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Abstract  
Epigenetic modifications influence gene expression levels, impact organismal traits, 

and play a role in the development of diseases. Therefore, variants in genes involved 

in epigenetic processes are likely to be important in disease susceptibility, and the 

frequency of variants may vary between populations with African and European 

ancestries. Here, we analyse an integrated dataset to define the frequencies, 

associated traits, and functional impact of epigenetic gene variants among 

individuals of African and European ancestry represented in the UK Biobank.  We 

find that the frequencies of 88.4% of epigenetic gene variants significantly differ 

between these groups. Furthermore, we find that the variants are associated with 

many traits and diseases, and some of these associations may be population-

specific owing to allele frequency differences. Additionally, we observe that variants 

associated with traits are significantly enriched for quantitative trait loci that affect 

DNA methylation, chromatin accessibility, and gene expression. We find that 

methylation quantitative trait loci account for 71.2% of the variants influencing gene 

expression. Moreover, variants linked to biomarker traits exhibit high correlation. We 

therefore conclude that epigenetic gene variants associated with traits tend to differ 

in their allele frequencies among African and European populations and are enriched 

for QTLs. 
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Introduction 
Epigenetic variations that result in changes in gene expression levels are important 

in determining traits and diseases. Consequently, single nucleotide polymorphisms 

(SNPs) in genes involved in epigenetic mechanisms (hereafter referred to as 

epigenetic genes for simplicity) might therefore be important in disease 

susceptibility1,2.  Furthermore, epigenetic processes such as DNA methylation, 

chromatin remodelling, and covalent histone modifications can be just as crucial in 

traits and diseases 3,4. Expectedly, SNPs in regions encoding epigenetic genes are 

associated with various traits and diseases 3,5-7.  

 

An integrative analysis of 111 reference human epigenomes revealed that disease- 

and trait-associated genetic variants are enriched in tissue-specific epigenomic 

markers, emphasizing the relevance of epigenomic information in understanding 

gene regulation, cellular differentiation, and human disease 8. Other studies have 

revealed widespread genetic variations affecting the regulation of most genes, 

illuminating the cellular mechanisms of transcriptome variations and the landscape of 

functional variants in the human genome 9. Notably, most previous studies have 

applied these analyses primarily to European (EUR) ancestry populations 10,11. 

 

There are documented cases of SNPs that vary significantly among populations of 

different genetic ancestry backgrounds 8,9,12,13. For instance, African (AFR) 

populations are known to have a more variable genome than other populations 14-16. 

A study examining worldwide patterns of human epigenetic variations reported that 

population-specific DNA methylation, an important epigenetic mechanism, mirrors 

genomic variations and exhibits greater local genetic control than mRNA levels, 

showing the importance of epigenetic factors in genetic diversity across different 

populations 17. 

 

Determining the interplay between genetic variability (SNPs) and epigenetic 

variations should allow us to uncover associated traits and diseases.  In the past 

decade, large-scale genome sequencing has deepened our insights into genetic 

variations, highlighting the diversity within AFR populations compared to their more 
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extensively studied EUR counterparts. For example, recent genome-wide 

association studies (GWAS) identified several genetic loci associated with different 

traits with differences in the SNP allele frequencies between AFRs and EURs 11,18-20.  

 

The UK Biobank (UKB) cohort contains data on 502,462 individuals, providing an 

opportunity to compare the frequency of genomic variants among different 

populations and associations with traits among individuals of EUR and recent AFR 

descent 21. By integrating allele frequencies, genetic associations of traits, and the 

functional impact of SNPs, it is possible to identify population-specific loci, 

underscoring the importance of considering both genetic uniqueness and shared 

genetic factors in AFRs and EURs 11,22,23. Identifying population-specific epigenetic 

gene variants associated with traits will provide additional information relevant to 

understanding various traits and diseases in distinct populations 24-26. However, to 

our knowledge, there is no information on the variations in epigenetic gene SNP 

frequencies across the entire UKB cohort or separately among AFRs and EURs. 

 

Here, we compare the allele frequencies of SNPs in epigenetic genes and traits 

associated with variants at epigenetic gene loci among individuals of AFR and EUR 

ancestry represented in the UKB and other AFR datasets,	utilising genotype array 

data with imputation to enhance variant detection. First, we consolidate data from 

multiple databases to pinpoint trait associations with variants in epigenetic genes, as 

identified in published GWAS. This was followed by analyses to define the functional 

impact of the epigenetic variants. Furthermore, we evaluated the variant frequencies 

and association with several biomarker levels among UKB-AFR and UKB-EUR 

individuals.  This approach allowed us to identify epigenetic loci associated with 

various traits among UKB-AFRs and UKB-EURs, with some loci showing a high 

likelihood of modifying these traits in a population-specific manner.  
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Results 
We analysed an imputed UKB21 SNP genotype array dataset with individual-level 

phenotypic and clinical characteristics for 383,471 EUR (UKB-EUR) and 5,978 

individuals of recent AFR (UKB-AFR) descent. In our study, ancestries were 

determined through a combination of self-identification by participants in the UKB 

dataset, followed by refinement using principal component analysis (PCA) and a 

random forest algorithm based on PCA results, enabling accurate reassignment to 

self-identified ancestries with a membership posterior probability above 0.5, in line 

with UKB standards 21. 

 

Furthermore, we curated a list of 283 epigenetic genes (genes involved in epigenetic 

mechanisms) and epigenetic regulator genes from the Reactome pathways 

knowledgebase27,28 and the literature29. Among these 283 epigenetic genes, the 

largest number encodes histone methyltransferases (HMT; 62 genes), the genes 

containing a bromodomain (Bromo; 35 genes), and histone deacylases (HDAC; 33 

genes) (Figure 1a, Supplementary File 1).  

 

The frequency of SNPs varies between AFRs and EURs  

Next, we extracted a list of 223,336 high-confidence variants, each with a frequency 

greater than 1 x 10-5, at loci "near/within" epigenetic genes. As detailed in the 

Methods section, these loci span regions up to 500 kb upstream or downstream. We 

then compared the minor allele frequencies of these variants between UKB-AFR and 

UKB-EUR populations. We observed, through Fisher's exact test, that 123,168 

(55.1%) of the 223,336 variant alleles were significantly more frequent in AFRs 

(Benjamini-Hochberg adjusted p-values < 0.05), 94,377 (42.3%) were more frequent 

in UKB-EURs, and 5,791 (2.6%) were distributed similarly in the two populations 

(See Figure 1b and Supplementary Figures 1a to 1c). To ensure a comprehensive 

exploration of genetic diversity across populations, we did not apply a frequency cut-

off point in our analysis, allowing for an inclusive examination of rare and common 

variants in line with previous studies 30,31. 
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Figure 1: Epigenetic genes and gene variants. (a) Distribution of 283 epigenetic genes across 14 classes of 
epigenetic genes. (b) scatter plot showing the frequency of SNPs in epigenetic genes among UKB-AFR and 
UKB-EUR. The colours show details about statistical significance: orange for variants significantly more frequent 
in UKB-EUR, green for variants significantly more frequent in AFR, and grey for variants whose frequencies are 
similar in UKB-AFR and UKB-EUR. (c) The number of variants found in each class of epigenetic genes. (d) 
Number of variants in the top 20 epigenetic genes with the most variants.  

 

We found that the HMT gene class exhibited the highest number of variants, totalling 

63,896, of which 62,088 (97.2%) were significantly different in frequency between 

UKB-EUR and UKB-AFR individuals. Nearby or within genes encoded by the 

BROMO class, we identified 41,065 variants, with 40,048 (97.5%) showing 

significant differences between UKB-AFR and UKB-EUR populations. For the 

OTHER category, we identified 29,903 variants, with 29,141 (97.5%) exhibiting 

significant frequency differences (see Figure 1c). The HMT gene class had the most 

variants, even after adjusting for gene length within each class (Supplementary 

Figure 2a). 

 

Furthermore, we found the highest number of variants (13,098) at the loci near the 

PRMT6 gene within the HMT class, of which 12,877 (98.3%) were significantly 

different. SMARCA2 followed this with 9,223 variants, of which 8,979 (97.4%) were 

significantly different, and KDM4C with 8,705 variants, of which 8,433 (96.9%) were 

significantly different (see Figure 1d). We found the most variants at the loci within or 

near the PRMT6 gene, even after normalising the number of variants to the length of 

the epigenetic genes in the genome (Supplementary Figure 2b). 
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Notably, we found that all the variants near the POLR1C gene were significantly 

more frequent in UKB-AFR than UKB-EUR, including rs116775335 (allele frequency 

[AF]; AFR = 0.230, EUR = 2.7 x10-05, p = 3.7 x 10-60) and rs7743244 (AF; AFR = 

0.551, EUR = 0.061, p = 9.4 x10-322) (Supplementary Data 1). 

 

The frequency disparities observed in epigenetic gene variants among UKB-AFR 

and UKB-EUR populations reflect a broader pattern in the genome, with frequency 

variations observed consistently observed across the entirety of the gene spectrum 

when comparing UKB-AFR and UKB-EUR populations (see Supplementary Note 2). 

 

AFR have significantly more common variants compared to EUR ancestry  

We found that UKB-AFRs have more common epigenetic gene variants (>1% minor 

allele frequency) compared to UKB-EURs (Figure 2a). Many variants exhibit 

frequencies that are orders of magnitude higher in the UKB-AFR population than the 

UKB-EUR population, some by a factor of a million or more. Conversely, most 

variants that exhibit frequencies higher in the UKB-EUR population than the UKB-

AFR population are only a few hundred to a few thousand orders (as above) of 

magnitude more prevalent in the UKB-EUR population (Figure 2b).  

 

The common variants that exhibited the most significant difference in frequency 

between UKB-AFRs and UKB-EURs were: rs4983416 in the MTA1 gene (AFR = 

0.228, EUR = 0.983, p = 9.49 x 10-322), rs1267502 in the JARID2 gene (AFR = 

0.252, EUR = 0.985, p = 9.63 x 10-322), and rs10964101 in SMARCA2 (AFR = 0.819, 

EUR = 0.094, p = 9.49 x 10-322).  
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Figure 2: Comparative Distribution of Epigenetic Gene Variants in AFR and EUR UKB Cohorts. (a) 
Superimposed histograms illustrate the distribution of SNP frequencies for epigenetic gene variants in AFR and 
EUR cohorts, sorted into bins by the base-10 logarithm of their frequencies. (b) The histogram demonstrates the 
distribution of allele frequency ratios (AFR/EUR), with bins representing the absolute value of the base-10 
logarithm of the frequency ratio. For detailed binning and calculation methodologies, refer to the Methods section. 

 

Analysis of rare variants and their functional impact across AFR and EUR  

populations 

Many rare variants also exhibited significant differences in frequency, including the 

SP140 gene variant rs73104290, which is 4824 times more frequent in UKB-AFR 

(0.07) compared to UKB-EUR (1.46 x 10-5, p = 8.6 x 10-188) and a SETD7 gene 

variant rs578143624, that is 178 times more frequent in UKB-EUR (0.002) than 

UKB-AFR (1.1 x 10-5, p = 2.4 x 10-17).  

 

From the 123,168 variants significantly more frequent in UKB-AFR, our further 

analysis revealed 9,007 of these to be common in the UKB-AFR population (AF > 

0.1) but rare in the UKB-EUR population (AF < 0.001), see Figure 2b. Furthermore, 

we conducted analyses to assess the functional impact of these 9,007 genetic 

variants and observed several patterns. We found that the top three sequence 

ontology (SO) terms for variant consequence classification by Ensembl Variant 

Effect Predictor (VEP) were intron variants (5,598), intergenic variants (2,019), and 

upstream gene variants (375), see Supplementary Figure 3a.  
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Furthermore, the most frequent variants were those within genes annotated for 

protein-coding (4,952 counts), followed by unspecified categories (N/A) with 2,287 

counts (intergenic variants, whose impact on protein function and gene expression 

could not be predicted), and long non-coding RNA (lncRNA) with 769 counts (refer to 

Supplementary Figure 3b). These intron variants, although non-coding, can affect 

gene regulation and expression, as detailed in Supplementary Data 1.  

 

Additionally, we employed the Ensembl Variant Effect Predictor (VEP) 32 to assess 

the functional impact of variants with reference allele frequencies exceeding 0.1 in 

African populations. The results revealed that a majority of these variants (6,690) 

were classified as “MODIFIER”, indicating that they are usually non-coding variants 

or variants affecting non-coding genes where predictions are difficult, or there is no 

evidence of impact (Supplementary Figure 3c). Interestingly, the top three most 

severe consequences—specifically affecting gene regulation and expression—were 

intron variants (5,598 instances), exemplified by rs113753107, rs17052326, and 

rs4234635 (see Supplementary Data 1). Notably, many variants are found within 

introns—non-coding segments within genes annotated for protein synthesis—which 

hints at their potential involvement in regulatory processes such as alternative 

splicing.  

 
Overall, these results show that the frequency of SNPs located within epigenetic 

genes varied between UKB-AFRs and UKB-EURs, and these SNPs are more 

frequent in the HMT class of epigenetic genes, particularly PRMT6. Our findings 

necessitate further investigation into the biological consequences of these variants in 

relation to population-specific susceptibility or resistance to diseases. They 

underscore the importance of population-based studies in genomic medicine. 

 

Genetic variants discriminate between AFRs and EURs  

All our previous comparisons were based on the UKB datasets of AFR and EUR. We 

also wanted to determine how data from AFR living in Africa compared to that from 

the UKB-AFR population so that we could relate further analyses based on the UKB-
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AFR population to AFR in Africa. We obtained whole genome sequence datasets 

from the H3Africa Project 33,34, Human Genome Diversity Project 35, and the 1000 

Genomes Project 14, for details on the specific populations and the sample sizes, see 

Supplementary Data 1. Our analysis was explicitly tailored to investigate variants 

that were common across all sampled populations, focusing on shared genetic 

variation as detailed in the Methods section. Therefore, we excluded very rare 

variants (AF < 1 x 10-5)  unique to individual groups to avoid potential biases in 

detecting low-frequency variants and to maintain statistical robustness. This 

selective approach was crucial in ensuring consistency and reproducibility of our 

findings across diverse populations. Integrating the UKB SNP frequencies with those 

from these projects and employing unsupervised hierarchical clustering, we 

observed expected segregation patterns: African populations clustered apart from 

Europeans based on the reference allele frequency of variants in epigenetic genes, 

with those in the UKB aligning closely with the respective continental datasets 

(Figure 3a and Supplementary Figure 4). 

 

To further delve into the genetic distinctions between AFRs residing in Africa and 

individuals of AFR ancestry outside of Africa and their divergence from the EUR 

population in the UKB, we systematically compared the frequencies of SNP variants 

across these groups. Employing Fisher’s Exact Test, we scrutinised each SNP for 

significant frequency differences between each pair of subpopulations. 

 

The median percentage of SNPs exhibiting significant frequency variation amongst 

all the AFR subpopulations in the study was 0.53% (range: 0.04% - 2.33%), as 

depicted in Figure 3b (also see Supplementary Figure 5). In contrast, the median 

percentage of SNPs differing significantly in frequency between the AFR populations 

from Africa and the EUR population in the UKB was markedly higher, at 17.4% 

(range: 13.8% - 20.1%), similar to the comparison between UKB-AFR and UKB-EUR 

population. 

 

Unsurprisingly, our analysis revealed a compelling genetic similarity between AFRs 

living in Africa and those of UKB-AFR ancestry, with their SNP frequencies 
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demonstrating a strong correlation. The proportion of variants with significantly 

different frequencies ranged from 3.7% between the UKB-AFR population and the 

Burkina Faso population to 6.3% between the UKB-AFR population and the Luhya 

people in Webuye, Kenya. Moreover, this subset of the AFR population bore genetic 

variants congruent with those observed in broader AFR populations. This similarity is 

expected, as many AFR individuals in the UKB are either recent immigrants or have 

ancestry only a few generations back from Africa.  

 

The SNP frequencies observed in the EUR subset of the UKB mirrored patterns 

previously documented in genome-wide analyses of EUR populations. Crucially, the 

similarity between the UKB-AFR cohort and the AFR population from the 1000 

Genomes Project (shown as in clustergram AFR-AF) and the congruence between 

AFR subpopulations, as depicted in Figure 3 and Supplementary Figure 4, provided 

the impetus to utilise the UKB-AFR population as a representative dataset for 

discerning epigenetic gene variant differences between EUR and AFR populations. 

Additionally, the UKB datasets include phenotype data that was necessary for a trait 

analysis. 
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Figure 3: (a) Clustering of various populations based on the allele frequencies of SNPs at epigenetic gene loci. 
Increasing colour intensities denote higher frequencies of SNPs in the populations. The clustergram was 
produced using unsupervised hierarchical clustering with the Euclidean distance metric and complete linkage. (b) 
Percentage of variants that demonstrate a statistically significant difference between each population as 
determined using the Fisher exact test. The UKB-AFR and UKB-EUR represent the UK Biobank populations. See 
Supplementary Data 1 for the number of samples genotyped for each population.  

 
Traits and diseases associated with variants at epigenetic gene loci  

To explore the relevant traits associated with the variants located near or in the 

genome sequences that encode epigenetic genes, we searched the GWAS Catalog 

(https://www.ebi.ac.uk/gwas) for previously reported phenotypes associated with 

epigenetic variants, extended to include variants in moderate LD (r2 ≥ 0.50) with the 

GWAS hits (see the Methods sections). We discovered that 755 epigenetic variants 

were associated with 373 traits. The most prominent traits included sex hormone-

binding globulin level (SHBG), waist circumference, and height, which were 
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associated with 32, 24, and 8 variants (Figure 4a), respectively. Notably, of the 32 

variants linked to SHBG, 8 were significantly more prevalent in UKB-AFR and 24 in 

UKB-EUR, while, among the 24 variants associated with waist circumference, 4 were 

found more frequently in UKB-AFR and 20 in UKB-EUR. For a complete list of traits, 

genes, and genetic variants reported in the GWAS Catalog that vary between UKB-

AFR and UKB-EUR, see Supplementary Data 2. 

 

We also analysed the epigenetic genes most correlated with these traits reported in 

the GWAS Catalog. The gene HDAC9 was associated with the greatest number of 

traits, totalling 50 variants, followed by PRDM16 with 47 variants and JMJD1C with 

35 (Figure 4b). Of the variants located in or near the HDAC9 gene, 22 were 

significantly more frequent in UKB-AFR and 28 in UKB-EUR. Similarly, for PRDM16, 

28 variants were significantly more frequent in UKB-EUR and 19 in UKB-AFR. 

Here, we show that most of the epigenetic gene variants associated with various 

traits in the GWAS Catalog differ in frequency in AFR and EUR. By extension, these 

differences may impact the extent to which a particular locus is found associated 

with a trait and the occurrence of the disease or trait in each population.  

 

 
Figure 4: Distribution of GWAS Catalog terms for epigenetic gene variants. (a) Bar graph of the top-10 ranking 
traits associated with epigenetic gene variants. (b) Bar graph of the top-10 ranking epigenetic genes most 
associated with traits in the GWAS Catalog. The bar graphs are coloured based on the significance of variants in 
AFR and EUR. The orange bar depicts variants significantly more frequent in EUR, green for variants 
significantly more frequent in AFR, and grey for variants not significantly different between AFR and EUR 
populations. 
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Quantitative trait impact of variants at epigenetic gene loci 

We evaluated the functional impact of epigenetic gene variants that cause changes 

in DNA methylation (methylation Quantitative Trait Loci [mQTLs]), gene expression 

(expression Quantitative Trait Loci [eQTLs]), transcript splice site (splice Quantitative 

Trait Loci [sQTLs]), and histone post-translational modifications (enhancer histone 

Quantitative Trait Loci [hQTLs]). Here, 908 variants among the 223,766 variants 

(0.41%) were eQTLs in various tissues (Supplementary Figure 6a). We cross-

referenced the eQTL variants in the epigenetic genes to the GWAS Catalog and 

showed that, among the 908 eQTLs, 24 were reported in the GWAS Catalog as 

being associated with various traits (Figure 5a). For example, the GSK3B eQTL 

variant rs189174, associated with serum alkaline phosphatase levels36,37 is 2.7 times 

more frequent in UKB-AFR (0.91) compared to UKB-EUR (0.34). Also, the KDM2A 

eQTL variant rs12785905, which is 10 times more frequent in UKB-EUR (0.06) 

compared to UKB-AFR (0.006), is associated with prostate cancers 38,39. 

 

 
Figure 5: The frequency of quantitative trait loci of epigenetic genes in AFR versus EUR in the UKB. Frequency 
of (a) eQTL, (b) mQTL, (c) sQTL, and (d) hQTL variants among AFR and EUR. The red-coloured points show 
QTL variants associated with traits or diseases in the GWAS Catalog. An interactive visualisation of Figure 5 can 
be found here. 
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In addition, we found 44,879 mQTLs out of the 223,766 (20.1%) variants at 

epigenetic gene loci (Supplementary Figure 6b), of which, 472 are reported to be 

associated with various traits (Figure 5b). The frequency of 96% of the mQTLs 

differs significantly between UKB-AFR and UKB-EUR, a finding that may influence 

the penetrance of traits associated with the two populations 40 (Figure 5b and 

Supplementary Figure 6b).  For example, the SETD8 gene mQTL variant 

rs28577594 is associated with high-density lipoprotein cholesterol levels 41,42 and is 

4.2 times more frequent in UKB-EUR (0.723) than UKB-AFR (0.171). Conversely, 

the BRD1 gene variant rs763236 is associated with DNA methylation variation 43 and 

is 33.7 times more frequent in UKB-AFR (0.363) compared to UKB-EUR (0.011).  

 

Furthermore, we found 775 (0.35%) sQTLs among the 223,766 variants 

(Supplementary Figure 6c), of which 2 variants are associated with various traits in 

the GWAS Catalog (Figure 5c). These sQTLs include rs12575252 (AF; AFR = 0.54, 

EUR = 0.35, p = 1.4 x 10-194) of the TRIM66 gene associated with waist-hip 44 and 

rs4833687 of the PRDM5 gene, associated with type 2 diabetes mellitus 45, which is 

7 times more frequent in UKB-EUR (AFR = 0.04, EUR = 0.28, p = 9.5 x 10-322). 

 

Finally, we found 558 (0.17%) hQTLs (Supplementary Figure 6d), among which 4 

are associated with traits (Figure 5d). For example, the GSK3B gene hQTL variant 

rs189174 is associated with alkaline phosphatase levels and is 2.7 times more 

frequent in UKB-AFR (0.91) compared to UKB-EUR (0.34), and the NSD1 gene 

hQTL and mQTL variant rs7724386 that is associated with the neutrophil count is 2.2 

times more frequent in UKB-EUR (0.58) compared to UKB-AFR (0.26).  

We hypothesize that when QTLs with different frequencies across populations (e.g., 

AFR and EUR in this case) are linked to traits or diseases, they will likely influence 

the prevalence or penetrance of those traits in different populations 46 

(Supplementary Figure 6 and Supplementary Figure 7).  
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Variants exhibit multiple quantitative trait loci effects and disease 

associations 

We found that 632 (70.5%) of the identified eQTLs also function as mQTLs for the 

same gene, 43 (4.8%) overlap with sQTLs, and 4 (0.4%) coincide with hQTLs 

(Supplementary Figure 8 and Supplementary Figure 9). Furthermore, we found a 

significant overlap among the various QTLs, which may indicate an overlap of variant 

effects on expression, DNA methylation, mRNA splicing, and histone mark 

modification. Our findings suggest a substantial degree of multi-scale regulation of 

gene expression, methylation, and histone accessibility at the transcription level.  For 

instance, variants that change methylation, chromatin accessibility, or transcription 

factor binding at an enhancer location for a specific gene can result in overlapping 

mQTLs, hQTLs, and eQTLs, impacting transcription, promoter/chromatin 

accessibility, and gene accessibility 47-50. 

To explore the relevance of regulatory variation affecting epigenetic gene QTLs in 

traits and disease, we assessed the overlap between QTLs and the GWAS Catalog, 

extended to include variants in high linkage disequilibrium (r² ≥ 0.50) with GWAS 

hits. Our findings demonstrate a significant enrichment of QTLs (1.1% of 

associations in the GWAS Catalog) compared to non-QTLs (0.16% of associations), 

highlighting their association with a broad array of GWAS traits and diseases (odds 

ratio [OR] = 10, p = 3.0 x 10-144). Among the different classes of QTLs, mQTLs 

showed the most substantial association odds (OR = 6.8, p = 6.9 x 10-144), followed 

by eQTLs (OR = 17.4, p = 3.4 x 10-21), hQTLs (OR = 4.6, p = 0.012), and sQTLs (OR 

= 1.7, p = 0.33), as presented in the updated Table 1. These results underscore the 

significant impact of eQTLs and mQTLs in modulating trait associations, confirming 

their predominant role among QTL classes.  
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Table 1: Comparative Associations Between QTLs and GWAS Traits 
QTL 
Type 

QTL 
Association 
Frequency 

non-QTL Association 
Frequency 

p-Value OR Lower 
CI  

Upper 
CI 

all QTLs 0.0106 0.0016 3.0 x 10-144 6.8      5.9 7.9 

mQTLs 0.011 0.0016 6.9 x 10-144 6.8      5.9 7.9 

eQTLs 0.027 0.0016 3.4 x 10-21 17.4 11.4      26.5 

hQTLs 0.007 0.0016 0.012   4.6  1.7 12.4 

sQTLs 0.003 0.0016 0.33 1.7 0.4 6.8 

 

Variant frequencies and QTLs to determine the potential for biomarker 

discoveries among AFR and EUR 

To explore the relevance of epigenetic gene variants that are eQTLs, we assessed 

the association of the variants with 28 blood and urine biomarker tests in the UKB 

separately for AFR and EUR (see Methods section). These biomarkers, including 

albumin, aspartate aminotransferase, cholesterol, and glycated haemoglobin, were 

selected based on their established significance in reflecting metabolic, liver, and 

kidney functions. This choice allows for a nuanced understanding of the potential 

impact of epigenomic variants on a broad spectrum of physiological processes, 

facilitating a more detailed exploration of their implications in disease susceptibility 

and population-specific health outcomes (see Methods section, Supplementary 

Figure 9).  

Overall, our analysis revealed 26,564 variants significantly associated with biomarker 

traits across both populations (Supplementary Figure 10 and Supplementary Data 

3). Unsurprisingly, we showed a bias in the results for each population towards 

variants that are most frequent in that population (Figures 6a and 6b). Specifically, all 

17 variants (100%) that were uniquely and significantly associated with traits in the 

UKB-AFR population were also significantly more frequent in UKB-AFR. In contrast, 

among the 16,722 variants (approximately 62%) were significantly more frequent in 

UKB-EUR individuals, while 8,079 variants (approximately 33%) were significantly 

more frequent in UKB-AFR (Figure 7c). Among the 290 variants found to be 

significant in both groups, 214 (approximately 75%) were significantly more prevalent 

in UKB-EUR, and 73 (approximately 25%) were more frequent in UKB-AFR, with 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 12, 2024. ; https://doi.org/10.1101/2024.08.11.24311816doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.11.24311816
http://creativecommons.org/licenses/by-nc/4.0/


 

18 
 

only 3 showing no particular frequency bias (Figure 6d). This detailed distribution 

underscores significant genetic differences between populations, potentially 

impacting the biomedical relevance of these variants. 

Figure 6: Significant association of SNPs with biomarkers in relation to the frequency of SNPs in AFR and EUR. 
(a) Frequency of variants in AFR/EUR vs. the -log10 p-value in EUR. This scatter plot shows the distribution of 
SNPs based on their allele frequency ratios (AFR/EUR) on the x-axis and their statistical significance in EUR 
populations (-log10 p-value) on the y-axis. The colours show the statistical significance: blue for variants 
significantly associated with biomarker levels in both AFR and EUR, orange for significant associations only in 
EUR, and grey for non-significant variants in EUR. (b) Same as (a) but showing the -log10 p-value in AFR. 
Colours indicate statistical significance: blue for variants significantly associated with biomarker levels in both 
AFR and EUR, green for significant associations only in AFR, and grey for non-significant variants in AFR. (c) 
Percentage of variants significantly associated with biomarker traits, grouped by their significance in AFR, EUR, 
or both groups. The colours show details about statistical significance: orange for variants significantly more 
frequent in EUR, green for variants significantly more frequent in AFR, and grey for variants with similar 
frequencies in AFR and EUR. This panel helps illustrate the distribution of significant variants across populations. 
(d) Venn diagram showing the overlap of significant variants between EUR and AFR populations. The red circle 
represents variants significant in EUR, the green circle represents variants significant in AFR, and the overlap 
shows variants significant in both populations. 

Insulin-like growth factor-1 (IGF-1) was identified with 2,864 variants, showing a 

significant association prevalence of 10.77% among the biomarker traits studied. Of 

these, 2,860 variants were found only in the UKB-EUR population, 4 were shared 

between both populations, and none were exclusive to the UKB-AFR population. 

This was followed by Sex Hormone Binding Globulin (SHBG) with 1,960 variants 

(7.39%), of which 1,550 were more frequent in UKB-EUR, 408 were shared between 

both populations, and 2 were found only in UKB-AFR. Alkaline phosphatase also 

showed a high number of associations with 2,017 variants (7.58%), where 1,984 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 12, 2024. ; https://doi.org/10.1101/2024.08.11.24311816doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.11.24311816
http://creativecommons.org/licenses/by-nc/4.0/


 

19 
 

variants were more common in UKB-EUR, 33 shared, and none exclusive to UKB-

AFR (see Supplementary Figure 9 and Supplementary Figures 11a to 11c). 

Among some of the notable discoveries was rs1122608, a SMARCA4 gene mQTL 

variant, which we found to be associated with cholesterol (GWAS p = 4.1 x 10-82), 

apolipoprotein B (p = 3.2 x 10-98), low-density lipoprotein (LDL; p = 1.2 x 10-94), and  

IGF-1 (p = 1.2 x 10-9) in UKB-EUR only, and not replicated in UKB-AFR. 

Interestingly, rs1122608 was 7.7 times (Fisher's p-value = 9.5 x 10-322) more frequent 

in UKB-EUR (AF = 0.254) than in UKB-AFR (AF = 0.033), as illustrated in Figure 7a 

and Supplementary Figure 12 and Supplementary Figure 13. 

 

Additionally, at the loci in the ATAD2B gene on chromosome 2, we identified several 

variants associated with Glycated haemoglobin (HbA1c) only in UKB-AFR. The lead 

variant at this locus, rs114686503 (GWAS p-value = 6.43 x 10-12), was 425.91 times 

more frequent in UKB-AFR compared to UKB-EUR, providing a compelling insight 

into the population-specific prevalence of these SNPs associated with the traits 

(Figure 7b). Furthermore, nearby variants in strong LD with rs114686503, including 

rs75763409 (GWAS p-value = 1.4895 x 10-11, 438.5 times), rs7557333 (GWAS p-

value = 1.4747 x 10-11, 438.39 times), and rs115457386 (GWAS p-value = 1.7479 x 

10-11, 426.57 times), were also significantly more frequent in UKB-AFR than UKB-

EUR, yet they were not associated (directly or by replication) with any traits in UKB-

EUR (see Supplementary Figure 14 and Supplementary Data 3).  
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Figure 7: Chromosomal regional plots at the SMARCA4 and ATAD2B gene loci. (a) SMARCA4 
chromosomal positions vs base-10 negative logarithm GWAS-p-values for biomarker traits associated 
with AFR and EUR. The chromosomal positions are filtered, ranging from 11,150KB to 26,845KB of 
chromosome 19. (b) ATAD2B chromosomal positions vs base-10 negative logarithm GWAS-p-values 
for biomarker traits associated with AFR and EUR. The chromosomal position filter ranges from 
23,000KB to 24,300KB. The colours show details about UKB biomarker traits, whereas the marker 
sizes show base 10 absolute logarithms of SNP frequency in AFR vs EUR. The shapes show details 
about the group in which variants are significantly more frequent. The marks are labelled by the 
variants’ SNPdb IDs. Interactive visualisation of Figures 7a and 7b can be found here.   

We found several QTLs associated with various traits whose frequencies differ 

between the UKB-AFR and the UKB-EUR, and within the AFR populations (Figure 

8a). For example, at the KDM2A gene loci on chromosome 11, the eQTL and mQTL 

variant rs12785905 is 10 times more frequent in the UKB-EUR than in the UKB-AFR 

and was associated with IGF-1 levels in the UKB-EUR (GWA p-value = 4.0 x 10-16), 

but not replicated in the UKB-AFR (replication p-value = 0.09). Near the KDM2A 

locus, all other variants in strong LD (R2 > 0.6) with rs12785905, including 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 12, 2024. ; https://doi.org/10.1101/2024.08.11.24311816doi: medRxiv preprint 

https://public.tableau.com/app/profile/musalula.sinkala7788/viz/UKBTraitsMappedtoVariantsinAFRandEUR/ManhattanFilterScan
https://doi.org/10.1101/2024.08.11.24311816
http://creativecommons.org/licenses/by-nc/4.0/


 

21 
 

rs35826789 (8 times), rs56088284 (9 times), rs34560402 (10 times), and 

rs12785906 (10 times), are significantly more frequent in the UKB-EUR and 

associated with IGF-1 levels in the UKB-EUR only. As shown in Figure 8a, there is 

also significant variation between different AFR populations. For example, the mQTL 

rs2236682 (associated with creatinine levels in the UKB-AFR and the UKB-EUR) 

ranges in frequency from approximately 0.15 in the Yoruba population (YRI) to 0.49 

in the Zambian population. The frequency in Asian populations is 0.2, and EURs is 

0.37 according to dbSNP, which has the AFR frequency as 0.29. For clinical use, the 

intercontinental variation may be important to consider. 

Furthermore, we found that clusters of loci associated with various biomarker traits in 

the UK Biobank are significantly enriched for QTLs. Among the 26,564 associations, 

we identified 19,102 (71.9%) as mQTLs, 898 (3.38%) as multi-QTLs, 63 (0.24%) as 

eQTLs, 30 (0.11%) as sQTLs, 8 (0.03%) as hQTLs, and 6,463 (24.33%) did not fall 

into any QTL category (Supplementary Figure 15). For example, at the loci in and 

near the SMARCA4 gene, among the unique 300 significant variants associated with 

7 traits, 211 are mQTLs, and 13 are multi-QTLs (Supplementary Figure 16a). 

Furthermore, at the loci in or near the ATAD2B gene, among the 356 significant 

variants associated with 2 traits (Supplementary Figure 16b), we found 270 mQTLs 

and 6 multi-QTLs. These associations included 270 unique mQTLs, 6 unique multi-

QTLs, and 41 non-QTLs. 

Our analysis reveals that loci associated with biomarker traits demonstrate a 

significant enrichment for various types of QTLs. Specifically, among the 26,564 

evaluated associations, we identified a predominant presence of mQTLs (19,102 or 

71.9), suggesting a potential link to DNA methylation dynamics. However, it is 

important to note that our conclusions are derived from allele frequency differences 

and the association of these variants with mQTLs rather than direct observation of 

DNA methylation changes. This indirect evidence suggests that the genetic variants 

we identified may influence gene regulation, possibly through mechanisms including 

but not limited to DNA methylation and/or other epigenetic processes 

(Supplementary Figures 14 and 15a-b). 
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Biomarker traits associated with epigenetic variants are strongly correlated  

Next, we evaluated the correlation between traits associated with epigenetic gene 

variants. Here, we found a cluster of loci shared across traits, including blood 

calcium levels, total bilirubin, and albumin (Figure 8b).  For example, we found that 

the GTF2H4 gene mQTL variant rs1264313 is associated with the levels of 17 

biomarkers, including albumin, calcium, and cholesterol (Supplementary Figure 16). 

Furthermore, the ARID1A gene variant rs114165349 is associated with variations in 

the serum levels of 17 biomarkers. See Supplementary Figure 17 for a list of some of 

the variants associated with the serum levels of multiple biomarkers. We find that the 

biomarkers with the greatest number of shared associations are alkaline 

phosphatase and SHBG (864 shared variants), gamma-glutamyl transferase and 

triglycerides (808 variants), and SHBG and triglycerides (718 variants), see Figure 

8c and Supplementary Data 4.  
 

Interestingly, we observed that certain traits do not share a significant number of 

epigenetic variants. For instance, variants associated with glucose levels are not 

commonly shared with those linked to HbA1c. Similarly, variants influencing urea 

levels do not overlap extensively with those affecting albumin and bilirubin levels. 

This lack of shared variants suggests that these traits are influenced by distinct 

genetic and epigenetic mechanisms, highlighting the complexity of gene-trait 

associations. 
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Figure 8: Within African populations, variations in the frequency of minor alleles for lead QTL SNPs and the 
genetic correlation of biomarker traits are evident. Specifically, within a 2 MB region encompassing QTLs linked 
to key biomarker traits, the minor allele frequencies across various African populations highlight the continent's 
extensive genetic diversity. Each point corresponds to the frequency of a minor allele in a particular population 
for a given SNP. Details of the AFR populations can be found in Supplementary Data 1. (b) Unsupervised 
hierarchical clustergram of blood and urine biomarkers in the UKB based on the GWA calculated p-value of 
associations. The darker colours show statistically significant associations with the variation along the rows for 
the biomarkers coloured along the columns. (c) Connectivity network of biomarker traits based on shared GWA 
variants.  

Discussion 
We analysed the frequencies, associated traits, and the functional impact of 

epigenetic gene variants among UKB-AFR and UKB-EUR ancestry individuals. We 

found that 88.4% of SNPs at epigenetic gene loci differed in variant allele 

frequencies between UKB-EUR and UKB-AFR. Previous studies have reported that 

the genetic variants associated with various phenotypes differ among individuals of 

different ancestry 41,42. We found PRMT6, an HMT class epigenetic gene, to have 

the largest number of variants, many of which differed significantly in frequency 

between UKB-AFR and UKB-EUR. PRMT6 encodes arginine methyltransferase 6, 
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which is involved in a variety of biological processes such as cell death, cell cycle 

progression, and RNA processing 51,52, and the gene has been linked with many 

traits and diseases, including serum protein levels 53, and rapid progression of 

HIV/AIDS 54.  

 

We showed that many common (AF > 0.1) epigenetic gene variants in UKB-AFR are 

rare in UKB-EUR individuals. There is increasing evidence that the allelic spectrum 

of risk variants at a given locus might include rare, low-frequency 55, and common 

genetic variants 56. Such a scenario may imply that traits associated with these 

common variants are biased towards the population with high-frequency variants, as 

the shared variant predisposes to a common disorder or trait 57. While AFR 

populations display a rich mosaic of genetic diversity, characterised by extensive 

substructure and reduced linkage disequilibrium compared to EUR populations, our 

findings highlight that, despite these within-group variances, the differences in the 

frequencies of epigenetic gene variants between AFR sub-populations are less 

marked than those observed between AFR and EUR groups as a whole 58. This 

observation suggests a foundational level of genetic similarity among various AFR 

sub-populations, which contrasts with the more pronounced differences observed 

when comparing AFR populations with EUR ones, reflecting both the deep genetic 

diversity within AFR and the distinct evolutionary paths that have shaped these 

populations. 

Our analysis of prior GWAS findings reveals that variants in epigenetic genes are 

predominantly linked to physical attributes such as height, weight, and BMI, as well 

as haematological metrics like white and red blood cell counts and haemoglobin 

levels.  The above-listed traits have previously been linked to epigenetic regulation 

and change 59,60. Additionally, nearly 70% of these variants we identified as 

associated with traits in the GWAS Catalog and UKB biomarker measures are 

enriched for QTLs. Whereas previous studies showed that disease variants are 

enriched for eQTLs, we show that most eQTLs are mQTLs 49,50 and that disease 

traits are enriched for mQTLs, i.e., the significant functional impact mechanism 

associated with traits could be variations in DNA methylation due to SNPs. Our 
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assumption is supported by recent findings that genetic variants that modify DNA 

methylation are a dominant mechanism through which genetic variation leads to 

gene expression differences among humans since a substantial fraction (16%) of 

mQTLs and sQTLs are also associated with variation in the expression levels of 

nearby genes (that is, these loci are also classified as eQTLs) 48,61. Our results show 

that 70.5% (632 out of 896) of eQTL variants in epigenetic genes can be explained 

by changes in DNA methylation, i.e., mQTLs (see Supplementary Figure 6), 

demonstrating the pervasiveness of co-regulated expression and methylation in the 

human genome. This suggested that variations in the frequency of SNPs associated 

with these traits could influence the detection of associated SNPs in different 

populations through GWAS 11,15,16.  

We posit that SNPs prevalent in UKB-AFR populations yet infrequent in UKB-EUR 

might represent unstudied QTLs, overlooked in large-scale sequencing projects like 

the 1000 Genomes and GTEx due to their rarity in global datasets 62. The detection 

of QTLs, including eQTLs, is inherently influenced by SNP frequencies within the 

examined population, where SNPs less common in a global context may be 

inadequately characterised as QTLs 63. This phenomenon underscores the 

importance of exploring genetic diversity within specific populations to uncover 

distinct regulatory variants. For instance, the study by Esoh et al. identified 

population-specific eQTLs in African populations, emphasizing the need for targeted 

analysis of under-represented populations to fully elucidate genetic influences on 

traits and diseases 62. 

Moreover, the identification of eQTLs presents additional complexities due to their 

tissue-specific nature. The regulatory influence of eQTLs depends on the tissue-

specific expression of transcription factors and the accessibility of chromatin, factors 

which vary significantly across different tissues 64,65. This tissue specificity highlights 

the necessity for matched whole-genome sequencing and transcriptome datasets 

within AFR populations to identify eQTLs effectively. However, such matched 

datasets are scarce, particularly for AFR populations, posing a significant challenge 

in accurately mapping eQTLs and understanding their functional impact. This 

scarcity, combined with the tissue-specific expression patterns of eQTLs, 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 12, 2024. ; https://doi.org/10.1101/2024.08.11.24311816doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.11.24311816
http://creativecommons.org/licenses/by-nc/4.0/


 

26 
 

emphasizes the critical need for more comprehensive genomic and transcriptomic 

analyses tailored to diverse populations. 

Our findings show how certain traits may be genetically linked, sharing underlying 

epigenetic mechanisms that influence their expression 66-70. This suggests that 

variations in epigenetic genes can concurrently affect multiple traits, revealing a 

complex network of genetic interactions and epigenetic regulation contributing to trait 

diversity. However, in this study, we refrain from making conclusive causal 

inferences about these variants and focus only on the likely discovery of these 

variants based on the frequency of variants in each population. As a caveat, it should 

be noted that previous GWAS studies and the UKB have a minimal representation of 

AFR individuals. Hence, the distinctions delineated herein warrant cautious 

interpretation, acknowledging the possibility that our statistical power may be 

insufficient to discern many associations within African cohorts, thereby possibly 

omitting commonalities across the examined groups 40,71. Assessing our results with 

a bigger sample of people of AFR ancestry would be interesting. In summary, our 

findings show that epigenetic gene variants associated with traits tend to differ in 

frequencies among AFR and EUR, which impacts GWAS discoveries, and variants 

associated with traits are enriched for QTLs. 

Limitations 

Analysis of QTLs  

While our study provides significant insights into the distribution and impact of 

various QTLs across the UKB-AFR and UKB-EUR populations, it is essential to 

acknowledge certain limitations. The QTL data utilised in our analysis were primarily 

sourced from databases with a significant representation of EUR ancestry 

individuals, primarily GTEx. Consequently, our findings' direct applicability and 

validation in AFR populations remain limited. Furthermore, it is important to note that 

QTLs, including eQTLs, are tissue-specific, which may affect the interpretation of our 

results (Supplementary Figure 18). These limitations highlight the critical need for 

further research involving diverse populations and a range of tissue types to fully 
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understand the complex interplay between genetics and epigenetics and their 

contribution to human health and disease. 

Methods 
We analysed a UK Biobank (UKB) 21 dataset of 383,471 individuals categorised 

under EUR ancestry, including those identified as White, British, Irish, and 

individuals with "any other white background", and 5,978 individuals identified as 

having a recent AFR ancestry. The demographics of the UKB participants are 

extensively described elsewhere 21.  

 

Additionally, in the UKB, ancestry categorisation commenced with participants' self-

identification. This initial classification was further refined using principal component 

analysis (PCA), which was succeeded by a random forest algorithm applied to the 

PCA results. This process enabled the reassignment of individuals to their self-

identified ancestries based on a membership posterior probability greater than 0.5. 

Those individuals whose posterior probability did not exceed this threshold for any 

specified ancestry group were excluded from subsequent analyses 21. It is imperative 

to note that the categorisation of these populations in our study adheres to the UKB's 

standards, which we acknowledge may not fully encapsulate the complex mosaic of 

genetic, cultural, and historical factors that contribute to an individual's identity.  

 

Our analysis focused on genotyping array data of imputed SNPs and GWAS 

summary statistics for various plasma biomarker tests, such as albumin, cholesterol, 

triglycerides, and serum enzyme levels, including alkaline phosphatase. We ensured 

a comprehensive evaluation of the genetic influences on these biomarkers across 

populations by including only high-quality variants 21. These variants are defined as 

PASS variants in gnomAD 72 and exhibit consistent frequencies with each population 

in gnomAD (AFR, AMR, EAS, and EUR frequencies are within 2-fold or have a chi-

squared p-value of the difference > 1 x 10-6), with a frequency greater than 1 x 10-5 in 

both UKB-AFR and UKB-EUR (Figure 9). 
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Furthermore, we curated a comprehensive list of 283 epigenetic genes and 

epigenetic regulator genes across 14 classes from the Reactome pathway 

knowledgebase  27,28 and relevant literature 29. This process involved an initial 

extraction of genes from the Reactome Pathways database, specifically targeting 

pathways annotated with 'epigenetic' descriptors. This step ensured the inclusion of 

a wide array of genes associated with epigenetic regulation. To further refine our 

gene list, we consulted supplementary data from Gnad et al. (Supplementary File 

8:S5) 29, categorising genes into functional groups such as Bromodomain-containing 

proteins (BROMO), Histone Acetyltransferases (HAT), Histone Deacetylases 

(HDAC), Histone Demethylases (HDM), Histone Methyltransferases (HMT), and 

SWI/SNF chromatin remodelling complexes (SWISNF). This dual approach enabled 

us to assemble a robust and detailed collection of epigenetic genes, pivotal for our 

study of the impact of genetic variation on epigenetic features and gene expression 

in AFR populations. In this context, “epigenetic genes” are defined as those involved 

in epigenetic mechanisms (Figure 9). 

 

 
Figure 9: Graphical representation of the overall study method and analysis procedure. 
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Calculation and comparison of SNP frequencies in AFRs and EURs  

We obtained the chromosomal positions of the epigenetic genes from the Ensembl 

BioMart 73 database to map the SNPs to epigenetic genes extending to 500kb up- 

and down-stream of the gene location. We used the genotyping array data and 

imputed SNPs from the UKB and returned a subset of the variants in or near an 

epigenetic gene locus (500kb up- and down-stream of the gene location).  

 

Then, we used the non-reference allele frequency of epigenetic gene variants 

separately for the 5,978 AFR and 383,471 EUR ancestry individuals previously 

calculated by the UKB. Briefly, for SNP frequency calculations within the EUR 

population in the UK Biobank, consider the following hypothetical example: If a 

specific SNP has a non-reference allele appearing twice among the 383,471 EUR 

individuals, and since each individual has two alleles at any given position, the total 

number of alleles in the population is 766,942. The frequency of this SNP’s non-

reference allele would be calculated as 2/(2 x 383,471), which simplifies to 1/383,471 

= 2.61 x 10-06. This calculation method illustrates how the UK Biobank determines 

SNP frequencies, providing crucial insights into the distribution of genetic variants 

distribution within specific populations 74. 

 

Fisher's exact test was employed to discern frequency variations in variants between 

UKB-AFR and UKB-EUR populations within epigenetic gene regions and across all 

the gene regions, as detailed in Supplementary Figure 19. In addition, we considered 

variants with Benjamini and Hochberg adjusted p-values < 0.05 as statistically 

significantly different in their frequencies between UKB-AFR and UKB-EUR. 

 

Evaluations of variant distribution in AFRs and EURs 

To compare the distribution of variants in UKB-AFR and UKB-EUR, we first applied 

the base ten logarithm to the allele frequencies of each group. Then, we plotted the 

resulting dataset as frequency histograms separately for UKB-AFR and UKB-EUR 

(see Figure 2a). Furthermore, to evaluate the magnitude by which alleles vary 

between UKB-AFR and UKB-AFR, we divided the allele frequencies of UKB-AFR 

with those of UKB-EUR to obtain the SNP frequency ratios. Then, we calculated the 
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base ten logarithms of the SNP frequency ratios to obtain values centred around 0 

(for the difference in allele frequency). Finally, we used absolute SNP frequency 

ratios to plot the data in Figure 2b so that the values are positive and comparable in 

one plot. 
 

Comparative Analysis of Epigenetic Gene SNP Frequencies Among Different 
Populations 
To evaluate the genetic similarity between AFR living in Africa and those in UKB, we 

obtained whole genome sequence datasets from various AFR and EUR genome 

sequencing projects, including the H3Africa project 75, 1000 Genomes project 14, 

Human Genome Diversity Project, and the 1000 Genomes Project 14. We merged 

SNP frequency data from the UKB with those from the projects mentioned above, 

resulting in a dataset that encompasses information from two distinct AFR studies 

spanning several countries (refer to Supplementary Data 1), along with EUR data 

sourced from the UKB and the 1000 Genomes Project. Notably, since some data are 

WGS and some from arrays, we only considered overlapping SNPs when merging 

the datasets, following practices supported by studies such as Truelsen et al, which 

evaluates the concordance of SNP genotyping across different platforms in human 

genetics, ensuring the reliability and comparability of our genetic analyses 31,76,77. 

 

For each of the genotype datasets from each study, we extracted the variants in or 

near (±500kb) loci of epigenetic genes using information from Ensembl BioMart 73, 

and calculated the allele frequency of the SNPs. The results were combined in a 

matrix, from which we removed variants in strong linkage disequilibrium (r2 > 0.5). 

We utilised the LD Link REST API to measure LD between variants, downloading LD 

data for each variant from LDlink.com 78,79. This analysis was conducted using either 

EUR or AFR as the background population. Variants with an LD threshold (r²)  > 0.1 

were identified and included in the analysis, ensuring a robust understanding of the 

linkage disequilibrium patterns. All LD scores and calculations presented in this 

manuscript were conducted using LD Link. 
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We employed unsupervised hierarchical clustering to elucidate patterns in epigenetic 

gene SNP frequencies across different populations 80. A matrix representing SNP 

frequencies in different populations served as the input data. We opted for the 

Euclidean distance metric to quantify the dissimilarity between data points, owing to 

its intuitive interpretation and widespread use in genomics, and we selected 

complete linkage to compute distances between clusters. This approach facilitated 

the grouping of populations with similar epigenetic gene SNP frequencies, thereby 

providing insights into their genetic relatedness and diversity. 

 

To further explore the inherent structure of the data, we performed dimensionality 

reduction using t-distributed Stochastic Neighbour Embedding (t-SNE) 81 with a 

Euclidean distance metric. We subjected the matrix of SNP frequency data to t-SNE 

and extracted the first two dimensions for visualisation. Plotting these two 

dimensions on scatter plots enabled the discernment of clustering patterns, where 

each point represented a population, and the proximity between points indicated 

similarity in epigenetic gene SNP frequencies.  
 
Differences in Variant Frequencies Among AFR Populations and the UK 

Biobank Populations 

We then consolidated data from different sources by merging datasets containing 

SNP frequency data from the various projects for AFR populations as described 

previously, and the UKB dataset for AFR and EUR populations. 

 

A contingency table was constructed for each SNP for each pair of populations to 

determine whether the variant frequencies differed significantly between AFR and 

non-AFR populations, and Fisher’s exact test was applied. The number of 

significantly differing  (p < 0.05) SNPs between each pair of populations was 

tabulated. 

 

Functional Impact of Variants in the AFR Population  

We started by identifying SNPs with a higher non-reference allele frequency in the 

UKB-AFR population than in the UKB-EUR population. SNPs with an allele 
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frequency greater than 0.1 in the UKB-AFR population and less than 0.001 in the 

UKB-EUR population were selected for functional analysis. We used the Ensembl 

VEP 32 via its RESTful API to explore the functional impact of the selected SNPs. 

The information extracted from the API response included the SNP identifier, the 

variant's most severe consequence, and information from the first transcript 

consequence. The transcript consequence information included the biotype of the 

transcript and the amino acid change caused by the variant. We combined the 

information collected from the Ensembl VEP API with the information from the initial 

set of selected SNPs. This included gene symbols, gene classes, variant identifiers, 

and allele frequencies in AFR and EUR UKB populations. This dataset provides a 

comprehensive overview of the selected SNPs with high frequency in the UKB-AFR 

population and their predicted functional impacts. 
 
Analysis of GWAS Catalog associations at epigenetic gene loci  

We retrieved data from previous GWAS studies from the NHGRI-NBI GWAS Catalog 
82 and returned traits associated with variants in or near (±500kb) loci of epigenetic 

genes. To identify variants previously associated with traits in the GWAS Catalog, 

we extended our analysis to include variants with strong linkage disequilibrium (r2 > 

0.5) with each other among the 2,444 variants in the GWAS Catalog and with the 

223,336 UKB variants. Briefly, for each lead variant (lowest GWAS p-value, i.e., 

most statistically significant at loci) associated with a trait in the GWAS Catalog and 

the UKB, we lookup variants associated with the traits to extend the GWAS Catalog 

to the variants in high linkage disequilibrium (r2 ≥ 0.5) with the GWAS hits. If any 

other variant meets this criterion, we consider it to be the same discovery as the 

trait's lead variant. Furthermore, we computed instances where genes of a specific 

gene class and individual genes were associated with GWAS traits (see Figure 5). 

Finally, we computed the number of instances in the GWAS Catalog in which each 

trait is associated with an epigenetic gene.  

 

Analysis of quantitative trait loci of epigenetic genes 

We sought to provide a comprehensive functional annotation and prediction of the 

regulatory effect of the epigenetic gene variants. First, we collected information on 
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quantitative trait loci (QTLs), which include eQTLs from the GTEx 65 and oncoBase 83 

databases, mQTLs from the mQTLdb 84 and oncoBase databases, and hQTLs and 

sQTLs from GTEx. We returned only mQTLs, sQTLs, eQTLs, and hQTLs that map 

to regions that encode epigenetic genes, extending to (±500kb) up- and down-

stream of the gene location using gene coordinate information from Ensembl 

BioMart. We integrated the QTL information within variant sets from the UKB to 

identify QTLs that vary in their frequencies between UKB-AFR and UKB-EUR (see 

Figures 6 and Supplementary Figure 6). Finally, to identify variants that have multiple 

QTL, we compared the variant IDs and positions extending to the variants in strong 

linkage disequilibrium (r2 ≥ 0.5) as described above for all QTL (hQTL, eQTL, sQTL, 

and mQTL) set comparisons. 
 

Evaluation of the quantitative trait loci effects and trait associations 

We integrated the QTL information with data from the GWAS Catalog to identify 

QTLs associated with various traits and the variation in their frequency between 

UKB-AFR and UKB-EUR individuals. Furthermore, to explore the relevance of 

regulatory variation affecting epigenetic gene QTLs in GWAS Catalog traits, we 

assessed the overlap between QTLs and the GWAS Catalog, extended to include 

variants in high LD (r2 ≥ 0.5, as described above) with the GWAS hits. Then, for each 

class of QTLs, we computed the number of QTL and non-QTL variants associated 

with traits and the number of QTL and non-QTL variants not associated with traits. 

Finally, we applied Fisher's exact test to computed numbers to determine the extent 

to which QTLs, compared to non-QTLs, are associated with traits in the GWAS 

Catalog.  
 

Integrative analysis of variant frequencies and QTLs in UK Biobank traits 

We obtained the GWAS summary statistics computed by the UKB project for 25 

blood and urine biomarker traits, including, among others, serum albumin, 

triglycerides, and cholesterol (see Supplementary Figure 10). The number of AFR 

and EUR individuals used to compute the GWAS statistics for each biomarker trait is 

shown in Supplementary Figure 9. Other sources discuss the procedures used to 

conduct the GWA analyses. 85. Briefly, the GWAS was performed for each trait and 
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ancestry group using the Scalable and Accurate Implementation of Generalized 

Mixed Model Approach 86, using a linear or logistic mixed model including a kinship 

matrix as a random effect and covariates as fixed effects. The covariates included 

the participant's age, sex, age multiplied by sex, the square of the age, the square of 

the age multiplied by the sex, and the first 10 principal components calculated from 

the genotype datasets. The Manhattan plots were produced in MATLAB using the 

software described here 87. The methods applied for genotyping participants in the 

UK Biobank are reported elsewhere 21,88. Furthermore, the genotyping quality control 

implemented for the analyses is described at the following link: 

https://pan.ukbb.broadinstitute.org/docs/qc. 

 

We integrated the UKB GWA significant variants with UKB variant frequency data for 

EUR and AFR, and the collated QTL information from GTEx, oncoBase, and 

mQTLdb. The integrated data allowed us to compare the frequency of variants 

associated with traits only in UKB-EUR, UKB-AFR, and both populations. 

Furthermore, we used the integrated data to identify QTLs associated with biomarker 

levels among AFR and EUR in the UKB.  

 

Correlation of biomarker traits associations in the UK Biobank 

We use the UKB GWA information of 25 biomarkers to identify epigenetic gene 

variants that are shared between the biomarkers by extending to high linkage 

disequilibrium (r2 ≥ 0.5) with the GWA hits in the UKB. Then, we applied 

unsupervised hierarchical clustering with a Euclidean distance metric using complete 

linkage to visualise the relationship between shared epigenetic gene variants among 

the biomarker traits in the UKB. Furthermore, we created a network of biomarker 

traits. Briefly, for each pair of biomarkers, we defined a link between those two 

biomarkers if they shared variants (extending to variants in strong LD as described 

above). In addition, we defined the size of the edges connecting the network nodes 

(biomarker traits) based on the number of shared associated variants. The resulting 

connectivity network based on shared variants between the biomarker traits was 

visualised in the yEd graph visualisation software.  
 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 12, 2024. ; https://doi.org/10.1101/2024.08.11.24311816doi: medRxiv preprint 

https://pan.ukbb.broadinstitute.org/docs/qc
https://doi.org/10.1101/2024.08.11.24311816
http://creativecommons.org/licenses/by-nc/4.0/


 

35 
 

Statistics and Reproducibility  

We used the R programming language, Python, MATLAB 2021a, and Bash to 

conduct the statistical analysis. We used the Welch test, the Wilcoxon rank-sum test, 

and the one-way analysis of variance to compare continuous measures among 

groups. We employed Fisher's exact test to identify variants with differing 

frequencies between AFR and EUR populations. All statistical tests were considered 

significant if the two-sided p-value was < 0.05 for single comparisons. In addition, the 

Benjamini and Hochberg approach was used to calculate a two-sided q-value (False 

Discovery Rate) for each group or comparison to correct the multiple hypothesis 

testing 89. 

Data Availability  
The raw datasets that support the results presented in this manuscript are 

available from sources in Table 2. The pre-processed datasets can be accessed 

via Zenodo (https://doi.org/10.5281/zenodo.12789774)90 under the Creative 

Commons Attribution 4.0.  

 

Table 2: list of resources and datasets  
Source  Dataset/information  Link 
UK 
Biobank  

Biomarker 
measurements, Allele 
frequencies, and GWAS 
summary statistics of 
various biomarkers  

https://www.ukbiobank.ac.uk ; https://pan-ukb-us-east-
1.s3.amazonaws.com  

dbSNP SNP data and allele 
frequency 

https://www.ncbi.nlm.nih.gov/snp/  

GWAS 
Catalog  

Associations between 
SNPs and various traits 

https://www.ebi.ac.uk/gwas/  

GTEx eQTL, hQTL and sQTL 
data  

https://gtexportal.org/  

mQTLdb mQTLs http://www.mqtldb.org  
oncoBase 
databases 

mQTLs https://ngdc.cncb.ac.cn/databasecommons/database/id/6069  

EUR 
Genome-
phenome 
Archive 

H3Africa datasets  https://ega-archive.org/about/ega/  and EGAD00001008577 

Reactome 
Pathways  

Epigenetic gene 
annotations  

https://reactome.org/?ref=blog.opentargets.org  

Ensembl 
BioMart 

Gene annotations and 
chromosomal positions  

http://mart.ensembl.org/info/data/biomart/index.html  

Ensembl 
Variant 
Effect 
Predictor 

Functional impact of 
SNPs 

http://mart.ensembl.org/info/docs/tools/vep/index.html  
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Code Availability  
Code to reproduce most of the results and plots is available from the following 

GitHub repository: https://github.com/smsinks/epigenetic-gene-variant-dynamics-

analysis.  
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