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Abstract

Excessive use of agrochemicals for weed controlling infestation has serious agronomic and

environmental repercussions associated. An appropriate amount of pesticide/ chemicals is

essential for achieving the desired smart farming and precision agriculture (PA). In this

regard, targeted weed control will be a critical component significantly helping in achieving

the goal. A prerequisite for such control is a robust classification system that could accu-

rately identify weed crops in a field. In this regard, Unmanned Aerial Vehicles (UAVs) can

acquire high-resolution images providing detailed information for the distribution of weeds

and offers a cost-efficient solution. Most of the established classification systems deploying

UAV imagery are supervised, relying on image labels. However, this is a time-consuming

and tedious task. In this study, the development of an optimized semi-supervised learning

approach is proposed, offering a semi-supervised generative adversarial network for crops

and weeds classification at early growth stage. The proposed algorithm consists of a gener-

ator that provides extra training data for the discriminator, which distinguishes weeds and

crops using a small number of image labels. The proposed system was evaluated exten-

sively on the Red Green Blue (RGB) images obtained by a quadcopter in two different crop-

lands (pea and strawberry). The method achieved an average accuracy of 90% when 80%

of training data was unlabeled. The proposed system was compared with several standards

supervised learning classifiers and the results demonstrated that this technique could be

applied for challenging tasks of crops and weeds classification, mainly when the labeled

samples are small at less training time.

Introduction

Agriculture plays a vital role in the global economy and has led to extensive studies to increase

crop yield [1, 2]. Weeds pose a severe threat in achieving this goal, as it accounts for about a

35% reduction of global crop yields [3]. Agrochemicals (Herbicides and Pesticides) are used

for controlling weed infestation and allow the efficacy of almost 75% [3, 4]. These chemicals
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are typically broadcasted over the entire fields, including weed-free regions with economic and

environmental risks associated with them [3, 5]. Site-specific weed management (SSWM) rec-

ommends chemical saving by utilizing an adequate amount of chemicals based on weed den-

sity [4]. In this regard, an accurate classification system of crops and weeds could significantly

promote chemical saving while enhancing its effectiveness by providing decision-making

information for variable-rate spraying machines. This classification system is obtained either

by ground sampling or by remote detection [3]. The reliability of remote sensing fields is sig-

nificantly higher than ground visits [4, 6].

Rapid advancement in Unmanned Aerial Vehicle (UAV) technology for several civilian

applications makes it an ideal choice for remote sensing in precision agriculture applications

[7, 8]. Compared to other platforms for remote sensing (aircraft, satellite, etc.) UAV offers a

more cost-effective and efficient solution due to low altitude flights and the ability to capture

high-resolution imagery for monitoring small weed patches thoroughly [9–12]. Extensive

work has been carried in the literature on UAV for different precision agriculture applications

(weed mapping, crop management, spraying, etc.) [3, 13–18] Weed detection and recognition

in early growth stages for dicotyledonous (pea and strawberry etc.) crops are much more chal-

lenging as compared to late-stage [19] due to the following three reasons: 1) The dicotyledon-

ous crops and grass weeds usually have similar reflectance characteristics, which is very

difficult to be differentiated through RGB imagery, 2) weeds are generally distributed in small

patches, 3) interference of soil background reflectance with the detection.

Conventionally human craft features such as color, shape, and texture are used for early-

stage detection [20], but they are prone to errors. They have led to the introduction of deep

learning in weed classification and recognition [21–23]. However, a large amount of training

data is essential for this technique. Collecting specific label images is a challenging and time-

consuming task and needs to be addressed.

Furthermore, the training time and processing time required for these techniques is rela-

tively high and is not ideal for UAV platforms due to their computational constraint. One

potential approach for improving the recognition accuracy with limited data set is deploying

semi-supervised learning, and the study aims to extend this by using a generative adversarial

network (GAN) [24–26] to accurately classify the RGB imagery obtained of early growth crops

through UAV into weeds and crops with few label images. The main contribution of this

research are, i) Modified semi-supervised GAN (SGAN), as the images in the study had a 448 �

448-pixel resolution compared to conventional 28 � 28 resolution, ii) to apply SGAN to real

RGB imagery iii) to achieve less training time for lower labeled rate iv)to analyze the potential

of using this technique in the field by applying it at least two different fields and v) motivate

learning from unlabeled training data by comparing the accuracy with conventional super-

vised learning classifiers.

The remaining of this paper is organized as follows: Related work is explained briefly in Sec-

tion 2; Section 3 discusses Materials and Method followed by experimentation in Section 4

Materials and; Section 5 discusses the results followed by discussion, and finally, Section 6 con-

clude this article.

Related work

Annotating large datasets for classification systems is a concern that becomes even more chal-

lenging when the number of unsupervised samples for training the classifier is more than the

supervised samples [27]. In this regard, semi-supervised learning methods learn from the par-

tially labeled data set and improve classification performance. Normally semi-supervised

learning techniques either employ one by one supervised classification for propagating labels
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to unlabeled training samples [27–29] or explore the spatial distribution of the samples in fea-

ture space for prorogation [27]. The path-based similarity has also been applied [30] to capture

the manifold structure data and obtain similarity for maximizing the separability between vari-

ous classes. Currently, deep learning is mostly applied for classification tasks by employing

complex neural architectures [31]; however, employing unsupervised data could be beneficial

for improving classification performance [32, 33]. Recent advancements in this field have pro-

posed using unsupervised samples to enhance learning in a deep neural network. Unlabeled

samples were employed for pre-training the network, which was later adjusted by using labeled

data [33, 34]. In a semi-supervised learning method proposed for deep neural networks [35]

that can learn both labeled and unlabeled samples simultaneously, SoftMax outputs were uti-

lized for pre-labeling the unlabeled samples. In another instance, a weak semi-supervised deep

learning technique was proposed that incorporated Convolutional Neural Networks (CNNs)

for annotating multiple label images [36]. In their study, weak labeled or even label-less images

were applied to train the network.to manage the weighted pairwise ranking loss was utilized to

manage the weakly labeled images.

In contrast, for unlabeled images, triplet similarity loss was applied. In another study, a sys-

tem was developed for weed mapping in sunflower crops for site-specific weed control treat-

ments [3]. Different degrees of labeled data were utilized to explore different machine learning

algorithms, and the results showed that a semi-supervised system was able to adapt well, even

when a few labeled training samples were considered. In the subject of active learning, CNN was

used to develop a semi-supervised algorithm [37] to find representative unlabeled samples and

the regularization term, which was new in the loss function. A pseudo labeling approach was

developed and employed [38] for semi-supervised learning for classifying hyperspectral images

—the developed method used pseudo-labeled samples for training a deep recurrent CNN. The

proposed technique outperformed the recent supervised and semi-supervised learning methods

for classifying hyperspectral images. A semi-supervised method was employed in a study to clas-

sify an unlabeled training set, which was used for training a CNN [39]. The technique was vali-

dated with soybean leaf and pest identification from images obtained through UAV to classify

unlabeled training set, which was applied for training a CNN. The technique was validated with

soybean leaf and pest identification from images obtained through UAV. Albeit, extensive work

has been carried out in semi-supervised learning as explained in this section but still, there is

room for improvement, however, particularly in cases where the classification poses a challenge

like classifying crops and weeds in the early growth stage when the spectral and appearance

characteristics are similar. Semi-supervised generative adversarial network (SGAN), in which

generator develops large realistic images, which in turn forces the discriminator to classify accu-

rately by learning better features, achieved good accuracy [25], [26] or classification tasks. So far,

SGAN application has not been explored for classifying Red Green Blue (RGB) imagery of early

growth stage crops and our study aims to address this research gap, by using SGAN for classify-

ing crops and weeds in early growth croplands, using UAV RGB imagery.

Materials & methods

Semi-Supervised Generative Adversarial Network (SGAN)

Generative Adversarial Network (GAN) frameworks were first introduced for training deep

generative models using game theory [40]. It contains two models: generator (G) and discrimi-

nator (D), both are trained in an adversarial manner. Fake inputs are generated by the G,

while discriminator (D) classifies real and fake inputs [25, 41] as illustrated in Fig 1.

Both generator and discriminator are trained to optimize the results, i.e., D accurately clas-

sifies generator distribution from real data. At the same time, G generates data possessing
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similar distribution like actual data to fool the discriminator into accepting generator output

as real data [42]. GANs have been employed in different applications such as image generation,

classification, etc. [26]. Recently GANs have been extended into semi-supervised learning for

image classification [25, 26, 39]. Usually, multiclass classifier labels an input into one of the K

discrete classes. For semi-supervised learning using GAN, a new label K+1 could be added for

the samples generated by G corresponding to fake class [26]. Unlabeled data could be used for

learning [42] by defining loss function for discriminator. Supervised and unsupervised loss

function combines to form the discriminator loss function as follows [43].

L ¼ Lsupervised þ Lunsupervised ð1Þ

Lsupervised ¼ � Ex;y�pdataðx;yÞlogpmodelðyjx; y < K þ 1Þ ð2Þ

The supervised loss function (Lsupervised) is defined as the negative log probability of y when

the correct class is allocated by x. Lsupervised focuses on correctly classifying material to a given

labeled sensor measurement x

Lunsupervised ¼ � Ex;y�pdataðxuÞlogð1 � pmodelðy ¼ K þ 1jxuÞÞ � E�x�GðzÞlogpmodelðy ¼ K þ 1jx�Þ ð3Þ

Unlabeled image loss functions constitute the unsupervised loss function (Lunsupervised). pmo-
del(y = K+1|x) represents the probability that x is fake, corresponding to 1-D(x) of GAN archi-

tecture [26]. Unlabeled data sample is denoted by xu. The unlabeled sensor measurement is

classified to one of the K classes by the first term of Lunsupervised. The second term in the Lunsu-

pervised classifies the images generated by the G as K+1 (fake) [26, 42].

By minimizing Lsupervised and Lunsupervised the classifier could be trained with gradient

descent. The D is updated stochastically at each training iteration by gradient descent of the

Eq 1.

ryd
1=m

Pm
i¼1
� logsðxðiÞÞyðiÞ � logDðxiuÞ � logð1 � DðGðzðiÞÞÞÞ ð4Þ

For all m samples in a minibatch σ(x)j = pmodel(y = j|x) (SoftMax function) applied at the

output of D.

The conventional SGAN was designed to deal with a 28� 28-pixel image. During prelimi-

nary testing the images were rescaled to the traditional pixel size. However, the results were

not satisfactory as images suffered an information loss, which is of utmost importance in

achieving the desired accuracy. Therefore, the SGAN is modified to use 448�448 images which

are illustrated in Fig 2.

The video was recorded at the preprocessing stage and was converted into images. The

images were divided into two batches of labeled and unlabeled images. The proposed model

Fig 1. Architecture of GAN [41].

https://doi.org/10.1371/journal.pone.0251008.g001
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generator took noise distribution as an input, and after four convolution layers generated a

fake image like real distribution data. The discriminator input layer size was changed to

448�448�3, and the reshape layer of the generator was adjusted to 28�28�512, followed by four

convolutional layers, which up sampled the random noise in each layer for producing 448�448

images. The size of convolutional kernel for G was 5�5. Rectified Linear Unit (ReLU) activa-

tion function was applied to all the layers of a generator except the output, which used the

Tanh. The standard Adam optimizer was employed for D and G, and the learning rate was set

to 0.00001. The generated images, along with real data images (labeled and unlabeled), were

processed by the D, a fully convolutional multiclass classifier was utilized instead of the con-

ventional D. The size of convolutional kernel was 3�3. The classifier could predict the input

data to a label y from two K classes (crops and weeds) or to a fake sample (k+1 class). The

main idea was obtained through [44] to add large fake images forcing the real samples close in

feature space resulting in improved classification. SoftMax was utilized in the last layer for the

discriminator for enabling classification. The overview of the proposed method is illustrated in

Fig 3. The training of the proposed SGAN is shown in Algorithm 1.

Fig 2. Structure of modified SGAN. a) Generator. b) Discriminator.

https://doi.org/10.1371/journal.pone.0251008.g002

Fig 3. Overview of proposed methodology.

https://doi.org/10.1371/journal.pone.0251008.g003
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Algorithm 1 Proposed SGAN Training
Input: labeled samples {(x1,y1),. . .(xm,ym)}, Unlabeled samples {u1,. . .

um}, Number of iterations, Generated data, Fake data, Real data
Initialize: Labeled samples = XLabel, Unlabeled samples = Xunlabel,
I = Number of iterations, Generated data = XG, Fake data = XF, Real
data = XR
for i = 1 to, I do

Normalize input data [–1 1]
Training Discriminator (D):
Freeze generator weights
Train D with XL, Calculate Lsupervised (Eq 1)
Train D with XL, XUL, XG, Calculate Lunsupervised (Eq 2)
LD = Lsupervised + Lunsupervised
Update D weights by their gradient
ryd

1=m
Pm

i¼1
� logsðxðiÞÞyðiÞ � logDðxiuÞ � logð1 � DðGðzðiÞÞÞÞ

Training Generator (G):
Freeze D weights
Feed D with half of XR and XF
Extract features and Calculate LG ¼ jEx�preal f ðxÞ � Ex�fake f ðxÞj

2

2

Update G weights by their gradient
ryg
½1=m

Pm
i¼1
jf ðuiÞ � f ðGðziÞÞj2

2

End for
____________________________________________________________________

Experimentation

Data acquisition

Da-Jiang Innovations (DJI) Spark having an onboard camera, was employed for collecting

images with 1/2.3" CMOS sensor, and FOV 81.9˚ 25 mm f/2.6 lens was utilized for collecting

imagery as depicted in Fig 3A. The experimental site was located at Turangzai city, Peshawar,

Khyber Pakhtunkhwa (KP), Pakistan, Coordinates 34˚ 12’ 57" North, 71˚ 44’ 50" East). Two

different croplands, pea, and strawberry were selected with an area of 0.4 ha and 0.2 ha shown

in Fig 4B and 4C. The seeds of strawberry and pea were sown on December 15, 2019, and Janu-

ary 20, 2020, respectively. The area was naturally infested with inter and intra row annual

goosegrass (Eleusine indica) weeds after 15 and 25 days respectively.

Flights were conducted for one week from February 23 to March 1 2020, just when both the

crops and infested weeds were in the early growth stage, and agrochemical treatment was rec-

ommended. To ensure uniform lighting, all images were collected in the morning hours, i.e.,

during the daytime. The average temperature was ranged between 23–25 �C while ambient

humidity was 65–68%. A rectangular region of 50�40 m was selected for conducting the flight

operations. The altitude for the flight was kept 2m above the ground, and spatial resolution

was 0.3cm. UAV collected videos, which were converted into images using a Joint Photo-

graphic Group (JPG) converter. Images obtained through the first half of the video were used

for training, while the latter half of the video was used for testing. Two classifier data sets i.e.,

crop (pea and strawberry) and weeds, were collected. The data set comprised 2600 images and

2800 images of crops and weeds, each for pea and strawberry, respectively. Fig 5 shows a sam-

ple of labeled images for the developed dataset of crops and weeds. The data set was split into

70% for training, 15% each for validation and testing. Images of the training set were labeled

manually on an experimental platform. Labeler consensus was developed, and auditing was

performed through the field experts for counteracting any error in the labeling. The accuracy

of labeling work was 99%, and the confidence score was 0.98. Tensor flow and Keras open-

source deep learning framework were used for experimentation, while the platform used was
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Fig 4. Overview of UAV and experimental site. a) DJI Spark (Multi-Rotor). b) Pea Field. c) Strawberry Field.

https://doi.org/10.1371/journal.pone.0251008.g004
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Intel i7-6600U processor, 8GB DDR4 memory, AMD Radeon R7 M360 2GB graphics card.

The hyper-parameter settings were: batch size = 30; learning rate = 0.0001. The moment of 0.8

and weight decay of 0.0005 was utilized.

Results and discussion

After rigorous experimentation, the results achieved are presented in this section. A specific

number of labeled and unlabeled samples for both the croplands (illustrated in Table 1) was

used as an input to the discriminator for semi-supervised training. L was used for denoting the

labeled images, while U was used for the unlabeled data set. The classification of crops and

weeds with their for the developed method is illustrated in Fig 6.

The proposed method’s training time for each labeled rate was calculated by finding an

average time from the 800th epoch to the 1000th epoch and is shown in Table 2. The labeled

rate is directly proportional to the training time, which means that as the labeled rate increases,

the training time also increases. The conclusion is per the desired objective of the developed

framework.

Cross-validation accuracy for 1000 epochs for all the labeled rates is shown in Fig 7A–7D. It

is evident that the accuracy increases with an increase in the number of epochs. The training

has not reached a plateau even at the 1000 epoch, which shows that further training can

enhance accuracy.

Fig 5. Sample images for the crops (pea and strawberry) and weeds dataset. a) Weeds. b) Crops. c) Crops.

https://doi.org/10.1371/journal.pone.0251008.g005

Table 1. Number of the labeled and unlabeled Images under different labeled rates for two different croplands.

Crop Land (Pea)

Labeled Rate Labeled Images (L) Unlabeled Images (U) Total

20% 260 1040 1300

40% 520 780 1300

60% 780 520 1300

80% 1040 260 1300

Crop Land (Strawberry)

Labeled Rate Labeled Images (L) Unlabeled Images (U) Total

20% 280 1120 1400

40% 560 840 1400

60% 840 560 1400

80% 1120 280 1400

https://doi.org/10.1371/journal.pone.0251008.t001
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Labeled and unlabeled samples were used simultaneously for semi-supervised training and

obtained semi-supervised classification accuracy (SSCA), which is expressed in terms of the

following equation from a confusion matrix

SSCA labeled þ Unlabeledð Þ ¼
True Positive ðTPÞ þ True Negative ðTNÞ

Positiveþ Negative
5Þ

Table 3 shows quantitative results for SSCA on the data mentioned above. Accuracy based

on confusion matrix was used as an evaluating metric.

The developed semi-supervised method achieved an overall accuracy of almost 90% for two

croplands when the labeled samples were only 20%. It performed better classification perfor-

mance when the labeled samples were increased and achieved an overall accuracy of 94.17%

when 80% of the samples were labeled; it is because that the proposed semi-supervised GAN

might result in incorrectly labeled samples, which made it impossible for newly labeled images

to perform similarly to the original labeled samples.

A comparison for evaluation

It was essential to validate the developed technique, for which a comparison was made with

well-established classification techniques such as Support Vector Machine (SVM) [45],

K-Nearest Neighbor (KNN) [46], CNN [47]. SVM, working on the principle of statistical

learning theory, is a machine learning method that uses nonlinear kernel functions for map-

ping original input data into high dimensional features seeking separate hyperplane, and the

data is optimally separated into two categories by using the constructed N-dimensional hyper-

plane [45]. KNN is another standard machine learning algorithm that uses neighbor votes for

classifying objects, resulting in assigning objects to the most common class. K represents a

small positive value. The nearest neighbor class is assigned when the value of the object is 1.

Euclidean distance is a commonly used metric for calculating the closest k elements distance

[46]. CNN is a highly accurate technique normally used to classify images [48]. CNN has

Fig 6. Crops and weeds classification for the developed system. a) Weeds. b) Crops.

https://doi.org/10.1371/journal.pone.0251008.g006

Table 2. Average training time at different labeled rates.

Labeled Rate Average Training Time (Sec/Epoch) Total Epochs

20% 38.96 1000

40% 49.93 1000

60% 50.88 1000

80% 51.32 1000

https://doi.org/10.1371/journal.pone.0251008.t002
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Fig 7. Cross validation accuracy (SSCA) using different labeled rates. (a) Labeled Rate 20% b) Labeled rate 40% c) Labeled rate 60% d) Labeled rate 80%.

https://doi.org/10.1371/journal.pone.0251008.g007

Table 3. Classification accuracy of our proposed semi-supervised learning method under different labeled rates.

Crop Land (Pea)

Labeled Rate %

Target 20% Labeled 40% Labeled 60% Labeled 80% Labeled

L+U L+U L+U L+U

SSCA SSCA SSCA SSCA

Crops and Weed 89.15% 90.08% 91.36% 93.75%

Crop Land (Strawberry)

Target Labeled Rate %

20% Labeled 40% Labeled 60% Labeled 80% Labeled

L+U L+U L+U L+U

SSCA SSCA SSCA SSCA

Crops and Weed 90.06% 90.66% 91.98% 94.6%

https://doi.org/10.1371/journal.pone.0251008.t003
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multiple architectures (LeNet5, Alex Net, VGG 16, etc.), providing different results. The archi-

tecture used in the study for comparison are LeNet5, VGG-11, VGG-16, ResNet18, and

ResNet50. VGG-11 and VGG -16 comprises eight (8) and thirteen (13) convolutional layers,

followed by three (3) fully connected layers and a single SoftMax layer [47]. LeNet5 is a classi-

cal CNN model consisting of seven convolutional layers [47]. Whereas, ResNet18 and

ResNet50 comprises of 18 and 50 convolutional layers followed by batch normalization and a

ReLU activation function [49].

The labeled samples were only used for obtaining supervised classification accuracy (SCA)

with the techniques mentioned above. Quantitative results for SCA are obtained and illus-

trated in Table 4.

SCA labeledð Þ ¼
True Positive ðTPÞ þ True Negative ðTNÞ

Positiveþ Negative
6Þ

The comparison between the SCA and SSCA on different labeled rates is shown in Fig 8.

For the Pea cropland, the developed semi-supervised system performed consistently well, as

compared to the KNN system with at least 10% superiority across all ranges of labeled images;

while this superiority was even more when compared to the SVM system, with a minimum

improvement in accuracy of around 28% even at (80% labeled images), while yielding more

than 34% superiority at 20% labeled images.

For the remaining systems, i.e., LeNet5, VGG-11, VGG-16, ResNet18, and ResNet50, devel-

oped proposed system performed in a consistently superior manner at both 20% and 40%

labeled images; however, the remaining methods proved to be marginally superior (around 2%

max.) at 80% labeled images.

The inferences are evident from the comparisons appended below (Fig 9A–9G) regarding

the developed system against each system across the four different percentages of labeled

images.

Table 4. Supervised classification accuracy (SCA) of KNN, SVM, LeNet5, VGG-11VGG-16, ResNet18, and ResNet50 on different labeled rates.

Cropland (Pea)

Method

Labeled Rate

20% 40% 60% 80%

KNN 72.14% 75.22% 79.23% 83.21%

SVM 54.25% 57.20% 62.55% 65.15%

LeNet5 85.12% 88.61% 91.46% 94.11%

VGG-11 85.73% 88.92% 91.89% 94.93%

VGG-16 86.24% 89.13% 92.23% 95.01%

ResNet18 87.11% 89.42% 92.47% 95.63%

ResNet50 87.67% 89.69% 92.83% 95.98%

Cropland (Strawberry)

Method

Labeled Rate

20% 40% 60% 80%

KNN 73.05% 75.74% 79.89% 84.92%

SVM 55.34% 58.42% 64.04% 66.43%

LeNet5 86.04% 88.31% 92.01% 95.03%

VGG-11 86.71% 88.83% 92.63% 95.79%

VGG-16 87.13% 89.37% 93.08% 96.21%

ResNet 18 87.51% 89.77% 93.47% 96.53%

ResNet 50 88.03% 89.91% 93.89% 96.92%

https://doi.org/10.1371/journal.pone.0251008.t004
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Fig 8. Comparison between SCA and SSCA at different labeled rates. a) Pea. b) Strawberry.

https://doi.org/10.1371/journal.pone.0251008.g008
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Similar to the results for Peas, considering the Strawberry cropland, developed semi-super-

vised system also performed consistently well in almost an identical manner (removing any

bias/ differences on account for different croplands), as compared to the KNN system with

more than 9.7% superiority across all ranges of labeled image percentages. As expected, the

superiority was even more when compared to the SVM system with a minimum superiority of

again 28% superiority in identification accuracy (even at 80% labeled images), while yielding

almost identical 34.7% superiority at 20% labeled images.

For the remaining systems, i.e., LeNet5, VGG-11, VGG-16, ResNet18, and ResNet50, the

developed system performed in a consistently superior manner at both 20% and 40% labeled

images; however, the remaining methods also proved to be marginally superior (around 2.3%

max.) at 80% labeled images.

The inferences are again evident from the comparisons appended below (Fig 10A–10G)

regarding the developed system against each system across the four different percentages of

labeled images.

The study demonstrated that in cases where the available data is limited, the developed

technique could achieve classification with comparatively good accuracy across several classifi-

cation applications. One particular application being studied in this study is crop weed classifi-

cation, which is an essential area in precision agriculture applications, as this would ensure a

platform for precise spraying of pesticides. This application may prove significant in overcom-

ing the socioeconomic impact (millions of dollars lost) on the global economy, especially in

developing countries. Furthermore, the broadcast (conventional) spraying has several limita-

tions on the environment and the crops. In this regard, a robust semi-supervised system was

developed for classifying crops and weeds accurately, even with limited labeled data. The

developed method has the potential to be used as a transfer learning technique and can be

deployed to train crops and weeds classifier for other horticulture crops (fruits and vegetables).

Additionally, the experimental results indicate that the developed framework can provide deci-

sion-making support to specialists, farmers, precision agriculture sprayers (tractor, UAV, etc.)

for the site-specific weed management (SSWM) operations. Once extended to a precision agri-

culture sprayer operating situation, the developed system would lead to substantial pesticide

and herbicide savings while improving its cost and environmental effectiveness.

Conclusion

In this study, an optimized semi-supervised GAN-based framework was developed for crops

and weeds classification. In the developed framework, a fully convolutional multiclass classifier

was employed. Instead of the conventional discriminator, the SoftMax function was employed

in the final layer of the discriminator to enable classification to predict input data into two clas-

ses (crops and weeds) or a fake sample. The developed method was evaluated on the quadcop-

ter’s dataset for two different crop fields, which led to the conclusion that the developed

method achieved high accuracy for classification on the imagery of the crops in the early

growth stage, where detection of weed was a challenging task due to similar spectral and

appearance characteristics. The experimental results also proved that the developed framework

could perform better at a higher unlabeled rate than conventional supervised learning tech-

niques. The developed framework achieved an accuracy of almost 90% for both the croplands

(pea and strawberry) and a train time of 48.96 sec, utilizing a minimum labeled rate of 20%,

Fig 9. Comparison of developed system with individual systems. a) Developed system vs KNN. b) Developed system

vs SVM. c) Developed system vs LeNet5. d) Developed system vs VGG-11. e) Developed system vs VGG-16. f)

Developed system vs ResNet18. g) Developed system vs ResNet50.

https://doi.org/10.1371/journal.pone.0251008.g009
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where other methods were able to achieve a maximum of (87.13%). The developed method

was evaluated on images collected at a fixed 2m altitude, and as future work, the framework

should be evaluated on images collected at different heights. Further studies on integrating the

system into the Real-Time UAV for crop and weed classification are in progress.
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