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Abstract

COVID-19 comprises clinical outcomes of SARS-CoV-2 infection and is highly heterogeneous, ranging from 
asymptomatic individuals to deceased young adults without comorbidities. There is growing evidence that host 
genetics play an important role in COVID-19 severity, including inborn errors of immunity, age-related inflammation 
and immunosenescence. Here we present a brief review on the known order of events from infection to severe 
system-wide disturbance due to COVID-19 and summarize potential candidate genes and pathways. Finally, we 
propose a strategy of subject’s ascertainment based on phenotypic extremes to take part in genomic studies and 
elucidate intrinsic risk factors involved in COVID-19 severe outcomes. 
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Worldwide populations were significantly affected in 
2020 due to the SARS-CoV-2 virus outbreak and individual’s 
health was heterogeneously affected regarding age, sex and 
comorbidities by the clinical manifestation of the infection 
(COVID-19). Up to 17% are severe cases of COVID-19 leading 
to hospitalization and ultimately causing up to 6% of death. 
Some patients require intensive care units (ICU), which faces 
overflowing occupancy during pandemic peaks (Garg et al., 
2020; Griffin, 2020). This balance between the relative and 
absolute number of individuals with severe symptoms and 
corresponding distribution of healthcare capacity is critical 
to prevent a sanitary crisis (Vergano et al., 2020). When 
ICUs run in full occupancy, mild to severe cases that would 
eventually be treated and dismissed may progress and lead 
to worse outcomes than expected under normal occupancy 
conditions, not to mention overwhelming healthcare teams 
that care for patients with other conditions (Rosenbaum and 
Malina, 2020), exposure of staff, and disrupting protective 
equipment supply chain (Cavallo et al., 2020). Therefore, 

predicting the proportion of individuals at higher risk of severity 
could improve healthcare management decisions and budget 
allocation by implementation of evidence-based public policies. 
Risk segmentation can be observed empirically by stratification 
of individuals based in age, sex, previous comorbidities, and 
markers (Zheng et al., 2020). However, many risk factors 
are prevalent and the extent of population-based risk could 
be more precisely achieved by profiling individual’s genomic 
variability that is associated to increased risk, in a similar 
fashion of estimating carriers of pathogenic alleles linked to 
recessive disorders (Zhang et al., 2019) or newborn screening 
for treatable monogenic conditions (Kelly et al., 2016).

Even though comorbidities are undoubtedly risk factors 
in COVID-19 severe outcomes, the fact that a proportion of 
individuals with a healthy status, unaffected by prevalent 
chronic disorders associated with COVID-19 severity or 
young patients are progressing to severe complications, 
suggest a role of genetic susceptibility (Zhang et al., 2020). 
Such risk profiles are likely to be concealed in the absence of 
challenging triggers, such as an infection. Indeed, inborn errors 
of immunity or immunodeficiencies that segregate in families 
are rare clinical phenotypes caused by highly penetrant variants 
in over 400 genes (Tangye et al., 2020; Zhang et al., 2020).  
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In theory, even if combined, such monogenic manifestations 
are likely to explain, at most, a fraction of cases, of yet 
unknown magnitude. 

Given the rate of severe outcomes across the population 
strata, regardless of ancestries and admixture, and the wide 
heterogeneity of genes and pathways implicated in host-
pathogen interactions, it is reasonable to assume a multifactorial 
mode of inheritance for susceptibility to COVID-19 progression. 
Such model, however, implies challenges to study design 
and analytical choices, since there is no prior knowledge of 
which cases might be explained by rare Mendelian inherited 
conditions or by a polygenic profile resulting from rare and 
common variants with individually small to moderate effect 
sizes. Modulation of risk by indirect genetic factors (e.g. 
causal factors of comorbidities) and environmental factors, 
such as exposure to variable viral loads (He et al., 2020) or 
co-infections that may overwhelm shared systems with SARS-
CoV-2 (Bradbury et al., 2020), demonstrate the complexity 
in pinpointing susceptibility drivers (Figure 1).

The wide variability of symptoms in individuals infected 
by SARS-COV-2 allows to hypothesize candidate genes and 
pathways that might play a role in risk of (and alternatively, 
in protection against) severity progression of COVID-19, 
harboring variation that alters function and/or expression with 
heterogeneous contribution to the combined individual profile. 
The X-linked ACE2 gene encodes the Angiotensin-converting 
enzyme 2, which is expressed in many organs, including nasal 
and upper airway mucosa, interacts with SARS-CoV-2 spike 
proteins, followed by TMPRSS2-mediated spike processing 
and facilitation of viral entry into host cells (Wu and Zheng, 
2020; Yan et al., 2020). SLC6A19, although not co-expressed 
in the upper respiratory tract (Wu and Zheng, 2020), is mainly 
expressed in enterocytes and antagonizes TMPRSS2, and 
may play a role in gastrointestinal virion intake. TMPRSS2 

is indeed key for viral fusion and considered a candidate for 
drug targets reducing viral entry (Catanzaro et al., 2020). 

It is plausible that coding and regulatory variants in 
the genes encoding products associated to direct viral entry 
might influence susceptibility and protection against the 
first step of infection. It was hypothesized that the higher 
incidence of COVID-19 in men compared to women could be 
associated to X-linked factors (Gagliardi et al., 2020). There 
is evidence for higher ACE2 expression in lungs in patients 
with comorbidities (Pinto et al., 2020), but sex-specific data 
are still not available and the balance between hemizygous 
expression in men and local X-inactivation in women require 
further investigation. Recently, a sequencing study of Italian 
patients has suggested common and rare coding variants 
in ACE2 enriched in patients when compared to controls 
(Benetti et al., 2020), although a larger number of samples 
would be ideal to provide supporting evidence. Other host 
factors involved in formation and activation of the replicase-
transcription complex (RTC) are likely to influence success 
of initial cellular infection cycles (Baric et al., 2008), among 
which some were detected with an in vitro proteomics approach 
(V’kovski et al., 2019).

Once viral particles start replicating in host cells, 
activation of innate and adaptive immune response is expected 
under physiological conditions. Activating the innate immune 
response with exacerbated release of proinflammatory 
cytokines and chemokines (known as ‘cytokine storm’) has 
been associated with disease severity. This terminology is 
forgiving, since it accepts heterogeneous patterns of changes 
in mediator levels in attempt of fighting infection, ultimately 
being deleterious to host cells themselves (Tisoncik et al., 2012).  
During the acute response, interleukin-6 (IL-6) is key and has 
been consistently observed in high levels among patients with 
severe COVID-19 outcomes and generic hyperinflammatory 

Figure 1 – Factors driving SARS-CoV-2 infection and severity of COVID-19 outcomes. Non-host factors (green) and intrinsic host factors (pink) in seven  
hypothetical steps that may vary and result in different outcomes.
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phenotype (Sinha et al., 2020). Many pathways leading to 
viral stimulation of innate response and inflammation might 
play a role in SARS-CoV-2. The canonical and non-canonical 
inflammasome NLRP3-mediated pathways are candidates 
since they are sensitive to single stranded RNA viruses and 
induce pyroptosis fate on host cells (Hayward et al., 2018), 
which in turn releases pro-inflammatory factors system-
wide (Yap et al., 2020). Indeed, the NLRP3 inflammasome 
is activated in response to SARS-CoV-2 infection, and 
inflammasome-derived products in sera were found to be 
correlated with COVID-19 severity (Rodrigues et al., 2020).

The primary source of the exacerbated inflammation itself 
is still an open problem. If prior chronic inflammation is observed, 
would it drive the infection-mediated proinflammatory response 
to reach a certain systemic threshold? There are three major 
axes of empirical evidence that might support this hypothesis. 
First, children may be predisposed to hyperinflammatory 
responses. Cases of multisystem inflammatory syndrome in 
children (MIS-C) are being observed in severe COVID-19 
worldwide (Dufort et al., 2020; Feldstein et al., 2020), an 
otherwise rare condition that is similar to Kawasaki syndrome, 
where children manifest inflammation in various systems. As 
an outcome, cardiovascular dysfunctions are observed, along 
with elevated levels of C-reactive protein (CRP), D-dimer 
and troponin, most of which are also observed in high levels 
in aged patients with severe COVID-19 (Li Q et al., 2020a; 
Zhou et al., 2020). 

Second, the elevated baseline inflammatory status in 
elderly (‘Inflammaging’) is associated to frailty, morbidity and 
mortality regardless of infection (chronic low-grade sterile 
inflammation). Several factors are associated to this condition, 
but, at large, senescent cells, including lymphocytes, that 
secrete cytokines, chemokines and other pro-inflammatory 
appear to be involved in this phenotype (Akbar and Gilroy, 
2020). Although somatic variation is likely to play a role in 
immunosenescence, it is observed that the distribution of 
age-related release of pro-inflammatory molecules is variable 
and long-lived individuals may escape the ‘inflammaging’ 
phenotype (Fulop et al., 2017).

The last empirical evidence lies in the risk of comorbidities 
associated with severe COVID-19. Since the beginning of the 
pandemic, it has been reported that hypertension, obesity and 
diabetes (Guan et al., 2020; Richardson et al., 2020) are risk 
factors for critical COVID-19 outcomes, including death. 
Low-grade chronic inflammation is a common feature of 
obesity and metabolic syndromes, and its role in increasing 
the risk of complications due to SARS-CoV-2 infection cannot 
be excluded, deserving further investigation (Chiappetta  
et al., 2020).

Regarding adaptive immunity, decrease of lymphocyte 
counts and sub-population distribution have also been correlated  
with worse COVID-19 progression, specifically reduced 
proportions of CD4+ and CD8+ as predictors of mortality and 
organ damage (Li D et al., 2020b). There are potential causes 
for lymphopenia to be considered, including direct infection of 
lymphocytes, which require further confirmation due to the fact 
that these cells are likely to be ACE2-negative (Hamming et 
al., 2004; Xu et al., 2020). In addition, pathological dissections 
in post-mortem samples should confirm damage to lymphatic 

organs such as thymus and spleen, leading to lymphocytic 
dysfunction (Tan et al., 2020). The above mentioned disruption 
of cytokines’ release, such as IL-6 and especially tumor 
necrosis factor (TNF)⍺, could down-regulate differentiation 
and may impact proliferation of exhausted T lymphocytes 
(Moro-Garcia et al., 2018). Although this is still speculative, 
immunotherapy trials for COVID-19 by blocking immune 
checkpoints were suggested (Pickles et al., 2020) and require 
further confirmation (Luo et al., 2020). Lymphocytes can 
also be inhibited by circulating lactic acid (Chhetri et al., 
2020). Although considering metabolic acidosis as a risk 
factor during COVID-19 elevated cytokine release is still 
hypothetical, circulating lactate dehydrogenase (LDH) is 
consistently observed in patients with severe outcomes (Han 
et al., 2020; Lu et al., 2020)  and might reflect system-wide 
cell death through apoptosis and pyroptosis (Rayamajhi et 
al., 2013). Lastly, immunosenescence can be accelerated in 
elderly due to accumulation of somatic mutations (Zhang, 
Dong et al., 2019).

The major mechanism of immune evasion of coronaviruses  
including SARS-CoV-2 is interference with multiple non-
structural and accessory proteins of coronaviruses in the 
production of and response to type I (Hadjadj et al., 2020) 
and type III interferons (Yuen et al., 2020). Combined with 
the association of an early innate antiviral interferon response 
with mild (Park and Iwasaki, 2020), it is possible to anticipate 
that variants in genes associated with this pathway may render 
carriers refractory to productive COVID-19 infection. 

Once the infection is established on alveoli, progression 
to pneumonia, breathing difficulties, and hypoxemia lead 
patients to mechanical ventilatory support. Qualitative and 
quantitative thresholds on chest radiographic findings, mostly 
peripheral lung ground-glass opacities, are being used at the 
healthcare front as COVID-19 probable classification prior to 
RT-PCR confirmation, since clinical worsening can be steep 
(Shi et al., 2020). Variability is observed among asymptomatic: 
even before classical symptoms appear, a proportion of 
individuals that tested positive had imaging findings (Meng 
et al., 2020). Interestingly, lung abnormalities could be found 
in a case that wasn’t primarily aware of COVID-19 (Barajas 
et al., 2020), although it is still early to estimate the rate of 
incidental findings.

There is, therefore, heterogeneity regarding the correlation  
of symptoms, lung damage and hypoxemia, which in turn can 
require interventions such as invasive mechanical ventilation. 
In an attempt to understand the most severe outcomes, autopsy 
studies were initiated in patients who died of COVID-19, in 
order to investigate pathological changes in several organs. 
Postmortem lung analysis identified diffuse alveolar damage in 
different stages of tissue injury and repair by fibroproliferation, 
and a high incidence of pulmonary embolism, which can 
account for up to a third of death causes (Deshpande, 2020; 
Duarte‐Neto et al., 2020). Microthrombosis in the alveolar 
tissue has been detected in up to 80% of the cases (Dolhnikoff 
et al 2020; Duarte‐Neto et al., 2020). Further investigation 
revealed infiltration of T-cells, severe endothelial injury, 
presence of intracellular virus and cell membrane disruption, 
with evidence of intussusceptive angiogenesis, suggesting a 
compensatory response (Ackermann et al., 2020).
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Overall, thromboembolic events in the lungs or elsewhere  
such as heart, kidneys and brain are likely causes of death in 
severe cases, indicating a probable role for vascular phenotypes, 
mainly clot formation and distribution (Wadman, 2020). 
Coagulopathy is supported by consistent findings of elevated 
D-dimer levels, which in combination with CRP levels, are 
predictive of critical illness and death from admission date 
and beyond (Al-Samkari et al., 2020). Therefore, recovered 
survivors from severe complications due to COVID-19 are 
likely to have overcome most vascular phenotypes but may 
have persistent symptoms due to damaged lungs (Carfì et al., 
2020) and neurological features, particularly encephalomyelitis 
(Paterson et al., 2020).

The sequence of observed events and description of 
general endophenotypes from infection to death or recovery, 
along the spectrum of COVID-19 progression raises concerns 
on how to define and select groups of individuals that would 
capture underlying causality signals, particularly in complex 
phenotypes with likely multifactorial inheritance. It has been 
previously proposed that extreme phenotypes might improve 
the ability of identifying variants and genes ranked with 
larger effect sizes (Pérez-Gracia et al., 2010; Peloso et al., 
2016). This can be achieved by selecting groups with well-
defined phenotypes from the extremes of the distribution, and 
performing rare-variant association studies such as burden 
analyses, where collapsing variants into biologically relevant 
sets, usually genes and pathways, provide signals of association 
even in smaller sample sizes (Lee et al., 2014). A similar 
collection strategy in COVID-19 has been proposed by expert 
groups in immunodeficiency research (Casanova et al., 2020). 

Considering the extent of SARS-CoV-2 infection and 
COVID-19 heterogeneity in outcomes worldwide, retrospective 
classification and re-grouping is already being applied by 
strategies of meta-analyses. Regarding power estimates when 
using extreme sampling as an optimization strategy, Peloso et 
al. (2016) performed simulations using real data of HDL-C 
distributions and a combination of rare and common variants 
in ABCA1 gene and provided evidence that smaller sample 
sizes are required to achieve comparable power on common 
variants with reduced effect sizes, trading off with some level 
of overestimation of the proportion of functional variants. If 
selection threshold is stricter, likelihood of power gains due to 
extreme selection increases. It has been advocated that since 
rare variants have a wider effect size range, sequencing studies 
with burden strategies can benefit from extreme sampling 
(Peloso et al., 2016; Barnett et al., 2013).

We propose to enrich groups of individuals that have 
severe lethal outcome with others that remain asymptomatic, 
ideally against the odds of commonly observed features, such 
as age and distribution of comorbidities (Figure 2). 

Considering the phase of contamination itself to be 
partially explained by genetics, we have initiated a collection of 
exposed unaffected individuals. Since controlling for exposure 
is challenging, our rationale involved the collection of couples 
or individuals from the same household that are discordant for 
symptoms and COVID-19 confirmation (one positive and one 
negative). Special attention will be given to concordance or 
discordance in twins, monozygotic as compared to dizygotic 
twins, even though it is unlikely to identify adult twins co-
living (fulfilment of exposure control). Asymptomatic exposed 

Figure 2 – Hypothetical distribution of extreme COVID-19 phenotypes per generalized risk groups. Groups 1-4 comprise the most susceptible ends. 
Group 1 opposes to Group 8, from most susceptible to most resistant. Individuals below 1-4 groups are expected to have severe outcomes but not leading 
to death, and compose a ‘resilient’ phenotype towards the corner below group 4 (elderly, with several comorbidities that were recovered).
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individuals who test negative for viremia and antibodies are 
named ‘Resistant’. Since exposure levels might determine an 
infection event after initial sampling and that the viral strains are 
likely to be the same within each pair of individuals, additional 
confirmation of negative infection after periods of time will 
support ‘Resistant’ phenotype, or alternatively reclassify these 
individuals as ‘Susceptible’ under a different context.

As a second group, we began collecting samples from 
patients who died of COVID-19 and underwent autopsy 
procedure classified as a ‘Susceptible’ group. Retrospective 
collection of presence of comorbidities and estimating 
evidences of ante-mortem versus post-mortem vascular 
pathologies may provide a glimpse of prior risk and injuries 
due to SARS-CoV-2 infection itself. 

Third, a collection of recovered nonagenarians and 
centenarians might provide insights on compensatory effects 
of system-wide resilience (named ‘Resilience’ group), which 
are likely to result from a combination of effective immune 
response, reduced levels of inflammation and protection from 
coagulopathies. In this stage, we aim at collecting DNA, RNA 
and peripheral blood mononuclear cells from individuals 
admitted to a hospital and recollecting after discharge, 
providing additional molecular phenotypes to improve filtering 
variants within genes and pathways observed to be altered. 

This ongoing project (IRB approval, CEP IB-USP CAAE 
34786620.2.0000.5464) has to date collected clinical data 
and biological samples from 380 individuals, most of which 
have been already whole-exome sequenced, RNA and vials 
of peripheral blood mononucleate cells (PBMCs) from most 
participants stored for downstream functional analyses.

Genome-wide association studies (GWAS) with case-
control design in COVID-19 started to yield results in Spanish 
and Italian individuals. They have detected association signals 
in a locus at 3p21.31 comprising interesting candidates such as 
genes encoding SIT1, an interactor with ACE2, and CXCR6, 
a regulator of memory CD8 T cells (Ellinghaus et al., 2020).  
ABO locus was also detected, overlapping with a clinical 
suggestion of specific blood types being enriched in severe 
groups, although this is still controversial (Latz et al., 2020; 
Wu et al., 2020). The authors stress the need for ascertainment 
of controls, since dynamics of infection and variable 
symptomatology might compromise stratification. 

Traditional GWAS using common variants may not 
capture the strongest association signals, since genetic 
heterogeneity across groups of patients and controls may 
promote diverse and complex genomic architectures. Including 
rare variation obtained by sequencing whole exomes or, ideally, 
whole genomes, followed by burden analyses where rare 
variants are collapsed per gene or pathway might increase 
the ability to detect signals (Lanktree et al., 2010; Peloso et 
al., 2016; Xu et al., 2018). Selection and characterization 
of extreme phenotypes in response to HIV-1 infection led 
to discovery of the 32-base pair deletion in the chemokine 
receptor 5 (CCR5Δ32) (Dean et al., 1996), which helped 
elucidation of pathways associated to AIDS. Other studies on 
reduced penetrance within families, that is, extreme phenotypes 
co-segregating with pathogenic mutation carriers in the same 
pedigree, can provide clues for modifier genes (Cooper et al., 
2013), including those implicated in variable expressivity, 

for instance compensating the absence of key protein in 
muscle physiology (Vieira et al., 2015). Differential cellular 
susceptibility to infection was also verified in twins exposed 
to Zika virus (Caires-Júnior et al., 2018), suggesting that 
discordant outcomes can provide insights about the intrinsic 
factors driving host-pathogen interactions.

We hypothesize that using extreme phenotypes of 
properly ascertained groups will improve aggregation of 
variants with larger effect size, which, in combination, will 
allow polygenic risk stratification. Collaborative initiatives 
such as the COVID Human Genetic Effort (Zhang et al., 
2020) and the COVID-19 Host Genetics Initiative (2020) were 
organized to systematically aggregate data across different 
regions worldwide. Since the etiology of COVID-19 host 
susceptibility and protection is likely to be multifactorial, it 
is expected that a large number of samples will be needed 
in order to identify loci that associate with corresponding 
phenotypes, therefore collaboration is critical.  We emphasize 
the need for including admixed individuals with ancestries 
that go beyond European, which would not only contribute to 
reduce health disparities when describing the particularities 
of severe outcomes on diverse populations, but may provide 
insights from genes and pathways that harbor specific variants 
associated to phenotypes of interest such as severe outcomes 
of COVID-19. 
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