced
sequence-selectivity of the intercalator-TFO conjugates.
However, sequences identical to the 1lmer c-myc targets
are present in regulatory regions of a number of other
genes and may represent additional sites of triplex formation
by dauno-TFOs according to searches of public databases
(e.g. DBTSS; http://dbtss.hgc.jp/). Looking for sequences in
positions similar to the c-myc targets (i.e. —100 to + 200 bp
from the transcriptional start site) 276 and 58 hits were found
for target A and target B, respectively. Considering a wider
region likely to contain additional regulatory elements
(i.e. —1000 to + 200 bp from the transcriptional start site)
there were 815 hits for target A and 243 for target B. Binding
to multiple sites throughout the genome could induce non-
target specific effects, partially or completely independent
of c-myc down-regulation, which might contribute signific-
antly to the activity of dauno-TFOs. To address these concerns
in a cellular context, we examined the effects of dauno-TFOs
in cells, like normal human fibroblasts, expressing low levels
of c-myc. One would expect that, if dauno-TFOs bind to
multiple sites scattered throughout the genome, they would
probably down-regulate many genes or damage DNA at
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multiple sites, reducing target-selectivity and resulting in cyto-
toxicity irrespective of target gene expression. We did not
observe toxicity in normal fibroblasts at concentrations of
dauno-TFOs that were effective in prostate cancer cells. In
contrast, daunomycin, which is a non-sequence selective DNA
damaging agent, was equally toxic to normal fibroblasts and
prostate cancer cells. Thus, although the possibility of multiple
gene-targeting exists, dauno-TFOs seemed rather selective
toward cells expressing the intended target. Indeed, additional
TFO binding sites might be located in regions not directly
relevant for transcription or the putative target genes might
not be transcribed or might not be critical for cell growth
and survival, thus favoring the apparent target-selectivity of
dauno-TFOs. The inability of dauno-TFOs to affect growth
of normal cells is also relevant for potential therapeutic
applications of this approach. Dauno-TFOs might have limited
non-target specific toxicity and cells in which the target gene
is not expressed or expressed only at low levels might not
be affected significantly.

Collectively, our study provides evidence of the activity of
dauno-TFOs as transcriptional repressors in cells and may
open new avenues for design of gene-targeted therapeutics.
The activity of dauno-TFOs was consistent with a triplex-
mediated mechanism and was clearly different from the
non-selective cytotoxic activity of daunomycin, supporting
the idea that daunomycin and dauno-TFOs have distinct
modes of action. In fact, both DNA binding and biological
activity of dauno-TFOs were dictated exclusively by the oli-
gonucletide sequence. Our study also indicates that triplex-
mediated targeting of relatively short homopurine sequences
in genomic DNA is possible with the addition of a strong
intercalating and triplex stabilizing agent, like daunomycin.
The number of potential TFO target sites as well as the range
of applications of the triplex-mediated gene-targeting strategy
could be considerably increased by this approach.
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