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Abstract: Carbon nanotubes (CNTs), having either metallic or semiconducting properties depending
on their chirality, are advanced materials that can be used for different devices and materials (e.g.,
fuel cells, transistors, solar cells, reinforced materials, and medical materials) due to their excellent
electrical conductivity, mechanical strength, and thermal conductivity. Single-walled CNTs (SWNTs)
have received special attention due to their outstanding electrical and optical properties; however,
the inability to selectively synthesize specific types of CNTs has been a major obstacle for their
commercialization. Therefore, researchers have studied different methods for the separation of
SWNTs based on their electrical and optical properties. Gel chromatography methods enable the large-
scale separation of metallic/semiconducting (m/s) SWNTs and single-chirality SWNTs with specific
bandgaps. The core principle of gel chromatography-based SWNT separation is the interaction
between the SWNTs and gels, which depends on the unique electrical properties of the former.
Controlled pore glass, silica gel, agarose-based gel, and allyl dextran-based gel have been exploited
as mediums for gel chromatography. In this paper, the interaction between SWNTs and gels and the
different gel chromatography-based SWNT separation technologies are introduced. This paper can
serve as a reference for researchers who plan to separate SWNTs with gel chromatography.

Keywords: gel chromatography; hydrogels; single-walled carbon nanotubes; anionic surfactant

1. Introduction

Carbon nanotubes (CNTs) are tube-like, rolled-up graphene sheets that exhibit unique
electrical and optical properties because of their one-dimensional structure [1]. Researchers
have assessed their commercialization prospects based on their high electrical conductiv-
ity, thermal conductivity, and mechanical strength [2–7]. There are single-walled CNTs
(SWNTs), double-walled CNTs (DWNTs), and multi-walled CNTs (MWNTs); SWNTs ex-
hibit high transparency [8], excellent physical properties [9], and light weight [10]. The
most important properties of SWNTs are their metallic or semiconducting electrical charac-
teristics, which depend on the chirality and diameter; in contrast, DWNTs and MWNTs
show mostly metallic characteristics [11]. The chirality of SWNTs (i.e., the vector (n, m)
in the direction in which the sheet is rolled up) is n−m = 3q (q = 0 or positive integer) for
metallic properties and any other value for semiconducting properties (Figure 1) [1,11–14].

SWNTs can be used to produce fuel cells [15,16], flexible electronic devices [17–19],
transparent conducting materials [20–22], reinforcing materials [23,24], transistors [25–28],
solar cells [29–31], and medical materials [32–34]. However, because metallic and semicon-
ducting SWNTs cannot be selectively synthesized, SWNTs must be separated by exploiting
their electrical (i.e., metallic or semiconducting) properties to enhance their performance in
applications. Researchers have studied different SWNT separation methods such as density
gradient ultracentrifugation [35–38], electrophoresis [39–42], selective destruction of spe-
cific SWNTs [43–45], and DNA or polymer wrapping [46–48]. Many separation technologies
have been developed to enable the high-purity separation of metallic SWNTs (m-SWNTs)
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and semiconducting SWNTs (s-SWNTs). Among them, gel chromatography [49–51] and
aqueous two-phase extraction (ATPE) have been proposed as large-scale separation meth-
ods for commercialization [52–54]. ATPE also enables single-chirality separation and m/s
separation of various SWNTs [55,56]. However, there are issues to be solved; its separation
efficiency is largely influenced by subtle changes in experimental conditions such as tem-
perature, and it is difficult to remove polymers from SWNTs [57]. Since gel chromatography
can also be used for both the simultaneous high-purity separation of m/s-SWNTs and
chirality-specific separation of SWNTs utilizing a relatively simple process over the ATPE
method, researchers have studied a vast number of gel-based separation protocols for
SWNT separation.
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zig–zag, and chiral SWNTs.

In 1998, researchers proposed the separation of SWNTs with controlled pore glass
(CPG) as a medium [58]. Subsequently, silica gel and high-performance liquid chromatogra-
phy (HPLC) systems have been used for length sorting [59] and m/s-SWNT separation [60].
In the separation with CPG and silica gel, SWNTs are functionalized or wrapped with DNA
to prepare solutions with dispersed SWNTs. Since 2009, polysaccharide hydrogels such as
agarose gel [61] and allyl dextran-based gel [49] have been used as separation mediums
and various successful examples of SWNT separation have been reported. The SWNT-
surfactant aqueous solutions were used as feed samples in hydrogel-based separations,
and the SWNT separation mechanism has been analyzed based on the interaction between
the surfactant–SWNT assembly and gel.

The general SWNT separation process involving hydrogel and anionic surfactant-
based chromatography comprises three stages: adsorption, rinsing, and elution (Figure 2).
First, the SWNT–surfactant aqueous solution is deposited and adsorbed onto the gel. m-
SWNTs were eluted at the first, which had not been adsorbed by the gel. Second, a low
concentration of surfactant aqueous solution is injected into the gel to elute the residual
SWNTs, which have been weakly adsorbed by the gel. If the gel volume is large, m-SWNTs
can be eluted by the additional injection of surfactant aqueous solution [49,62,63]. Finally,
a highly concentrated surfactant aqueous solution is injected into the gel to elute the s-
SWNTs, which have been strongly adsorbed by the gel [61,64–66]. The different adsorption
strengths of the gel and surfactant–SWNT assembly originate from the different amounts
of surfactants on the m- and s-SWNTs. Surfactants prevent SWNTs from bonding to the gel;
if the SWNT surface that is covered by surfactants becomes larger, the adsorption strength
between the SWNTs and gels becomes weaker [67]. The gel interaction mechanism for
surfactants and SWNTs are described in detail according to the gel types in the following
sections. Allyl dextran-based gel is widely used in the gel filtration of SWNTs. Moreover,
Sephacryl S-200 (GE healthcare) with 8.3 nm wide pores in allyl dextran-based gel is
used as a standard medium in gel chromatography [65]. This paper presents the SWNT
separation mechanism and successful examples of SWNT separation with different gel
types. The factors that affect the SWNT separation efficiency in various gel chromatography
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are also introduced. This paper can serve as a reference for SWNT separation with gel
chromatography.
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Figure 2. Schematic diagram of m/s separation of SWNT with gel chromatography.

2. Controlled Pore Glass (CPG) and Silica Gels

Controlled pore glass (CPG) with approximately 300 nm wide pores was first used
in 1998 to separate SWNTs with gel chromatography. The SWNTs dispersed in sodium
dodecyl sulfate (SDS) aqueous solution, which is a commonly used anionic surfactant for
dispersing SWNTs [68], was poured into a 40 cm long column. The SWNTs were separated
by length with early size exclusion chromatography (SEC). According to the AFM and TEM
investigations, the long SWNTs eluted from the pores faster [58]. Subsequently, another
SWNT separation method was proposed by Huang et al.: CPG chromatography was scaled-
up by packing 2000, 1000, and 300 Å pore silica gels (i.e., HPLC) in 2005. In the study by
Huang et al., CoMoCAT SWNTs wrapped in single strand DNA (ssDNA) were sorted by
length; according to the results, the length of the eluted SWNTs depends on the pore size of
the packed silica gels. SWNTs that were longer than 500 nm were eluted in 2000 Å pores,
and SWNTs that were shorter than 200 nm were eluted in 300 Å pores [59]. In 2013, Khripin
proposed a kinetic calculation for selective length fractionation of SWNTs via silica gel.
According to the study, the shorter SWNTs eluted later because they can easily diffuse into
the pores, which expands the retention time of the nanotubes (Figure 3) [69].

m/s-SWNT separation with silica gel was achieved utilizing the difference in polar-
ities of SWNT and silica gel. SWNTs functionalized with 4-tert-butylphenyl were used
for this separation. The heavily functionalized m-SWNT become nonpolar, promoting the
migration from the highly polar static silica gel. m-SWNT enriched fraction was obtained
with o-dichlorobenzene as a nonpolar solvent, and s-SWNT enriched fraction was obtained
with dimethyl formaldehyde as a polar solvent. However, m/s-SWNT separation using
silica gel medium had limitations in that large-diameter s-SWNTs such as (10, 5), (11, 3),
and (11, 0) s-SWNTs were also present in m-SWNT enriched fractions, indicating that it
is difficult to separate m-SWNTs in high-purity [60,70]. Because hydrogel-based polysac-
charides show good m/s-SWNT separation ability, silica gel is currently hardly used for
m/s-SWNT separation.
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3. Agarose-Based Gels
3.1. Structures and Properties of Agarose Gels

Agarose-based gel was the first hydrogel used for SWNT separation. Before gel chro-
matography, agarose gel was used for electrophoresis [39,71] or gel squeezing [72] for
m/s-SWNT separation. The gel chromatography method with agarose gel was presented
in 2009 [61]. Agarose gel is a polysaccharide gel consisting of repeating units of 3-β-D-
galactose and 1,4-α-L-3,6-anhydro-galactose [73]. The hydrogen bonds intermolecularly
and intramolecularly stabilize the structure; the single strands form double helices. There-
fore, agarose gel has a stronger structure and better reusability than allyl dextran-based gel.
Moreover, agarose has a 3D porous structure with differently sized helices [74]. The pore
size decreases with increasing agarose concentration. The particle size is usually 45–165 µm,
and the pore size is 29–45 nm [75]. Figure 4 shows that agarose has many positions that can
interact with other functional groups. Sepharose 2B and 4B (GE healthcare) with different
pore sizes (and sometimes functionalized with hydroxyl, phenyl, and butyl groups) are
widely used in SWNT separation research. Functionalizing the agarose base changes the
dipole moments and affects the SWNT separation ability [76].
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3.2. Mechanism of m/s-SWNT Separation with Agarose Gels

Most researchers have separated m/s-SWNTs with agarose gel and some others have
separated them by dimeter or chirality [14,78]. The m/s-SWNT separation mechanisms
are as follows: Considering the hydrogel pore diameter (<45 nm) and average length of
nanotubes (>100 nm), traditional theories of SEC cannot explain the separation of m/s-
SWNTs. Gel chromatography-based separation of SWNTs is based on selective adsorption
of surfactant–SWNT assemblies onto gel rather than size exclusion. As mentioned in the
Introduction, m-SWNTs are covered with a greater amount of surfactants than s-SWNTs,
which reduces the ability of SWNTs to be adsorbed onto gel. Silvera-Batista et al. (2011)
stated that the different characteristics of m- and s-SWNTs were based on the orientation
of surfactants during their adsorption onto SWNTs. In s-SWNTs, surfactant molecules are
arranged in parallel to the sidewalls of the SWNTs; in contrast, they are arranged vertically
on m-SWNTs. Therefore, more surfactants can be adsorbed onto m-SWNTs. With increasing
density of SDS molecules, they may become perpendicularly oriented on m-SWNTs [67,79].

Clar et al. (2013) reported that the main SWNT–gel interaction force is ionic force
(i.e., the dipole moments of SDS and the gel). In addition, Clar explained the mechanism
behind the separation of SWNTs from agarose gel. Agarose gel has four OH groups per
monomer with very high hydrophilicity and polarity. The permanent dipoles on the surface
of agarose gels promote particle separation. The hydrophilic region exhibits strong ionic
interaction with the anionic charged head group of SDS. When the surfaces of m-SWNTs are
polarized by free electrons, more negatively charged SDS molecules are induced. m-SWNTs
cannot be adsorbed onto agarose gel due to (1) ion dipole repulsion from the charge, and
(2) steric repulsion caused by the great amount of SDS molecules (Figure 5). Thus, the
critical forces involved in the adsorption of m- and s-SWNTs are induced by the SDS charge;
consequently, the degree of adsorption of s-SWNTs can decrease when the OH groups of
agarose gel are decreased by functionalization [77].
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and their interaction to gel according to electrical properties (adapted with permission from [77]
© 2013 American Chemical Society).

Agarose gel has a higher adsorption force for surfactant–SWNT assemblies than allyl
dextran-based gel [80]; the higher adsorption force is presumed to be due to the polarity of
the abundant hydroxy groups and firmness of the gel matrix. According to Clar et al., who
investigated the characteristics of agarose gel and dextran gel, s-SWNTs become strongly
adsorbed onto agarose gel, thereby resulting in higher purity m-SWNTs. Particularly
pure m-SWNTs were obtained with Sepharose 4B-CL and Sepharose 6FF (GE healthcare)
with strong cross-linking structures; unfortunately, the yield was too low. The purity of
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the s-SWNTs was not as high as that in the case of dextran-based gel because m-SWNTs
are adsorbed onto the agarose gel with s-SWNTs (Table 1) [76]. According to Hirano
et al. (2013), both agarose gel and allyl dextran-based gel adsorb more surfactant–SWNT
assemblies with increasing pH level. The increase in the adsorption amount of SWNTs on
agarose gel was observed at a lower pH than with allyl dextran-based gel; this confirms the
good adsorption ability of SWNTs onto agarose gel [81].

Table 1. Comparison of agarose based-gel (Sepharose gel) and allyl dextran-based gel (Sephacryl gel) in
the m/s-separation of SWNTs (adapted with permission from [76] © 2014 American Chemical Society).

Medium
Metallic Fraction (P1) Semiconducting Fraction (P2) Gel

Stability
Adsorption

StrengthPurity Throughput Reproducibility Purity Throughput Reproducibility

Sephacryl 100 HR + + − + + + + + + +
200 HR + + − + + + + + + +
400 HR − − + − − − − + − − + +

Sepharose 4B − − + − − − − + − − − − +
4B-CL + + − + − + + + + + + + +

4FF + + − + − + + + + + + + +
6B − − + − − − − + − − − − + +

6FF + + − + − + + + + + + +

The signs (+) and (−) indicate benefits and limitations, respectively.

3.3. Examples of SWNT Separation with Agarose Gels

Most presented SWNT separation studies involved the use of agarose gel for m/s-
SWNT separation [73]. Since Tanaka et al. (2009) first separated m- and s-SWNTs with
90% and 95% purity using SDS and sodium deoxycholate (DOC), respectively, researchers
have focused on determining the factors that improve separation purity. For instance,
Yahya et al. (2015) studied the effect of temperature on the separation efficiency for
different types of SWNTs: HiPco (SWNTs synthesized by high pressure carbon monoxide
process), CoMoCat (SWNTs synthesized by cobalt and molybdenum oxide catalyst), AD-
CNT (SWNTs synthesized by arc-discharged process), and DIPS–CNT (SWNTs synthesized
by enhanced direct injection pyrolytic synthesis). High-purity s-SWNTs were obtained at
temperatures below 6 ◦C and high-purity m-SWNTs were obtained at room temperatures
because temperature affects the distribution of encapsulated SDS micelles adsorbed onto
SWNTs. At low temperature, the micelle structure around SWNTs is larger, and the SDS
molecules are densely distributed. This allows for the easy separation of SDS–SWNT
assemblies from gel. SWNTs with a low degree of adsorption including m-SWNTs and a
few weakly adsorbed s-SWNTs can be easily eluted by injecting an eluant (1 wt% DOC);
consequently, the s-SWNTs that are strongly adsorbed can be separated with high purity. At
high temperature, the micelle structure becomes smaller, and SDS is loosely packed around
the SWNTs. Therefore, high-purity m-SWNTs containing fewer s-SWNTs that are weakly
adsorbed onto the gel can be eluted (Figure 6) [82]. In 2016, Wang et al. presented the
optimal pH for SWNT separation with nonionic surfactants (i.e., Triton-X as a dispersant
for SWNTs). Instead of using an anionic surfactant, agarose gel was anionized with
naphthalene sulfonate groups; m/s-SWNTs can be separated by polarity with the charge
signal reversal method and pH regulation. Unlike in gel chromatography with anionic
surfactants, the electrostatic interaction between the negatively charged agarose gel and
SWNTs cause the s-SWNTs to become eluted earlier [83].

Some researchers have successfully separated SWNTs by diameter or chirality with
agarose gel. In 2010, Tanaka et al. adjusted the concentration of a DOC aqueous eluant to
separate s-SWNTs with small diameters from s-SWNTs with large diameters. Small and
large s-SWNTs were obtained with 0.05 and 0.5 wt% DOC eluants, respectively. At low
DOC concentrations, DOC cannot adequately cover the s-SWNTs; thus, DOC preferentially
adsorbed to small-dimeter SWNTs, which have higher surface energies for interaction [84].
Zhao et al. successfully isolated (6, 5) single-chirality SWNTs with agarose gel by forming
a monolayer of SWNT on the gel. After the SWNT monolayer was formed by eluting s-



Gels 2022, 8, 76 7 of 23

SWNT with low adsorption ability, (6, 5) s-SWNTs were preferentially eluted. Each process
was performed by controlling the DOC ratio of the SDS–DOC eluant [85]. Although allyl
dextran-based gel has been commonly used for chirality- or diameter-based separation,
Zanoni et al. (2021) revealed that agarose-based gel (Superose 6, GE healthcare) can separate
(7, 5) and (7, 3) chirality s-SWNTs with high purity. Considering that the gel adsorption
of (6, 5) s-SWNT, which is separated via allyl dextran-based gel, was stronger than that of
(7, 5) and (7, 3) s-SWNT, it can be assumed that the strong adsorption properties of agarose
hindered the elution of (6, 5) s-SWNT so that separation of (7, 5) and (7, 3) s-SWNT was
possible. The mechanism of unique chirality selectivity of Superose 6 has not been clearly
identified yet. This selectivity was not found in other agarose-based gels with an agarose
backbone and epichlorohydrin (ECH) crosslinker [86]. Sepharose 6FF, which consists of
agarose and ECH similar to Superose 6, succeeded in high purity m-SWNT separation,
while the purity of s-SWNT was low. Sepharose 6FF also has a similar pore size with
Superose 6. However, Separose 6FF has additional hydroxy group ligands, promoting
strong ionic interaction with SDS-SWNT. Considering that the core of SWNTs and agarose
gel interaction is an ionic force, Superose 6 is estimated to have an appropriate polarity as
well as pore size to enable the selective interaction with the specific chirality [76,77]. Hence,
agarose-based gels can be used for efficient chirality-based separations in the specific
condition, although there are many more examples of SWNT chirality separations for allyl
dextran-based gels.

Gels 2022, 8, x FOR PEER REVIEW 7 of 24 
 

 

Yahya et al. (2015) studied the effect of temperature on the separation efficiency for 
different types of SWNTs: HiPco (SWNTs synthesized by high pressure carbon monoxide 
process), CoMoCat (SWNTs synthesized by cobalt and molybdenum oxide catalyst), AD-
CNT (SWNTs synthesized by arc-discharged process), and DIPS–CNT (SWNTs 
synthesized by enhanced direct injection pyrolytic synthesis). High-purity s-SWNTs were 
obtained at temperatures below 6 °C and high-purity m-SWNTs were obtained at room 
temperatures because temperature affects the distribution of encapsulated SDS micelles 
adsorbed onto SWNTs. At low temperature, the micelle structure around SWNTs is larger, 
and the SDS molecules are densely distributed. This allows for the easy separation of SDS–
SWNT assemblies from gel. SWNTs with a low degree of adsorption including m-SWNTs 
and a few weakly adsorbed s-SWNTs can be easily eluted by injecting an eluant (1 wt% 
DOC); consequently, the s-SWNTs that are strongly adsorbed can be separated with high 
purity. At high temperature, the micelle structure becomes smaller, and SDS is loosely 
packed around the SWNTs. Therefore, high-purity m-SWNTs containing fewer s-SWNTs 
that are weakly adsorbed onto the gel can be eluted (Figure 6) [82]. In 2016, Wang et al. 
presented the optimal pH for SWNT separation with nonionic surfactants (i.e., Triton-X 
as a dispersant for SWNTs). Instead of using an anionic surfactant, agarose gel was 
anionized with naphthalene sulfonate groups; m/s-SWNTs can be separated by polarity 
with the charge signal reversal method and pH regulation. Unlike in gel chromatography 
with anionic surfactants, the electrostatic interaction between the negatively charged 
agarose gel and SWNTs cause the s-SWNTs to become eluted earlier [83]. 

 
Figure 6. Absorption spectra for DIPS–CNTs: (a) metal-enriched fraction, (b) semiconductor-
enriched fraction, AD-CNTs (arc-discharged CNTs), (c) metal-enriched fraction, and (d) 
semiconductor-enriched fraction. Each of the lines in the graphs are solutions eluted at different 
temperatures (adapted with permission from [82] © 2015 Elsevier). 

Some researchers have successfully separated SWNTs by diameter or chirality with 
agarose gel. In 2010, Tanaka et al. adjusted the concentration of a DOC aqueous eluant to 
separate s-SWNTs with small diameters from s-SWNTs with large diameters. Small and 

Figure 6. Absorption spectra for DIPS–CNTs: (a) metal-enriched fraction, (b) semiconductor-enriched
fraction, AD-CNTs (arc-discharged CNTs), (c) metal-enriched fraction, and (d) semiconductor-
enriched fraction. Each of the lines in the graphs are solutions eluted at different temperatures
(adapted with permission from [82] © 2015 Elsevier).



Gels 2022, 8, 76 8 of 23

4. Allyl Dextran-Based Gels
4.1. Structures and Properties of Allyl Dextran-Based Gels

Allyl dextran-based gels are synthesized from the backbone, crosslinker, and initiator.
Allyl dextran backbone is synthesized from introducing the allyl group to dextran through
a reaction with allyl bromide and dextran. Methylene bisacrylamide (MBA) is used as the
crosslinker, and ammonium persulfate (APS) as the radical initiator (Figure 7). Sephacryl S-
200 (GE healthcare) is the most commonly used commercial hydrogel for SWNT separation;
it has a pore size of 8.3 nm and particle size of 47 µm. Similar to agarose gel, it is a
polysaccharide-based gel with many hydroxyl groups. However, unlike agarose, it does not
exhibit double helices. Therefore, crosslinkers and MBA must be added for more rigidity.
The single strands in allyl dextran-based gel make it less rigid than agarose gel. Moreover,
the degree of orientation of the functional groups is lower than that of agarose gel; therefore,
the former is expected to interact less with other substances [76,86].

Watts et al. (2019) proposed the thermodynamic model of chirality separation accord-
ing to the length of SWNTs and curvature of Sephacryl gel beads. Since the hydraulic
diameter of SWNTs is larger than the pore size of Sephacryl S-200, the chirality selectivity of
the gel cannot be illustrated only by the physical pore structures. Watts and co-workers hy-
pothesized that SWNT binding occurs only on the microsphere surface of the hydrogel, and
they presented the theory that the proportion of SWNTs irreversibly adsorbed to Sephacryl
gel increases with the diameter of the gel beads. As the microsphere size of the gel beads
increases, the irreversible adsorption of SWNTs onto the gel also increases, which leads
to poor SWNT separation efficiency. Interestingly, grinding the gel and increasing the gel
surface area could achieve the same effect as using a large amount of the gel. For example,
when 21 mg of Sephacryl S-200 and 2.1 mg of mechanically fractioned Sephacryl S-200 were
used as mediums for gel chromatography, a similar level of chirality separation ability was
observed, despite the 10-fold mass difference between the two media, suggesting that the
cost of the gel filtration process can be greatly reduced [87].
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4.2. Mechanism of m/s-SWNT Separation with Allyl Dextran-Based Gels

As mentioned in Section 2, agarose gels have not been commonly used for the selective
separation of SWNTs by chirality. Due to the excellent selective adsorption and desorption
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characteristics of specific SWNTs for an allyl dextran-based gel, most researchers have
separated SWNTs using Sephacryl S-200 as the gel filtration medium. Researchers have
performed a vast number of studies about the adsorption and desorption mechanisms
between Sephacryl S-200 and surfactant–SWNT assemblies (mainly SDS-based). In 2013,
Tvrdy et al. presented a kinetic model for the adsorption of SDS–SWNT structures onto the
allyl dextran-based gel. The adsorption degree of SWNTs onto gel by chirality was quan-
tified based on the forward binding rate constant kn,m, which represents the relationship
between the initial amount (Nn,m) of specific chiral (n, m) SWNT and initial adsorption
site (θ) of Sephacryl S-200. In this study, the binding sites of the secondary amide group of
Sephacryl gel were considered in the kinetic model (Figure 8) [64,88]. Watts et al. recently
reported an additional study on the mechanism of irreversible adsorption of SWNT onto an
allyl dextran-based gel (2021) and suggested a method to mitigate irreversible adsorption of
SWNTs. As the irreversible conversion is thermodynamically more stable, it was observed
that SWNTs converted from the reversible adsorption state to the irreversible adsorption
state over time. After kosmotropic additives were added, SDS micelles around SWNTs took
a more regular form, and this regularity prevented the irreversible adsorption of SWNTs to
the gel. For example, the addition of NaF greatly increased the elution efficiency from 54%
to 88%. This study suggests that the arrangement of SDS plays an important role in the
elution of SDS-SWNT assemblies [89].
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Zanoni et al. (2021) compared the chiral selectivity of 12 kinds of commercial hydrogels
with different pore sizes and ligands for SWNT separation. The importance of amide groups
in Sephacryl gel is highlighted in the study by Zanoni and co-workers, which enabled
SWNTs to be adsorbed onto the gel. The 12 kinds of gel were allyl dextran-based gel
(Sephacryl), dextran-based gel (Sephadex), agarose-based gel (Superose, Superdex and
agarose), and MBA-APS gel (synthesized for the experiments). The gel synthesized by
polymerization with only MBA and APS exhibited higher elution efficiency than many
non-Sephacryl gels. The self-polymerization of the MBA may generate a wider gel area
than the allyl dextran backbone. The increase in the gelled area is expected to enable
active interaction between SWNT and MBA within Sephacryl gels. Considering that non-
Sephacryl gels do not include an amide group, it is estimated that the amide groups in
MBA are at the core of SWNT–gel interaction [77,86].

Dolan et al. (2021) analyzed the effect of the APS concentration (i.e., the radical
initiator) on the repulsive interaction between Sephacryl gel and SDS–SWNT assemblies
(Figure 9). In addition, they explained the adsorption and desorption mechanisms of
SWNTs on organosulfate by the electrostatic forces of APS. Negative charge-enriched
organosulfate, introduced by APS, electrostatically repulses SDS molecules on SWNT
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surfaces. Thus, m-SWNTs that are completely covered with SDS cannot be adsorbed
onto the gel. The binding strength of s-SWNTs to the gel is determined by how much of
the bare SWNT sidewalls is exposed. Jain et al. (2014) describes the difference in chiral
selectivity of SWNT separation according to the thermodynamic stability of the binding
strength of SWNTs to gel [90]. However, Dolan et al. suggested the new idea that SDS
rearrangements occurred at bonding sites after s-SWNT adsorption onto the gel, and SDS
gradually separated from the SWNTs. The process was named “the propagation step”. If
s-SWNTs with a certain chirality are quickly eluted by additional eluants, the propagation
step is slow. If the propagation step is quick, irreversible adsorption of s-SWNTs increased
in the gel. Gels with high concentrations of APS strongly repulse SDS and promote fast
propagation, which increases the risk of irreversible adsorption and interferes with selective
elution. The APS concentration must be controlled during gel synthesis so that the gel
efficiently adsorbs specific SWNTs. Dolan et al. reported that allyl dextran-based gel with a
low APS concentration (1 mg/mL) exhibited better separation efficiency than Sephacryl
S-200; this information can be used to synthesize next-generation gels. In conclusion, the
negatively charged organosulfate group in APS promotes the “selective” adsorption and
desorption of SWNTs onto the Sephacryl gels. In contrast, the relatively strong binding
between agarose based-gel and s-SWNTs originates from the absence of APS. This is the
reason why the allyl dextran-based gel can better perform simultaneous separation of
high-purity m- and s-SWNTs than agarose based-gels [65,77].
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Figure 9. A four-step model of SDS-SWNTs and Sephacryl gel interactions in chirality-dependent
separation of SWNTs, electrostatic, and steric effects between SWNTs and the gel. (a) m-SWNTs and
s-SWNTs colocalize toward Sephacryl gel surface. Organosulfate groups of APS drive electrostatic
repulsion with SDS. At high APS hydrogel, most SWNTs cannot colocalize to the gel surface. (b) Rear-
rangement of SDS is thermodynamically induced, which reveals the bare SWNT walls. (c) Subsequent
rearrangement of SDS is electrostatically induced by the organosulfate groups of APS. (d) After a high
concentration of SDS solution is added to the gel, excess SDS molecules cover the SWNTs adsorbed
onto the gel surface, which caused desorption of SWNTs. (e) If SWNTs are totally bound onto the gel
surface ((c)-(iii)), the adsorption is irreversible despite the additional SDS. (adapted with permission
from [65] © 2021 Elsevier).
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Another important factor for SWNT separation is the pore size. According to Wang
et al., physical structure as well as chemical structure of the dextran gel affects the SWNT
separation mechanism. That is, even though dextran adsorbs s-SWNT, enabling m/s SWNT
separation, if s-SWNT cannot diffuse into the pores because of small pore structure, then
s-SWNT cannot be adsorbed onto the gel, leading to low separation yield. Therefore, a
dextran concentration of 200 mg/mL formed an optimum pore size for best m/s SWNT
separation efficiency (Figure 10) [91]. However, if the physical structure changes such
as microspheres, as in the study of Zanoni et al., small pore gels, having a large surface
area of dextran would be beneficial in SWNT separation [86]. The above results indicate
that the physicochemical structure of the gel is critical for SWNT separation. Therefore,
an appropriate gel structure must be utilized for targeted SWNT separation. In addition,
Matsunaga et al. compared the capabilities of new types of polysaccharide gel medium for
s-SWNT separation, isomaltodextrin-based gel, according to the polymer concentration
and pore size. The gel synthesized with 5.0 mmol isomaltodextrin separated s-SWNTs with
the highest purity. In the case of higher concentration, a pore structure could not be formed.
When the gel was synthesized with 1.0–4.0 mmol isomaltodextrin, SWNTs could not be
separated due to the too large pore size [92]. That is, too small pores interfere with the
diffusion of SWNTs, and too large pores degrade the surface interaction of SWNTs [86];
hence, a gel with an appropriate pore size must be chosen.
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4.3. Examples of SWNT Separation with Allyl Dextran-Based Gels
4.3.1. Separation of m/s-SWNTs

Sephacryl S-200 has been considered an excellent medium regardless of the SWNT type
(e.g., HiPco, arc-discharged SWNTs, laser ablation SWNTs, and CoMoCAT). Moshammar
et al. invented the single- column m/s-SWNT separation with Sephacryl S-200 in 2009 [93].
In 2013, Tulevski et al. reported the separation of 99.9% pure s-SWNTs with single-column
gel chromatography. In this study, high-purity s-SWNT separation was achieved with the
iterated elution of a single surfactant solution only. The SWNTs were also separated with
Sephacryl S-100 and S-300; however, the resulting purity was not as high as that achieved
with Sephacryl S-200 [63]. Yoo et al. (2020) separated m- and s-SWNTs with a single column
with iterated elution and temperature control. They conducted temperature-controlled
separation: the s-SWNTs were extracted at low temperature, and the m-SWNTs were
extracted at high temperature. The resulting s- and m-SWNTs exhibited high purity (99%
and 95%, respectively) (Figure 11) [94]. This result supports the conclusion by Yahya and
researchers [82] that temperature-controlled separation with agarose gel as the medium
can yield high-purity SWNTs.
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Since the interaction between the surfactant and gel plays a key role in SWNT separa-
tion, researchers have investigated the effects of the surfactant concentration to optimize
separation purity. For instance, Thendie et al. (2017) varied the SDS:SC ratio of the solu-
tion eluting s-SWNTs [62]. Inori et al. (2012) performed m/s-SWNT and diameter-based
separation using different SDS concentrations with a single column. When the surfactant
concentration of the gel equilibration solution is identical to that of the loading sample,
SWNTs can be hardly separated with a single column. However, different types of SWNTs
can be eluted from the gel when the surfactant concentrations of the two solutions were
different. Due to the fact that when different concentrations of the surfactant solutions
meet in the gel, the resulting diffusion of surfactants causes local changes in the surfactant
concentration on SWNTs, and the adsorption strength of SWNT onto the gel changes
according to the surfactant concentration, which leads to the SWNT separation [95].

In addition to m/s-SWNT separation, some researchers have analyzed the length
distribution of s-SWNTs according to the elution time. In general, shorter s-SWNTs are
eluted later. In SEC, larger particles pass faster through beads and become eluted; thus, the
observation that longer tubes are eluted first is consistent with the SEC principle. Miyata
(2012) obtained high-purity s-SWNTs with multistep SEC and s-SWNTs with an average
length of 1.5 µm. The eluted s-SWNTs were filtered several times with the same gel to
extract the remaining m-SWNTs in the solution. Before multistep separation, most s-SWNTs
had lengths shorter than 1.0 µm; however, SWNTs shorter than 1.0 µm remained in the
gel. This is due to the moving speed of the SWNTs inside the gel; the researchers inferred
that those short SWNTs have a higher probability of being adsorbed onto the gel due to
their slow movement [96]. Thendie et al. (2013) further separated s-SWNTs according to
the elution time during m/s-SWNT separation with a single column. The length of the
s-SWNTs eluted in the last group was 0.3 µm or shorter, which was very short compared to
those of the initially eluted s-SWNTs (Figure 12) [97].
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4.3.2. Single-Chirality SWNT Separation

Sephacryl gel is an excellent medium for chirality-based SWNT separation. As men-
tioned in the Introduction, SWNTs with different chirality exhibit different absorption
properties; if semiconducting SWNTs with specific chirality can be extracted with high
purity, they can be used as materials that require absorption or emission at a specific
wavelength. For example, when SWNTs are used as photothermal materials, they should
exhibit absorbance at 900–1200 nm (i.e., at wavelengths that are not absorbed by water and
blood) [98].

Multi-column chromatography developed by Liu et al. in 2011 enables the separa-
tion of HiPco nanotubes with different chirality. By connecting 20 columns packed with
Sephacryl gel, the researchers separated SWNTs of different chirality for each column
by a single injection of SWNT-dispersed feed solution onto a top column (Figure 13a).
The adsorbed SWNTs were collected via elution with a highly concentrated SDS aque-
ous solution. In particular, 93% pure SWNTs with (6, 5) chirality with excellent selective
adsorption characteristics for Sephacryl gel were obtained [50]. After these results were
published, researchers have studied methods to separate SWNTs simultaneously with
different chirality. In 2016, SWNTs with 12 different chiralities were successfully separated
with 80% purity or higher [99]. However, since SWNTs with other chiralities cannot be
separated with a high purity such as those with (6, 5) SWNT, researchers have focused on
single-chirality separation. They have also investigated the optimal separation conditions
according to chirality by tuning the factors that affect SWNT–gel interaction (i.e., the type
and concentration of the surfactant, temperature, and pH level).
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As the concentration of surfactants surrounding SWNT determines the interaction
between SDS–SWNT and gel, SDS aqueous solutions of various concentrations were ap-
plied to the single chirality separation of SWNTs. Blanch et al. (2013) controlled the SDS
concentration of the eluant from 0.5 wt% to 4.0 wt% and repeatedly eluted SWNTs. m-
SWNTs were separated at 0.5–1.0 wt% concentration, s-SWNTs of large diameter were
separated at 1.25–1.75 wt% concentration, s-SWNTs of intermediate diameter were sep-
arated at 2–2.75 wt% concentration, and s-SWNTs of small diameter were separated at
3.0 wt% concentration of eluants. The principle of this elution order is related to the cur-
vature rather than the diameter of the SWNTs. That is, in SWNTs with large curvature,
surfactants are covered with low density [100]. Flavel et al. controlled the concentration
of the SDS in the starting material, from 0.4 to 1.6 wt%, and carried out a gel permeation
chromatography with Sephacryl S-200. In the cases of starting material with high SDS
concentration, only specific s-SWNTs could be selectively adsorbed onto the gel, indicating
that SWNT separation can be controlled by surfactant concentration of feed samples [101].
Based on these studies, our group simultaneously separated high-purity single-chirality s-
SWNTs and m-SWNTs by lowering the SDS concentrations of samples during multi-column
chromatography in 2020 (Figure 13b) [102]. Liu et al. showed that the separated chirality
depends on the temperature in multi-column chromatography. The temperature-controlled
SWNT separation is also based on the inverse relationship between SDS concentration
and gel adsorption as described above. A decreasing temperature reduces the solubility
of SDS toward the solvent, and extra SDS is adsorbed onto the SWNT surfaces. That is,
as the temperature decreases, the adsorption degree of SDS–SWNT for the gel decreases;
consequently, single-chirality SWNT with very high degrees of adsorption for gel can be
separated [103].

In addition, high-purity chirality separation of SWNT has been studied through the
mixing of various surfactants as well as controlling the concentration of a single type
of surfactant. Gui et al. (2012) separated m-SWNTs by SDS and s-SWNTs by a DOC
aqueous solution. The DOC concentration of the eluant was precisely controlled from 0.004
to 0.19 wt%, and s-SWNT separation according to chirality was successful [104]. Zeng
et al. (2018) performed multi-column chromatography with three types of surfactants
and experimentally elucidated the functions of each surfactant. A synergistic effect can
be created by mixing standard surfactants, SDS, and other surfactants such as SC and
DOC, which are used in multi-column chromatography [105]. Jain et al. calculated the
optimal surfactant charge density coefficient according to each chirality using four types
of surfactants (SDS, SC, DOC, and sodium taurocholate (STC)). Increasing the SC ratio in
the SDS–SC mixed system formed rigid micelles around SWNTs, reducing the exposure of
SWNT sidewalls and the amount of SWNTs binding to the gel. Since this change depends on
the diameter and chirality, chirality selectivity may be increased according to the addition
ratio of SC. The addition of STC uniquely enabled the separation of SWNTs with 1250 nm
and 950 nm absorbance peaks [106]. Yomogida et al. used sodium lithocholate (LC), a
highly hydrophobic surfactant, for the first time in SWNT separation. Despite the difficulty
of forming an LC aqueous solution, LC had excellent solubility in small-diameter s-SWNTs.
Thus, LC was mixed with SDS and SC aqueous solution for the application. The optimal
concentrations of SDS and SC for single chirality separation were presented as 0.9% and
0.3%, respectively. When less SC was added than SDS, the s-SWNTs of the large chiral
angle could not be adsorbed into the column. In the study by Yumogida et al., 11 species of
single chirality SWNTs were separated with a high purity of 90% or more and all chirality
of s-SWNTs with a diameter of 0.7–1.1 nm were separated [107].
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As described above, surfactants play a key role in SWNT separation using gel chro-
matography, and surfactants of various types and concentrations are used for effective
separation of SWNTs. Nevertheless, the application of SWNT may be limited due to the
surfactant remaining on the SWNT surface. The surfactant dissipates electrons on the sur-
face of the SWNT to attenuate the electrical and optical properties of the SWNT [108,109].
Therefore, removal methods of surfactants from SWNTs and SWNT separation methods
that can easily remove surfactants have also been studied. According to Zeng et al., the
addition of ethanol to the eluant can dramatically lower the surfactant concentration of the
collected SWNT solution. For example, s-SWNTs desorbed from the gel with 5 wt% SDS
solution could be desorbed with 2 wt% SDS solution and ethanol [110]. As a method of
removing the surfactant through post-treatment, acids [111,112], heat [113–115], and laser
treatment [116] have been proposed. However, the heat or laser treatment methods could
not completely remove the surfactants. To compensate for this, Zhang et al. reported in a
recent study that the use of ammonium deoxycholate as a surfactant enabled clean removal
from SWNT through heat treatment. In contrast to DOC, about 20% remained; even at
high temperatures above 500 ◦C, ADC was removed to 5% or less at 400 ◦C or higher [117].
Nevertheless, there is still an issue that high temperatures can cause damage to SWNTs,
which is the same for acid treatment. Acid treatment is easy to produce oxidation doping
as well as damage to SWNT sidewall [118]. To reduce damage to SWNT, a method adding
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organic solution to SDS–SWNT solution was developed [119]. By mixing the solvent with
good solubility in the surface, the interaction between SDS and SWNT is interrupted, and
as a result, pure SWNTs can be separated. A study by Rossi et al. confirmed that acetone
and acetonitrile could separate SWNTs from SDS with high purity [120].

pH condition is another influential factor to determine separated species of SWNTs.
Hirano et al. (2013) explained in the above-mentioned study that the decrease in the pH
level reversibly oxidizes SWNTs and increases the SDS coverage. Since the oxidized SWNTs
have a stronger positive charge, the oxidation causes the condensation of the surfactant
on the surface of SWNTs due to electrostatic attraction. That is, a decrease in the pH
level reduces the interaction between the SDS–SWNT assembly and gel. In a low-pH
environment, SWNTs with smaller bandgaps oxidized faster because of the difference in
redox potentials. Thus, m-SWNTs are oxidized most radically, followed by large-diameter
s-SWNTs, with small bandgaps [121–123]. SC and DOC, which can cover SWNT sidewalls,
densely prevent the oxidation of bare SWNT sidewalls [124]. The adsorption rate of m-
and s-SWNTs radically decreases above 12.5 pH due to the high Na+ concentration in the
solution. The researchers added 100 mM NaOH to the solution with 12.5 pH; the Na+ ions
acted as an adsorption inhibitor at a certain concentration or higher (Figure 14) [81].

Gels 2022, 8, x FOR PEER REVIEW 18 of 25 
 

 

 
Figure 14. pH dependence of adsorption of SWNT and gels (agarose gel and Sephacryl gel). (a) 
Amount of adsorbed SWNTs at various pH levels. (b) Photograph of SWNTs adsorption onto aga-
rose gel and Sephacryl gel at various pH levels (adapted with permission from [81] © 2013 American 
Chemical Society). 

The results of the pH-controlled gel filtration studies are consistent with the theory 
of Hirano and that of the researchers. In 2013, Flavel et al. separated s-SWNTs with 12 
different chiralities with a single column. After washing m-SWNTs with an eluant of pH 
7, the pH level of the eluant gradually decreased from 4 to 1. At the low pH level, strongly 
adsorbed s-SWNTs were eluted that could not be separated at the neutral pH level (Figure 
15) [125]. Following these preceding studies, Cui et al. (2019) succeeded in separating the 
high purity of chirality according to pH in a mixed surface effect system. Cui and co-
workers analyzed SWNTs according to pH changes by adding an aqueous solution of 0.3–
1.4 mM HCl to the gel. The SWNT solution, the starting material, was dispersed in 0.5 
wt% SDS and 0.5 wt% SC aqueous solution. When HCl solution was added to the gel, m-
SWNTs were oxidized and eluted first. Thereafter, the concentration of the DOC eluant 
was changed (0.02–0.07 wt%) and the s-SWNT was separated by single chirality [126]. 
Moreover, Ichinose et al. (2017) studied single-chirality separation by increasing the pH 
level in 0.1 steps from 7.6 to 8.4. The metal peaks disappeared at a pH level of 7.9 or below; 
the resulting (6, 5) chirality nanotubes had a 99% purity or higher [127]. Yang et al. (2017) 
tuned allyl dextran-based gel with NaOH to separate m/s-SWNTs with large diameters; 
they analyzed the chirality purity according to the absorbance characteristics of the solu-
tions. The elution degree of s-SWNTs increased with the NaOH concentration. SWNTs 
with large diameters (such as arc-discharged SWNTs) have little curvature difference and 
narrow diameter distributions among the type of nanotubes; thus, their separation accord-
ing to chirality has not been successful. Nevertheless, Yang et al. successfully separated s-
SWNTs according to their diameters with pH control and multi-column chromatography 
[128]. Oxidation of SWNTs occurs not only through the addition of acidic solutions but 
also by changes in the temperature of the aqueous solution. Nish et al. (2006) experimen-
tally reported the temperature dependence of SWNT oxidation. As the temperature in-
creases, the potential energy for oxidation of SWNT decreases, and oxidation easily oc-
curs. In addition, an increase in temperature reduces the solubility of H+ and O2 present 
in the solution, resulting in a change in pH [129]. Yoo et al. (2020) noted the reorganization 
of SDS in this temperature-dependent oxidation phenomenon and described the SDS be-
havior above the SWNT sidewall in an acidic environment through molecular dynamics 
simulation [130]. 
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(a) Amount of adsorbed SWNTs at various pH levels. (b) Photograph of SWNTs adsorption onto
agarose gel and Sephacryl gel at various pH levels (adapted with permission from [81] © 2013
American Chemical Society).

The results of the pH-controlled gel filtration studies are consistent with the theory
of Hirano and that of the researchers. In 2013, Flavel et al. separated s-SWNTs with
12 different chiralities with a single column. After washing m-SWNTs with an eluant of
pH 7, the pH level of the eluant gradually decreased from 4 to 1. At the low pH level,
strongly adsorbed s-SWNTs were eluted that could not be separated at the neutral pH
level (Figure 15) [125]. Following these preceding studies, Cui et al. (2019) succeeded in
separating the high purity of chirality according to pH in a mixed surface effect system.
Cui and co-workers analyzed SWNTs according to pH changes by adding an aqueous
solution of 0.3–1.4 mM HCl to the gel. The SWNT solution, the starting material, was
dispersed in 0.5 wt% SDS and 0.5 wt% SC aqueous solution. When HCl solution was
added to the gel, m-SWNTs were oxidized and eluted first. Thereafter, the concentration of
the DOC eluant was changed (0.02–0.07 wt%) and the s-SWNT was separated by single
chirality [126]. Moreover, Ichinose et al. (2017) studied single-chirality separation by
increasing the pH level in 0.1 steps from 7.6 to 8.4. The metal peaks disappeared at a
pH level of 7.9 or below; the resulting (6, 5) chirality nanotubes had a 99% purity or
higher [127]. Yang et al. (2017) tuned allyl dextran-based gel with NaOH to separate m/s-
SWNTs with large diameters; they analyzed the chirality purity according to the absorbance
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characteristics of the solutions. The elution degree of s-SWNTs increased with the NaOH
concentration. SWNTs with large diameters (such as arc-discharged SWNTs) have little
curvature difference and narrow diameter distributions among the type of nanotubes;
thus, their separation according to chirality has not been successful. Nevertheless, Yang
et al. successfully separated s-SWNTs according to their diameters with pH control and
multi-column chromatography [128]. Oxidation of SWNTs occurs not only through the
addition of acidic solutions but also by changes in the temperature of the aqueous solution.
Nish et al. (2006) experimentally reported the temperature dependence of SWNT oxidation.
As the temperature increases, the potential energy for oxidation of SWNT decreases, and
oxidation easily occurs. In addition, an increase in temperature reduces the solubility of
H+ and O2 present in the solution, resulting in a change in pH [129]. Yoo et al. (2020)
noted the reorganization of SDS in this temperature-dependent oxidation phenomenon and
described the SDS behavior above the SWNT sidewall in an acidic environment through
molecular dynamics simulation [130].
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5. Conclusions and Future Look

This paper presents the principles of gel chromatography-based SWNT separations
and successful examples of SWNT separations according to the gel types. SWNT separation
using gel chromatography (e.g., silica gel, agarose gel, allyl dextran-based gel, and new gels
like isomaltodextrin) commonly requires dispersion of SWNTs in an aqueous solution using
a surfactant or surface functionalization and utilizes the difference in interaction strength
between SWNT assemblies and gels for various SWNT separations. Regarding length
sorting via silica gel and some of the allyl dextran gel, high diffusivity of short SWNTs is the
core principle. m/s-SWNT separation via silica gel was achieved by using the difference in
polarity between m- and s-SWNTs. In m/s-SWNT separation and single chirality separation
via hydrogels, separation was achieved by using electrostatic interactions of gel and SWNT
as well as the gel and surfactant. Hydroxy groups of agarose backbone in agarose-based
gel, and amide groups of crosslinker MBA in ally dextran-based gel act as an electronic
donor, therefore, attracts thee SWNT carbon sidewall. In contrast, negative charged groups
on gels such as the organosulfate group on an allyl dextran-based gel repulse the anionic
surfactant on SWNTs. Once s-SWNTs are adsorbed onto the allyl dextran-based gel, the
repulsion between the organosulfate group (from APS) and SDS surfactant determines
the selective elution based on chirality. However, agarose-based gel, which does not have
a repulsive element such as APS, shows lower purity in s-SWNT separation and single
chirality separation because of the strong binding of SWNTs and the gels.
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The biggest limitation of gel chromatography for SWNT separation is the high cost of
the gels. To compensate for this, researchers have tried to reuse gels; however, the resulting
reduction in the number of adsorption sites and damaged porous structure of the gel affect
the separation ability. Thus, gels can be reused only to a limited extent. For these reasons,
some groups have developed aa next-generation gel medium with excellent separation
ability for chromatography. For example, Matsunaga et al. used isomaltodextrin as the
chromatography medium. Therefore, we expect that new gels that are inexpensive and
exhibit good separation characteristics will be developed. Gel chromatography enables
large-scale SWNT separation according to the electrical type (metallic or semiconducting),
length, diameter, and chirality. Considering that gel chromatography-based SWNT separa-
tion can realize large-scale SWNT separation, leading to a broadening of applications of
SWNT in various fields, we expect that high-efficiency separation methods for SWNTs will
become even more important.
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