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Abstract: CrCl3(thf)3 is a common starting material in the synthesis of organometallic and coordi-
nation compounds of Cr. Deposited as an irregular solid with no possibility of recrystallization,
it is not a purity guaranteed chemical, causing problems in some cases. In this work, we disclose a
well-defined form of the THF adduct of CrCl3 ([CrCl2(µ-Cl)(thf)2]2), a crystalline solid, that enables
structure determination by X-ray crystallography. The EA data and XRD pattern of the bulk agreed
with the revealed structure. Moreover, its preparation procedure is facile: evacuation of CrCl3·6H2O
at 100 ◦C, treatment with 6 equivalents of Me3SiCl in a minimal amount of THF, and crystallization
from CH2Cl2. The ethylene tetramerization catalyst [iPrN{P(C6H4-p-Si(nBu)3)2}2CrCl2]+[B(C6F5)4]−

prepared using well-defined [CrCl2(µ-Cl)(thf)2]2 as a starting material exhibited a reliably high
activity (6600 kg/g-Cr/h; 1-octene selectivity at 40 ◦C, 75%), while that of the one prepared using
the impure CrCl3(thf)3 was inconsistent and relatively low (~3000 kg/g-Cr/h). By using well-
defined [CrCl2(µ-Cl)(thf)2]2 as a Cr source, single crystals of [(CH3CN)4CrCl2]+[B(C6F5)4]− and
[{Et(Cl)Al(N(iPr)2)2}Cr(µ-Cl)]2 were obtained, allowing structure determination by X-ray crystal-
lography, which had been unsuccessful when the previously known CrCl3(thf)3 was used as the
Cr source.

Keywords: chromium compound; CrCl3(thf)3; [CrCl2(µ-Cl)(thf)2]2; ethylene tetramerization catalyst

1. Introduction

CrCl3(thf)3 has been widely used as a starting material for the synthesis of organometal-
lic and coordination compounds of Cr [1–10]. Its preparation method was reported 60 years
ago; anhydrous CrCl3, which is insoluble in organic solvents as well as in water, was
extracted with THF by the aid of Zn dust using Soxhlet apparatus [11–13]. However, anhy-
drous CrCl3 is prepared by hazardous and not-facile process (treatment of Cr2O3·xH2O
with CCl4 at 630 ◦C leads to the generation of extremely toxic phosgene gas), and thus, is
expensive [14,15]. Another method was reported in which CrCl3·6H2O was reacted with
excess thionyl chloride (S(O)Cl2) to generate anhydrous CrCl3. In this process, a different
form of hygroscopic CrCl3 was generated, from which CrCl3(thf)3 could be immediately
obtained after adding THF [16–18]. The most attractive and convenient method is reacting
CrCl3·6H2O with excess Me3SiCl in THF, resulting in the deposition of CrCl3(thf)3 along
with the generation of byproducts, HCl and Me3SiOSiMe3 (CrCl3·6H2O + 12 Me3SiCl→
CrCl3(thf)3 + 12 HCl + 6 Me3SiOSiMe3) [19]. Excess Me3SiCl (~60 equiv./Cr) needs to be
added to obtain a completely anhydrous form of CrCl3(thf)3 [20]. Otherwise (e.g., when
25 equiv. of Me3SiCl/Cr was added according to the literature), hydrated CrCl3(thf)2(H2O)
is obtained, which was erroneously sold as CrCl3(thf)3 in the past [20,21].
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Sasol disclosed a catalyst system composed of a Cr source, iPrN(PPh2)2 ligand, and
methylaluminoxane (MAO), which produces mainly 1-octene through ethylene tetramer-
ization [22–24]. CrCl3(thf)3 has been actively used as a component of the ethylene tetramer-
ization catalyst system [25–34]. We also developed a very efficient catalyst for ethy-
lene tetramerization (Scheme 1) [35–37]. The catalyst shows extremely high activity
(~5000 kg/g-Cr/h) and is advantageous over other reported systems in that it works
with an inexpensive activator, iBu3Al, avoiding the use of expensive MAO in excess
(A1/Cr = 300–500) [38–43]. During the course of the studies, we had a problem in repro-
ducing such an extremely high activity and eventually found that the Cr source CrCl3(thf)3
used in the preparation was the cause of this problem. Although the structure of CrCl3(thf)3
was revealed by X-ray crystallography, using a single crystal selected from the batch in the
Soxhlet extraction process, it does not redeposit as good-quality crystals when redissolved
in CH2Cl2 [44,45]. Structure elucidated by X-ray crystallography does not guarantee the
purity of the bulk and we questioned the purity of the common Cr source CrCl3(thf)3.
In fact, it was reported as an “irregular violet solid” which may mean that it is not a
pure CrCl3(thf)3 but a mixture containing other forms of THF adduct of CrCl3 (e.g., µ2-Cl
bridged multinuclear species) [46]. Elemental analysis (EA) data for Cr and Cl have been re-
ported, but common carbon and hydrogen data were missing. CrCl3(thf)3 is paramagnetic;
thus, it cannot be subjected to structural analysis using 1H and 13C NMR spectroscopy.
We also previously found that the composition (as well as the structure) of the commercial
source of (2-ethylhexanoate)3Cr, another type of important paramagnetic Cr(III) complex
that is commercially used as a component in the Phillips ethylene trimerization catalyst [47].
is erroneous [21,48]. By correcting the structure to (2-ethylhexanoate)2CrOH, the catalytic
performance was consistent and, moreover, significantly improved.
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Scheme 1. Preparation of extremely active ethylene tetramerization catalyst.

2. Results and Discussion

CrCl3(thf)3 was commercially available from Aldrich (St. Louis, MO, USA), but
we prepared it to ensure complete dryness by reacting CrCl3·6H2O with excess Me3SiCl
(60 equiv.) [20]. We modified the procedure as follows: CrCl3·6H2O was evacuated for ~6 h
before the treatment with Me3SiCl. The catalyst [iPrN{P(C6H4-p-Si(nBu)3)2}2CrCl2]+[B(C6F5)4]−,
prepared according to Scheme 1 using CrCl3(thf)3, which was prepared via the evacua-
tion step, provided extremely high activity (~5000 kg/g-Cr/h). In contrast, the catalyst
prepared using either the commercial source of CrCl3(thf)3 or the one prepared according
to the reported method without the evacuation step did not exhibit such a high activity
(~3000 kg/g-Cr/h), and there was some amount of methylcyclohexane-insoluble fraction
when ligand iPrN{P(C6H4-p-Si(nBu)3)2}2 was reacted with [(CH3CN)4CrCl2]+[B(C6F5)4]−.
The insoluble fraction was negligible when CrCl3(thf)3, which was prepared via the evacu-
ation step, was used as the starting material.

We investigated what happened in the evacuation step. When the crystalline form
of CrCl3·6H2O (10 g, 37.5 mmol) was evacuated at 100 ◦C, the color gradually changed
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from dark green to light green, light gray, and finally light purple with gradual loss of
weight. Finally, an amorphous powder was obtained, and the weight loss converged to
36% (6.39 g remaining). Further weight reduction was minimal when the evacuation time
was increased. It was confirmed with litmus paper that the removed volatile component
was not pure water but acidic, presumably containing HCl. From these observations, the
remaining Cr compound was tentatively considered as CrCl2(OH)(H2O)2; 34% weight
loss is expected for the transformation of CrCl3·6H2O to CrCl2(OH)(H2O)2 (Scheme 2).
The structure of CrCl3·6H2O was reported to be [CrCl2(H2O)4]Cl·2H2O, and the action
of heat under vacuum could liberate outer-sphere Cl− (as HCl with a proton in an inner-
sphere water) and three water molecules (two from the outer sphere and one from the
inner sphere), consequently leaving CrCl2(OH)(H2O)2 (possibly, [CrCl2(H2O)2(µ-OH)]2
adopting an octahedral structure) in the reaction pot.
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Scheme 2. Modified preparation method for THF adduct of CrCl3.

Treatment of CrCl2(OH)(H2O)2, after dissolving in THF, with Me3SiCl resulted in
the precipitation of a violet solid, which was confirmed by infrared spectroscopy to be
completely anhydrous. Because a large portion of H2O in CrCl3·6H2O was removed at the
evacuation step, 6.0 equiv. Me3SiCl (equivalent amount that needed for the transformation
of CrCl2(OH)(H2O)2 to CrCl3(thf)x, Scheme 2) was added instead of 60 equiv./Cr, and
accordingly, the amount of THF could be minimized (36 mL/10 g—CrCl3·6H2O). The
color and shape of the precipitated solid (irregular violet solid) were almost identical to
that of the commercial source of CrCl3(thf)3 and the one prepared without the evacuation
step. However, as aforementioned, the catalyst performance was significantly better
when using CrCl3(thf)3 prepared via the evacuation step. The product of the reaction
between [(CH3CN)4Ag]+[B(C6F5)4]− and CrCl3(thf)3 (i.e., [(CH3CN)4CrCl2]+[B(C6F5)4]−)
differed depending on the source of CrCl3(thf)3. Although [(CH3CN)4CrCl2]+[B(C6F5)4]−

was isolated by precipitation in CH3CN at −30 ◦C, the precipitate was not composed of
good-quality crystals; thus, X-ray crystallography could not be used for characterization.
We crosschecked the tentatively assigned structure of [(CH3CN)4CrCl2]+[B(C6F5)4]− by
counting the number of CH3CN molecules per each Cr atom through the analysis of
integration values in the 1H-NMR spectra recorded using THF-d8 with 9-methylanthracene
as an internal standard. For the product obtained using CrCl3(thf)3 prepared via the
evacuation step, the number of CH3CN per Cr was in good agreement with the expected
value of 4 (4.1, 3.8, or 4.0). In contrast, the number deviated from 4 (6.5, 6.1, 5.3, or 6.2) when
either the commercial source of CrCl3(thf)3 or the one prepared without the evacuation
step was used.

The most striking difference between the two samples was that good-quality crystals
were deposited in a CH2Cl2 solution of CrCl3(thf)3 that was prepared via the evacuation
step, whereas an irregular solid was deposited when either the commercial source of
CrCl3(thf)3 or the one prepared without the evacuation step was dissolved in CH2Cl2
(Figure 1). X-ray crystallography studies revealed that the deposited crystals were a
Cl-bridged dinuclear complex [CrCl2(µ-Cl)(thf)2]2 (Figure 2). The Cr atom adopted an
octahedral structure, with two THFs being in the cis-position. The bond distances between
Cr and terminal-Cl (2.277 and 2.289 Å) were shorter than that between Cr and bridge-Cl
(2.362 Å) as well as the Cr–Cl distances (3.299, 3.318, and 3.352 Å) observed for mer-
CrCl3(thf)3, whose structure has been previously revealed using a single crystal obtained
from the reaction pot of Cr(CH2SiMe3)4 and HCl in THF (CCDC# 983659) [20]. The distance
between Cr and OTHF situated trans to terminal-Cl was greater than that between Cr and
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OTHF situated trans to bridge-Cl (2.045 vs. 2.018 Å). The OTHF atom situated trans to
terminal-Cl adopted perfect trigonal planar geometry (sum of bond angle around O1 atom,
360.0◦), indicating π-donation from O to Cr through adopting sp2-hybridization. The other
OTHF atom situated trans to bridge-Cl deviated from a perfect trigonal planar geometry
(sum of bond angle around O1 atom, 352.8◦).
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2.2773(12); Cr-Cl2, 2.3622(12); Cr-Cl3, 2.2885(11); Cr-O1, 2.045(3); Cr-O2, 2.018(3); C-O1-C, 109.5(3);
C-O1-Cr, 125.5(2); C-O1-Cr, 125.0(2); C-O2-C, 108.7(3); C-O2-Cr, 121.5(2); and C-O2-Cr, 122.6(2).

X-ray crystallography data do not guarantee the purity of the bulk. The EA data of C
were roughly in agreement with the values calculated for the revealed structure [CrCl2(µ-
Cl)(thf)2]2 (31.8%), although the measured values were not always within the required
range of 31.8% ± 0.4% (30.7%, 30.9%, 30.4%, 31.0%, 30.5%, 30.2%, 30.4%, 30.9%, and 31.2%).
In contrast, the EA data of C measured for either the commercial source of CrCl3(thf)3 or the
one prepared without the evacuation step deviated substantially from the value calculated
for CrCl3(thf)3 (38.5%). The data fluctuated severely by variation in sampling points (32.4%,
26.5%, 34.1%, 38.1%, and 33.8% for a bottle of purchased sample; 34.2%, 36.7%, 37.1%,
35.3%, and 34.1% for another bottle of purchased sample; 31.3%, 30.5%, 37.0%, 33.6%, and
33.9% for the sample prepared without the evacuation step). Before recrystallization, the
sample prepared via the evacuation step also showed fluctuating C content by varying
the sampling point, and the C content agreed neither with the structure of CrCl3(thf)3 nor
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the structure of [CrCl2(µ-Cl)(thf)2]2 (35.3%, 34.3%, 32.5%, 34.2%, and 32.4%). Though the
carbon contents and the XRD pattern are inconsistent with the formula of the commercial
source CrCl3(THF)3, the Cr content measured by ICP-OES (Inductively Coupled Plasma
Optical Emission Spectroscopy) and the Cl content measured by gravimetric analysis after
treatment of AgNO3 to aqueous solution of CrCl3(THF)3 were not severely deviated from
the values calculated for the formula CrCl3(THF)3 (Calcd. Cr 13.88, Cl 28.38. Found: Cr
14.04, Cl 29.09%). The Cr content measured for the prepared [CrCl2(µ-Cl)(thf)2]2 agreed
accurately with the calculated value while the measured Cl content was slightly deviated
(Calcd. Cr 17.19, Cl 35.15. Found: Cr 17.18, Cl 34.58%).

The X-ray powder diffraction (XRD) pattern observed for bulk [CrCl2(µ-Cl)(thf)2]2
isolated via the recrystallization procedure agreed well with single-crystal X-ray crystal-
lography data (cif file) (Figure 3a vs. Figure 3b), indicating that the majority of deposited
solid had a structure of [CrCl2(µ-Cl)(thf)2]2. In contrast, the XRD pattern of the purchased
CrCl3(thf)3 or the one prepared by the reported method without the evacuation step did
not agree with single-crystal X-ray crystallography data of mer-CrCl3(thf)3 (Figure 3c vs.
Figure 3e,f). This observation, along with the mismatched EA data, creates uncertainty
about the structure and composition of the purchased CrCl3(thf)3 as well as of the one pre-
pared by the reported method. The solid deposited in the reaction pot of CrCl2(OH)(H2O)2
and Me3SiCl (6 eq) showed a large signal at 2θ = 11.6◦ along with the signals observed for
the CrCl3(thf)3 samples (Figure 3d). The electron paramagnetic resonance (EPR) spectrum
of [CrCl2(µ-Cl)(thf)2]2 showed a strong signal at g = 1.98, while relatively weak signals
were observed for the CrCl3(thf)3 samples; in addition, the signal patterns were com-
pletely different for the two samples (Figure 4). In thermogravimetry analysis (TGA) of
CrCl3(thf)3, roughly four stages of the weight loss were observed (30%, 50%, 60%, and 84%
at 170 ◦C, 215 ◦C, 300 ◦C, and 1000 ◦C, respectively), while three stages of the weight loss
were roughly observed for [CrCl2(µ-Cl)(thf)2]2 (35%, 53%, and 73% at 220 ◦C, 310 ◦C, and
1000 ◦C, respectively).

Molecules 2021, 26, x FOR PEER REVIEW 5 of 11 
 

 

recrystallization, the sample prepared via the evacuation step also showed fluctuating C 

content by varying the sampling point, and the C content agreed neither with the structure 

of CrCl3(thf)3 nor the structure of [CrCl2(μ-Cl)(thf)2]2 (35.3%, 34.3%, 32.5%, 34.2%, and 

32.4%). Though the carbon contents and the XRD pattern are inconsistent with the formula 

of the commercial source CrCl3(THF)3, the Cr content measured by ICP-OES (Inductively 

Coupled Plasma Optical Emission Spectroscopy) and the Cl content measured by gravi-

metric analysis after treatment of AgNO3 to aqueous solution of CrCl3(THF)3 were not 

severely deviated from the values calculated for the formula CrCl3(THF)3 (Calcd. Cr 13.88, 

Cl 28.38. Found: Cr 14.04, Cl 29.09%). The Cr content measured for the prepared [CrCl2(μ-

Cl)(thf)2]2 agreed accurately with the calculated value while the measured Cl content was 

slightly deviated (Calcd. Cr 17.19, Cl 35.15. Found: Cr 17.18, Cl 34.58%). 

The X-ray powder diffraction (XRD) pattern observed for bulk [CrCl2(μ-Cl)(thf)2]2 

isolated via the recrystallization procedure agreed well with single-crystal X-ray crystal-

lography data (cif file) (Figure 3a vs. Figure 3b), indicating that the majority of deposited 

solid had a structure of [CrCl2(μ-Cl)(thf)2]2. In contrast, the XRD pattern of the purchased 

CrCl3(thf)3 or the one prepared by the reported method without the evacuation step did 

not agree with single-crystal X-ray crystallography data of mer-CrCl3(thf)3 (Figure 3c vs. 

Figure 3e,f). This observation, along with the mismatched EA data, creates uncertainty 

about the structure and composition of the purchased CrCl3(thf)3 as well as of the one 

prepared by the reported method. The solid deposited in the reaction pot of 

CrCl2(OH)(H2O)2 and Me3SiCl (6 eq) showed a large signal at 2θ = 11.6° along with the 

signals observed for the CrCl3(thf)3 samples (Figure 3d). The electron paramagnetic reso-

nance (EPR) spectrum of [CrCl2(μ-Cl)(thf)2]2 showed a strong signal at g = 1.98, while rel-

atively weak signals were observed for the CrCl3(thf)3 samples; in addition, the signal pat-

terns were completely different for the two samples (Figure 4). In thermogravimetry anal-

ysis (TGA) of CrCl3(thf)3, roughly four stages of the weight loss were observed (30%, 50%, 

60%, and 84% at 170 °C, 215 °C, 300 °C, and 1000 °C, respectively), while three stages of 

the weight loss were roughly observed for [CrCl2(μ-Cl)(thf)2]2 (35%, 53%, and 73% at 220 

°C, 310 °C, and 1000 °C, respectively). 

 

Figure 3. X-ray powder diffraction (XRD) patterns of [CrCl2(μ-Cl)(thf)2]2 calculated from cif file (a) 

and measured (b) and those of CrCl3(thf)3 calculated from cif file (c), obtained from the reaction 

‘CrCl2(OH)(H2O)2 + Me3SiCl (6 eq)’ (d), obtained from the reaction ‘CrCl3·6H2O + Me3SiCl (60 eq)’ 

(e), and purchased (f). 

Figure 3. X-ray powder diffraction (XRD) patterns of [CrCl2(µ-Cl)(thf)2]2 calculated from cif file (a)
and measured (b) and those of CrCl3(thf)3 calculated from cif file (c), obtained from the reaction
‘CrCl2(OH)(H2O)2 + Me3SiCl (6 eq)’ (d), obtained from the reaction ‘CrCl3·6H2O + Me3SiCl (60 eq)’
(e), and purchased (f).
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Figure 4. EPR spectra of [CrCl2(µ-Cl)(thf)2]2 and the commercial CrCl3(thf)3.

Many attempts to grow single crystals of [(CH3CN)4CrCl2]+[B(C6F5)4]− have been
unsuccessful when [(CH3CN)4Ag]+[B(C6F5)4]− was reacted with the purchased CrCl3(thf)3
or the one prepared through the reaction of CrCl3·6H2O and excess Me3SiCl (60 eq) without
the evacuation step (Scheme 1) [38]. However, single crystals suitable for X-ray crystallogra-
phy could be obtained when [CrCl2(µ-Cl)(thf)2]2 was reacted with [(CH3CN)4Ag]+[B(C6F5)4]−.
The structure determined by X-ray crystallography is shown in Figure 5. By reacting
well-defined [(CH3CN)4CrCl2]+[B(C6F5)4]− with a iPrN{P(C6H4-p-Si(nBu)3)2 ligand [37],
a high-quality Cr complex [iPrN{P(C6H4-p-Si(nBu)3)2}2CrCl2]+[B(C6F5)4]− was produced,
which showed extremely high activity in the ethylene tetramerization reaction (activ-
ity: 6600 kg/g-Cr/h; selectivity: 1-octene—74.7%, 1-hexene—7.5%, cyclic-C6—3.8%,
C10+—13.8%, PE—0.2%; reaction conditions: 34 bar ethylene, 235 mL methylcyclohexane,
0.45 mmol Cr catalyst, 90 mmol (iBu)3Al, 40 ◦C, 30 min). The Cr complex [iPrN{P(C6H4-p-
Si(nBu)3)2}2CrCl2]+[B(C6F5)4]− is highly soluble in methylcyclohexane, which is advan-
tageous in handling and operating the tetramerization reaction, and there is no way for
purification, necessitating a high-quality Cr precursor [(CH3CN)4CrCl2]+[B(C6F5)4]− as
well as high-quality ligand iPrN{P(C6H4-p-Si(nBu)3)2}2 to ensure consistently high activity.
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(◦): Cr-N1, 2.025(3); Cr-N2, 2.018(3); Cr-Cl1, 2.2804(9); Cr-N2-C, 178.8(3); and Cr-N1-C, 175.5(3).
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In previous studies, we encountered a similar problem possibly caused by the use
of impure CrCl3(thf)3. In the reaction of Li+[Et2Al(N(iPr)2)2]− and CrCl3(thf)3, solids
were isolated; however, their structure could not be determined by X-ray crystallography.
The product was tentatively considered to be [Et2Al(N(iPr)2)2]CrCl2 [48]. However, sin-
gle crystals were obtained when well-defined [CrCl2(µ-Cl)(thf)2]2 replaced the impure
CrCl3(thf)3, enabling structure determination by X-ray crystallography. The complex iso-
lated from the reaction of Li+[Et2Al(N(iPr)2)2]− and CrCl3(thf)3 was not a Cr(III) complex
[Et2Al(N(iPr)2)2]CrCl2 but a Cr(II) complex [{Et(Cl)Al(N(iPr)2)2}Cr(µ-Cl)]2 (Figure 6).
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3. Materials and Methods
3.1. General Remarks

All manipulations were performed in an inert atmosphere using a standard glove box
and Schlenk techniques. CH2Cl2 and CH3CN were stirred over CaH2 and transferred to
a reservoir under vacuum. Toluene, hexane, and THF were distilled from benzophenone
ketyl. EAs were carried out at the Analytical Center, Ajou University. CW X-band EPR
spectra were collected at room temperature on an EMX plus 6/1 spectrometer (Bruker,
Billerica, MA, USA) with experimental parameters of 1 mW microwave power, 10 G
modulation amplitude, and 3 scans at KBSI Western Seoul Center Korea. HP-XRD data
were obtained on a D/max-2500V/PC (Rigaku, Akishima, Japan) equipped with a Cu Kα
radiation source (λ = 0.15418 nm).

3.2. [CrCl2(µ-Cl)(thf)2]2

A Schlenk flask containing crystalline solid CrCl3·6H2O (10.0 g, 37.5 mmol) was
immersed in an oil bath at a temperature of 40 ◦C and then evacuated under full vacuum
for 1 h. Under evacuation, the bath temperature was raised to 100 ◦C over an hour and
then maintained at 100 ◦C for 4 h. As volatiles were removed, the crystalline solid changed
to an amorphous powder and the color of the solid gradually changed from dark green to
light green, light gray, and finally light purple. The weight reduced from 10.0 to 6.39 g by
the removal of volatiles. Cold THF (32 g, −30 ◦C) was added to dissolve the remaining
solid. By dissolution, heat was generated, and a dark-purple solution was obtained. Some
insoluble portion was filtered off, and then, Me3SiCl (24.5 g, 225 mmol) was added to the
filtrate. Stirring the solution overnight led to the deposition of a purple solid. The solid was
isolated via filtration and washed with THF (10 mL) and hexane (10 mL). The isolated solid
(6.60 g) was placed in a large vial (~70 mL size) and CH2Cl2 (53 g) was added to dissolve
the solid. When the vial was placed inside a closed chamber (~250 mL size) containing
methylcyclohexane (~15 mL), CH2Cl2 was slowly evaporated and purple crystals were
deposited within 24 h, which were isolated by decantation (4.55 g, 69%).
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3.3. [(CH3CN)4CrCl2]+[B(C6F5)4]−

A solution of [(CH3CN)4Ag]+[B(C6F5)4]− (7.789 g, 8.189 mmol) in acetonitrile (17.3 g)
was added to a suspension of [CrCl2(µ-Cl)(thf)2]2 (2.478 g, 8.189 mmol) in acetonitrile
(22.6 g). After stirring overnight at 60 ◦C, precipitated AgCl was removed by filtra-
tion and an olive-green solution was obtained. The solvent was removed using a vac-
uum line to obtain an olive-green solid (7.71 g). The isolated solid (20.0 mg) and 9-
methylanthracene (20.0 mg) were dissolved in THF-d8, and the 1H NMR spectrum of
the solution was recorded to count the number of CH3CN molecules per each Cr atom,
which was 4.1. The yield was 97% based on the formula [(CH3CN)4.1CrCl2]+[B(C6F5)4]−.
Single crystals suitable for X-ray crystallography were grown in CH2Cl2; a vial contain-
ing [(CH3CN)4CrCl2]+[B(C6F5)4]− (100 mg) in CH2Cl2 (1.0 g) was placed inside a closed
chamber containing methylcyclohexane to deposit crystals.

3.4. [iPrN{P(C6H4-p-Si(nBu)3)2}2CrCl2]+[B(C6F5)4]−

A solution of iPrN{P(C6H4-p-Si(nBu)3)2}2 (9.50 g, 7.78 mmol) in CH2Cl2 (120 g) was
added dropwise to a solution of [(CH3CN)4.1CrCl2]+[B(C6F5)4]− (7.55 g, 7.781 mmol) in
CH2Cl2 (46 g). Upon addition, the color of the solution changed immediately from olive-
green to bluish-green. After stirring for 2.5 h, the solvent was completely removed using
a vacuum line. The residue was dissolved in a minimal amount of methylcyclohexane
(~5 mL), and the solvent was removed using a vacuum line. This procedure was repeated
once more to remove any residual CH3CN and CH2Cl2 completely. The residue (15.7 g,
100%) was dissolved in methylcyclohexane (141.3 g) to obtain a 10 wt% solution, which
was used for ethylene tetramerization.

3.5. [{Et(Cl)Al(N(iPr)2)2}Cr(µ-Cl)]2

[CrCl2(µ-Cl)(thf)2]2 (0.312 g, 1.03 mmol) was added to a solution of Li+[Et2Al(N(iPr)2)2]−

(0.302 g, 1.03 mmol) in toluene (4.5 mL) at −30 ◦C. The mixture was stirred for 8 h at room
temperature. The color of the solution changed from dark brown to deep greenish-blue,
and LiCl precipitated. The solvent was removed using a vacuum line, and the residue
was dissolved in hexane (30 mL). After removal of LiCl via filtration, the filtrate was
concentrated to ~10 mL and allowed to stand at −30 ◦C for 2 days. Blue crystals were
deposited (0.178 g, 45%). A second crop of blue crystals was obtained from the mother
liquor (0.028 g, 7%).

3.6. X-ray Crystallography

Specimens of suitable quality and size were selected, mounted, and centered in the
X-ray beam using a video camera. Reflection data were collected at 100 K on an APEX
II CCD area diffractometer (Bruker, Billerica, MA, USA) using graphite-monochromated
Mo K–α radiation (λ = 0.7107 Å). The hemisphere of the reflection data was collected as
ϕ and ω scan frames at 0.5◦ per frame and an exposure time of 10 s per frame. The cell
parameters were determined and refined using the SMART program. Data reduction was
performed using the SAINT software. The data were corrected for Lorentz and polarization
effects. An empirical absorption correction was applied using the SADABS program. The
structure was solved by direct methods and refined by the full matrix least-squares method
using the SHELXTL package and olex2 program with anisotropic thermal parameters for
all non-hydrogen atoms.

Crystallographic data for [CrCl2(µ-Cl)(thf)2]2 (CCDC# 2044805) that were used in all
calculations are as follows: C8H15.5Cl3CrO2, M = 302.05, triclinic, a = 6.8070(8), b = 9.3170(11),
c = 10.3192(13) Å, α = 108.070(5)◦, β = 96.448(5)◦, γ = 94.719(5), V = 613.47(13) Å3, space
group P-1, Z = 2, and 2285 unique (R(int) = 0.0505). The final wR2 was 0.1251 (I > 2σ(I)).

Crystallographic data for [(CH3CN)4CrCl2]+[B(C6F5)4]−·2(CH2Cl2) (CCDC# 2044806)
that were used in all calculations are as follows: C34.5H17BCl7CrF20N4, M = 1178.48, mon-
oclinic, a = 12.9472(4), b = 8.2694(3), c = 21.7555(8) Å, β = 99.8523(18)◦, V = 2294.91(14)
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Å3, space group P2/c, Z = 2, and 4409 unique (R(int) = 0.0285). The final wR2 was 0.1594
(I > 2σ(I)).

Crystallographic data for [{Et(Cl)Al(N(iPr)2)2}Cr(µ-Cl)]2 (CCDC# 2044807) that were
used in all calculations are as follows: C28H66Al2Cl4Cr2N4, M = 758.60, monoclinic,
a = 10.2937(2), b = 12.8707(3), c = 14.7815(3) Å, β = 96.5009(18)◦, V = 1945.77(7) Å3, space
group P21/n, Z = 2, and 3675 unique (R(int) = 0. 1527). The final wR2 was 0.0909 (I > 2σ(I)).

4. Conclusions

The commonly used CrCl3(thf)3 is impure obtaining as an irregular solid with no
possibility of recrystallization. Another form of the THF adduct of CrCl3 (i.e., [CrCl2(µ-
Cl)(thf)2]2) was facilely prepared in this work. The structure of [CrCl2(µ-Cl)(thf)2]2 de-
termined by X-ray crystallography agreed well with the XRD patterns and the C content
of the bulk. Using well-defined [CrCl2(µ-Cl)(thf)2]2 instead of the impure CrCl3(thf)3 as
a starting material, the activity of the ethylene tetramerization catalyst [iPrN{P(C6H4-p-
Si(nBu)3)2}2CrCl2]+[B(C6F5)4]− was consistent and extremely high (6600 kg/g-Cr/h), and
some Cr complexes (e.g., [(CH3CN)4CrCl2]+[B(C6F5)4]− and [{Et(Cl)Al(N(iPr)2)2}Cr(µ-Cl)]2)
whose structure determination had failed previously could be isolated as high-quality crys-
tals, enabling structure determination by X-ray crystallography. We strongly suggest the
use of well-defined [CrCl2(µ-Cl)(thf)2]2 instead of the impure CrCl3(thf)3 as a Cr source in
the synthesis of organometallic and coordination compounds of Cr.
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