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Mitochondria are key organelles in the cell, hosting essential functions, from biosynthetic and metabolic pathways, to oxidative
phosphorylation and ATP production, from calcium buffering to red-ox homeostasis and apoptotic signalling pathways.
Mitochondria are also dynamic organelles, continuously fusing and dividing, and their localization, size and trafficking are finely
regulated. Moreover, in recent decades, alterations in mitochondrial function and dynamics have been implicated in an increasing
number of diseases. In this review, we focus on the relationship clarified hitherto between mitochondrial dynamics and cancer,
neurodegenerative and neuroinflammatory diseases.

1. Introduction

In eukaryotic cells, the role of mitochondria is pivotal
both in providing essential molecules and signals for life
and in amplifying signals of death. In regard to the cell
life, mitochondria produce most of the ATP necessary
to the cell through oxidative phosphorylation, and they
are involved, among the others, in TCA cycle, fatty acid
metabolism, hemesynthesis, and gluconeogenesis. As regards
the cell death, mitochondria are involved in Ca2+ and red-
ox homeostasis, which are dysregulated during cell death,
and they release proapoptotic proteins, such as cytochrome c,
SMAC/DIABLO, AIF, Endo G, and Omi/HTRA2, after mito-
chondrial membrane permeabilization and cristae remodel-
ing [1–3].

Moreover, mitochondria are highly dynamic organelles
that can fuse and divide, forming an interconnected network
or fragmented units inside the cell, according to different
stimuli impinging on the fusion/fission machinery, repre-
sented by the mitochondria shaping proteins: MFN1, MFN2,
OPA1, regulators of fusion, and DRP1, FIS1, MFF, and
MIEF1, which modulate fission [4] (see Figure 1(a)).

1.1. Mitochondrial Fusion. MFN1 and MFN2, two dynamin-
related GTPases, are the main regulators of mitochon-
drial fusion at the level of outer mitochondrial mem-
brane (OMM). They can interact, forming homo- and
heterodimers; after conformational changes led by the
hydrolysis of GTP, they force the OMM to fuse [5].
Interestingly, MFN2 is also responsible for ER/mitochondria
tethering with an important implication in Ca2+ home-
ostasis and signalling [6]. OPA1, another dynamin-related
GTPase, is located in the inner mitochondrial membrane
(IMM) where, together with MFN1, it plays a role in
controlling fusion at this level [7]. OPA1 has also a role
in controlling cell-death; in fact, heterocomplexes between
proteolytic processed or unprocessed forms of OPA1 reg-
ulate the width of cristae junctions and the subsequent
release of cytochrome c, which then interacts with APAF1
and caspase 9 forming the apoptosome, whose activation
results in the amplification of cell death signals [8, 9].
Other proteins have been linked to mitochondrial fusion,
such as LETM1 [10], the Phospholipase D (PLD) [11],
and Prohibitins (Phb) [12], the latter necessary for OPA1
processing.
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Figure 1: The dynamic nature of mitochondrial shape. (a) Main proteins involved in mitochondrial shape changes are depicted. In fused
unopposed condition, DRP1 is phosphorylated and sequestered in the cytoplasm. Once dephosphorylated, it is recruited to the OMM where
it oligomerizes and interacts with FIS1, MFF, or MIEF inducing constriction of membranes and, eventually, fission of mitochondria. MFNs
homo- and heterooligomerization on the OMM and oligomerization between long and short isoform of Opa1 on the IMM control fusion
of mitochondrial membranes. Additional proteins affecting mitochondrial shape are also shown. (b) Mitochondrial morphology in Jurkat
cells overexpressing yellow fluorescent protein targeted to mitochondria. The upper panel shows a network of elongated and interconnected
mitochondria. In the lower panel, mitochondria appear fragmented (Scale bar: 5 μm).

In summary, the pleiotropic mitofusins (MFN1 and
MFN2) and OPA1 are the main regulators of the mitochon-
dria fusion machinery. Although steps forward have been
made, some points of this mechanism still remain to be
clarified; in particular, how the IMM fuses and how its fusion
is coordinated with events of the OMM fusion.

1.2. Mitochondrial Fission. The fission machinery is based
on DRP1, FIS1, MFF, and MIEF1. DRP1 is a large GTPase
protein [13], which in conditions of unopposed fusion
is cytosolic and after dephosphorylation by calcineurin is
recruited on mitochondria [14], where it oligomerizes and
interacts with its putative adaptors on the OMM (FIS1, MFF,
and MIEF1), forming ring-shaped structures and inducing
mitochondrial constriction and fission [15]. Endophilin B1
[16], MTP18 [17], MIB [18], and GDAP1 [19] have been
described, moreover, among the fission components.

The scenario of mitochondrial fission is becoming more
complex, taking into account the different roles proposed for
MFF, MIEF, and FIS1. MFF has recently been shown to be an
adaptor of DRP1 on the OMM [20], whereas the binding of
MIEF to DRP1 on the OMM inhibits the GTPase function
of DRP1 and its profission activity [21]. On the other hand,

FIS1, that initially was considered the only DRP1 receptor at
the OMM, has now been proposed to exert its profission role
by interacting and sequestering MIEF, thus allowing DRP1 to
mediate the constriction and fission of the membrane [21].

It has also been suggested that mitochondrial fission
events predominantly occur at the contact sites between ER
and mitochondria, specifically where some ER tubules cross
over and wrap around mitochondria. Interestingly, DRP1
and MFF localize at these contact sites [22]. New studies
that will address the biochemical mechanism, by which
the ER participates in mitochondrial division, placing this
observation in the overall picture of mitochondrial division,
will be of great interest in the field.

In summary, the fission machinery depends on the
activation and translocation of DRP1 to the OMM, where
it interacts with some other components, not clearly defined,
that take part to the modulation of mitochondrial fragmen-
tation.

1.3. More than Just Morphology: The Intimate Connection with
Physiological Functions. Changes in mitochondrial morphol-
ogy have been related to alterations in mitochondrial func-
tion, transport, location, and quality control. Mitochondrial
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Table 1: Mitochondrial dynamics and cancer.

Pathology
Proteins involved
(expression level)

Mitochondrial
phenotype

Mechanisms of pathophysiology involving
mitochondria

Different types of tumors
MFN1, MFN2, OPA1 ↓↓

DRP1, FIS1 ↑↑ Fragmentation.

Inhibition of TCA cycle and oxidative
phosphorylation, mitochondrial membrane
permeabilization; fission accompanied by ROS
production, polarization and chemotaxis of
lymphocytes and tumoral cells [42–45].

damage, for example, induces fission, which, in turn, allows
mitochondria to be engulfed by the autophagosomes and
then degraded [23].

Autophagy represents a cellular self-degradation process
involved in the degradation of bulk cytoplasmic components,
proteins, or entire organelles in basal or nutrient depleted
conditions. This process is also described as macroautophagy
and is different from the selective autophagy. The latter
is responsible for selective degradation of damaged and
dysfunctional organelles, and, thus, it represents the quality
control system for mitochondria [23]. In case of dam-
age, mitochondria undergo fragmentation, and PARKIN is
recruited to the organelles in a PINK1-dependent manner,
allowing their engulfment into the autophagosome and their
selective degradation (mitophagy) [24, 25]. On the other
hand, when macroautophagy is induced, mitochondria elon-
gate, being so spared by autophagosomes to ensure the major
energy supply required by the cell in starving condition [26].
Besides their role in mitochondrial quality control, PINK1
and PARKIN have also a role in regulating mitochondrial
dynamics. Moreover, BNIP3, a BH3-only member of the
Bcl-2 family, enlarges the number of proteins crosstalking
between autophagy and mitochondrial dynamics [27]. Its
misregulation has implications in the development of mus-
cular atrophy [28]. The existence of a crosstalk between
autophagy and the mitochondrial dynamics machinery, as
well as with the apoptotic process, opens new questions and
is in need of further investigations.

To reinforce the idea of an intimate connection between
mitochondrial dynamics and function, recently published
data have revealed that in vivo genetic ablation of fusion
(Opa1 knock-out mice [29, 30], Mfn1/Mfn2 double knock-
out mice [5]), or fission (Drp1 knock-out mice [31])
proteins results in early embryonic lethality. Other data
reveal mutations or abnormal regulation of mitochondria
shaping proteins in many pathological conditions, as we will
see below.

2. Cancer

According to the classification of the hallmarks of cancer by
Hanahan and Weinberg [32], a cell needs a multistep process
to become tumoral and, later on, to develop metastasis.
Mitochondria are crucially positioned for establishing resis-
tance to cell death and sustaining proliferative signallings.
Their role is essential for the metabolic shift to glycolysis
(the so-called Warburg effect), common in tumoral cells.
Increasing evidence shows the involvement of mitochondrial
dynamics in cancer development (see Table 1).

2.1. Escaping Cell Death and Regulating Mitochondrial Mor-
phology: A Role for the Bcl-2 Family Proteins. Escaping death
signals is one of the first characteristics of a tumoral cell. Bcl-
2 family proteins play an important role in balancing life and
death signals [33] converging on mitochondria and, at the
same time, in regulating changes in mitochondrial morphol-
ogy. Generally, prosurvival signals are associated with elon-
gated mitochondria, while cell death is usually accompanied
by mitochondrial fragmentation. BCL-2 is a tumoral marker
overexpressed in many lymphomas contributing to resistance
to cell death [34–36]. CED-9, the homolog of BCL-2 in C. ele-
gans, is able to interact with MFN2-inducing mitochondrial
fusion [37]. BCL-XL promotes instead fission stimulating
the DRP1 GTPase activity [38]. The proapoptotic BAK and
BAX stabilize DRP1 on mitochondria promoting fission [39],
indeed, Bak −/−Bax −/− cells have an elongated mitochon-
drial network [40]. Interestingly, BAX colocalizes with DRP1
and MFN2 at sites of fission so promoting mitochondrial
membrane permeabilization [39]. Finally, consistent with
their proapoptotic role, NOXA and PUMA trigger DRP1-
dependent mitochondrial fragmentation [41].

2.2. Metabolic State and Mitochondrial Shape Changes.
Another feature of tumoral cells is the already mentioned
shift from the production of ATP by oxidative phosphoryla-
tion to a glycolytic phenotype despite the presence of oxygen
[32]. It is not yet clear if this metabolic modification is an
adaptation to a hypoxic microenvironment or the result of
defects in OXPHOS respiration. Nevertheless, the existence
of a double relationship between mitochondrial morphology
and metabolic state is, however, increasingly evident. In
OXPHOS cells, mitochondria appear elongated (State III);
in glycolytic cells, they have a more fragmented phenotype
(state IV) [46, 47]. The molecular mechanism underlying
this phenomenon involves fusion proteins: reduced levels
of MFN2, MFN1, or OPA1 results in the inhibition of
TCA cycle, the decrease of oxidative phosphorylation, and
the increase of glycolysis and lactic fermentation [42, 43].
Moreover, in a tumoral mass, the cellular response to hypoxia
triggers mitochondrial elongation, dependent on HIF1; this,
in turn, increases the resistance to apoptotic stimuli [48]. On
the other hand, an efficient oxidative phosphorylation, and
the consequent optimal mitochondrial membrane potential,
(Δψ), is necessary for mitochondrial fusion [49, 50].

2.3. Cell-Cycle Regulation: When Cell Division Means Mito-
chondrial Fragmentation. It has been shown that mitochon-
dria undergo fragmentation during the S and M phase of



4 International Journal of Cell Biology

the cell cycle to allow a limitation of the mutation rate
during DNA replication, through a temporary decrease of
oxidative phosphorylation (which is the main source of
ROS). Such fragmentation is also necessary for an equal
segregation of mitochondria between the daughter cells [51,
52]. This process is mainly regulated by CDK1/Cyclin B
complex, which phosphorylates DRP1 at the beginning of
the S phase, resulting in DRP1 recruitment on mitochondria
and subsequent mitochondrial fragmentation [53]. Thus,
in normal conditions, the fragmentation of mitochondria,
required during cell division, is a DRP1- and CDK1-
dependent process, but in many tumors the cell cycle is
dysregulated, and CDK1 activity becomes altered. It remains
to be investigated whether this has an effect also on the
morphology of mitochondria.

2.4. ROS Production and Mitochondrial Fragmentation. To
continue this overview, ROS can be considered as both
initiator factors of the tumor (inducing genome and mtDNA
mutations) and enhancing factors giving a higher rate of
proliferation to the cells [54, 55]. ROS production is mainly
attributed to mitochondria, at the level of respiratory chain,
and, in case of mitochondrial fragmentation, it is enhanced.
Significantly, ionizing radiation is accompanied by ROS
production and mitochondrial fragmentation in a DRP1-
dependent way, so contributing to genome instability and
carcinogenesis [44].

Interestingly, clinical studies of lung adenocarcinoma
reveal a role for DRP1, independent of the mitochondrial
morphology. In this tumor, DRP1 is overexpressed, but
is sequestered in the nucleus by hHR23A, so avoiding its
localization on mitochondria and conferring resistance to
cisplatin [56]. A central role for mitochondrial dynamics also
emerges in other studies. IL-6 dependent cancer cachexia is
characterized by MFNs mRNA reduction and FIS1 mRNA
upregulation [57]. FIS1 is also upregulated in some subtypes
of human malignant melanoma [58].

In a more general way, cancer cells share characteristics
with stem cells, in particular regarding mitochondrial mor-
phology, localization, function, and mtDNA content [59]. Of
note, in embryonic stem cells, there is a growth factor erv-1-
like (GERF)-dependent DRP1 downregulation, which leads
to mitochondrial elongation and an enhanced cell viability
[60].

Finally, in lymphocytes mitochondria fission and relocal-
ization to the uropod are necessary for the polarization and
chemotaxis of these cells [45], so unravelling a possible role
for mitochondrial morphology also in metastasis formation,
where the acquisition of migratory capability represents the
main feature of a metastatic cell phenotype.

3. Neurodegenerative Diseases

3.1. Beyond the Morphology: Physiological Mechanisms Af-
fected by Altered Mitochondrial Dynamics in Neurons. Before
starting the examination of different pathologies directly
related to mitochondrial dynamics failure or imbalance (see
Table 2), we would like to give an overview of some of

the possible mechanisms whereby mitochondrial dynamics
alterations can lead to neurodegeneration: aberrant mito-
chondrial trafficking, altered interorganellar communication
and impaired mitochondrial quality control [61].

3.1.1. Mitochondrial Trafficking. Neurons, especially motor
neurons, are characterized by long axons up to more than
one meter at the end of which synapses exert their role in
cellular-cellular communication. The resulting importance
of mitochondrial anterograde transports to the synapses
(to ensure ATP production necessary for neurotransmitters
vesicles to be discarded [62]) and of retrograde movement
to the soma of the cell are both clearly evident. Mitochon-
dria rely on dynein/dynactin motor for the anterograde
movement, on kinesin motor for the retrograde one, and
on MIRO and MILTON as an additional mitochondrial
linker and regulatory proteins [63]. Thus, a defect in
the cellular motors, or in the mitochondria compartment
to be loaded as cargo, could result in a mitochondrial
deficit at synapses and in neurodegeneration. There is no
direct correlation described so far in patients although, in
some sporadic cases of Alzheimer disease (AD), trafficking
alteration has been observed due to mutation in Kinesin1
[64]. That said, increasing data are emerging in experimental
models. Anterograde and retrograde trafficking is altered in
Amyotrophic lateral sclerosis (ALS) mouse models in which
SOD1 [65, 66], guanin-nucleotide exchange factor (GEF)
and TAR DNA-binding protein 43 (TDP-43) are mutated
[67, 68]. Noteworthy, a role for mitochondrial trafficking
impairment has been demonstrated in pathologies not only
affecting long axon neurons but also short cortex and
hippocampal ones (this is the case of Alzheimer disease—
AD—models) [64, 69, 70]. Similar observations come from
works in a Huntington’s disease (HD) mouse model, in
which mutated Htt (the gene of HUNTINGTIN protein)
is able to block mitochondrial movement [71] and causes
a redistribution of kinesin and dynein in primary cortical
neurons [72]; in Parkinson disease (PD) cellular and mouse
models where PINK1 has been shown to interact with MIRO
and MILTON [73], as well as with α-SYNUCLEIN, LRRK2,
and PARKIN, to disrupt the microtubule network in the cell
[74–76].

3.1.2. Mitochondria-Associated Membranes and Ca2+ Homeo-
stasis. In recent decades, a functional role for mitochon-
dria-ER interactions and Ca2+-signalling implications has
emerged [6]. The sites where these two organelles interact are
defined as mitochondria-associated membranes (or MAMs),
and MFN2 activity is pivotal in ER-mitochondria tethering
and MAM formation. MAMs have a role in regulating
calcium crosstalk between ER and mitochondria, so avoiding
Ca2+ overload in mitochondria in physiological condition
and revealing, thus, an unexpected connection with mito-
chondrial trafficking. In fact, MIRO is a calcium-binding
protein; it has been proposed that only in calcium unbound
state (low local Ca2+ concentration) is it able to interact with
MILTON, so allowing movement of mitochondria [101].
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Table 2: Mitochondrial dynamics and neurodegenerative diseases.

Pathology
Proteins involved

(expression level and/or mutation)
Mitochondrial
phenotype

Mechanisms of pathophysiology
involving mitochondria

Alzheimer disease
MFN1, MFN2, OPA1 ↓↓

DRP1, FIS1 ↑↑
KINESIN mutation

Fragmentation,
disruption of cristae
structure, reduction in
number of mitochondria
in dendrites, impaired
mitochondrial
trafficking, defects in
KGDH complex, PDH
complex and COX.

β amiloyd accumulation and
interaction with DRP1, enhanced
CDK1 activity, altered interaction
between mitochondria and Kinesin
motor complex in cerebral cortex
[77–79].

Huntington’s disease
MFN1, MFN2, OPA1 ↓↓

DRP1, FIS1 ↑↑
HTT mutation

Fragmentation;
impaired mitochondrial
trafficking, defects in
SDH (complex II) and
Aconitase.

HTT interaction with DRP1,
increased calcineurin and DRP1
activity, redistribution of kinesin and
dynein motor complexes in striatal
neurons [80–82].

Parkinson disease

Parkin mutation or ↓↓
Pink1 mutation or ↓↓

DJ-1 mutation
DRP1 ↓↓

MFN2
α-synuclein mutation

LRRK2 mutation

Fragmentation,
impaired mitochondrial
trafficking.

Altered interaction between
mitochondria and motor complexes,
impaired mitophagy of damaged
mitochondria in substantia nigra
[74, 75, 83–86].

Amiotrophic lateral sclerosis
SOD mutation
GEFmutation

TDP-43 mutation

Fragmentation,
disruption of cristae
structure with expansion
of IMS, impaired
mitochondrial
trafficking, complex I
dysfunctions.

Toxicity associated to the formation
of aggregates of mutant SOD, in
subsarcolemmal region of muscles
and anterior horn neurons of lumbar
spinal cord [87–93].

Autosomal dominant optic
atrophy

OPA1 mutation
Fragmentation, complex
I dysfunctions.

Major sensitivity to death stimuli in
retinal ganglion cells and optic nerve
[94–98].

Charcot Marie Tooth Type 2
MFN1 mutation
GDAP1mutation

Fragmentation (MFN1
mut) or elongation
(GDAP1 mut).

MFN1: probably alteration in
ER-mitocondria tethering and
Calcium signalling [99]; GDAP1:
altered localization of GDAP1 [100].

Thus, an alteration in Ca2+ homeostasis, due to abnor-
mal ER-Mito crosstalk, results in impaired mitochondrial
movement and consequently in neurodegeneration [101].
Moreover, Amyloid β, a constituent of extracellular neurite
plaques in AD, is abundant in MAMs, contributing to
interorganellar dysfunctions [102]. Altered MAM organi-
zation has been proposed also for spinocerebellar ataxias
(SCA), due to mutation in the regulatory subunit of Protein
phosphatase 2A, PPPR2B [103], and for PD, due to mutation
in the subunit 2b of phospholipase A2 (iPLAS2b). The latter
is important in ER-mitochondria crosstalk during apoptosis
mediated by ER stress [104].

3.1.3. Mitochondrial Quality Control. The role of mitochon-
drial quality control is becoming increasingly prominent
in the explanation of neurodegenerative diseases such as
Parkinson disease (PD) and others. A general mechanism of
mitochondrial quality control relies on the PINK1/PARKIN

pathway, deeply studied in vitro. Briefly, loss of Δψ induces
stabilization of PINK1 on the OMM and allows PARKIN
recruitment on mitochondria. This, in turn, leads to ubiq-
uitination of mitochondrial substrates and their interaction
with p62 and LC3 so as to induce the engulfment of
mitochondria inside the autophagosome [24, 25]. MFNs, for
example, are ubiquitinated in a PARKIN-dependent manner
[105] and then degraded by proteasome [106]. Others
showed that DRP1 stability is also regulated by PARKIN
[107].

3.2. Focus on the Pathologies. Coming back to the patholo-
gies, in this paragraph, we will focus on the links between
some of them and the mitochondrial dynamics.

3.2.1. Alzheimer Disease. The main clinical feature of
Alzheimer disease (AD) is the accumulation of extracellular
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deposits of amyloid β (Aβ) plaques and tau-containing intra-
cellular neurofibrillary tangles in the brain, these leading to
progressive neuronal death. From a morphological point of
view, neurons expressing amyloid protein precursor (APP),
or Amyloid β, show abnormal levels of mitochondrial shap-
ing proteins with downregulation of MFNs and OPA1 and
upregulation of DRP1 and FIS1 [69, 70, 108, 109]. Amyloid
β interacts with DRP1 [77], promoting mitochondrial fission
in a DRP1 S-nitrosilation-dependent manner [110, 111].
Tissues from patients affected by AD show mitochondria
with disrupted cristae structure [112] and reduction of the
number of mitochondria in dendrites [69]. Interestingly,
although cell-cycle-coupled events are rare in postmitotic
cells, the activity of CDK1 and CDK5 is enhanced in
AD. CDK5 phosphorylates tau [78], while a high level of
phosphorylated DRP1 at Serine 616 appears to be dependent
on both CDK1 and protein kinase C δ (PKC δ) [79], as it has
been shown in rat primary neurons.

3.2.2. Huntington’s Disease. A mitochondrial connection is
emerging also in Huntington’s disease (HD); mitochon-
drial succinate dehydrogenase (SDH, complex II), aconitase
defects [80], and mtDNA damage [113] have been reported
in in vivo models of HD. In addition, 3-nitropropionic acid,
an irreversible inhibitor of complex II, has been shown to
induce mitochondrial fragmentation and HD-like symptoms
in rats and mice [81]. Of note is that primary striatal neurons
from HD mouse models reveal mitochondrial fragmentation
[114] with an alteration of mitochondrial shaping proteins
in the brain (DRP1 and FIS1 upregulation, OPA1 and MFN1
downregulation) [115]. Mutant HUNTINGTIN is able to
bind DRP1, increasing its GTPase activity and inducing
mitochondria fragmentation both in mice and in human
brains [82]. This phenotype is rescued by MFNs or DRP1-
K38A-dominant negative overexpression and by the use of
two DRP1 inhibitors, mdivi1 or miR-499 [116–120].

3.2.3. Parkinson Disease. Independent studies identified α-
synuclein, Pink1, Parkin, DJ-1, and Leucine-rich repeat kinase
2 (LRRK2) as commonly mutated genes in Parkinsonism. α-
SYNUCLEIN and LRRK2 have been proposed as playing a
role in microtubule organization and, thus, in mitochondrial
trafficking [74, 75]. PINK1 and PARKIN are key proteins
in mitochondrial quality control [24, 25], as we discussed
above. Interestingly, opposite to what has been observed in
drosophila [121, 122], downregulation of PINK1 or PARKIN
by siRNA in neuroblastoma cells leads to mitochondrial
fragmentation [83]. Also in this case, this fragmentation
is rescued by genetically forcing the mitochondria mor-
phology equilibrium towards fusion, or by treatment with
the calcineurin inhibitor FK506 [84, 85]. The recruitment
of PARKIN to mitochondria has been nicely investigated
in different models; generally, it has been shown that
upon mitochondrial membrane depolarization PARKIN is
recruited to mitochondria both in primary and cultured cell
models [25], but this mechanism is also inhibited in primary
neurons [86]. The apparent discrepancy in the results among
different experimental models could be explained, at least in

part, by the observation that those cell models rely on differ-
ent bioenergetic systems. It has been shown, in fact, that, in
primary rat neurons, which largely depend on mitochondrial
respiration to produce ATP, or in nonneuronal cells forced
to mitochondrial respiration, PARKIN fails to translocate to
mitochondria after membrane depolarization in contrast to
what is observed in cells relying on glycolytic production
of ATP [86]. This suggests that additional regulatory and/or
protective mechanisms against mitochondrial damage have
to be investigated in neurons. We should also consider
that, in all these studies, loss of Δψ is obtained by treating
cells with high concentrations (or for long terms) of the
protonophores CCCP or FCCP. A common challenge in the
next future will be the identification and the use of more
physiological stimuli to induce mitochondrial damage, and
mitophagy, to better mimic the in vivo mechanism of patho-
physiology of neurodegenerative diseases. By this way, it will
be possible to clarify some of the discrepancies remaining in
the field such as, for example, the differences observed so far
for the PINK1/PARKIN functional interaction in various cell
lines; or considering the loss of Δψ (artificially induced and
forced in all the in vitro experiments performed until now)
as the only event triggering mitophagy, another point highly
debated and controversial to date.

A mouse model of DJ-1 knockout presents mitochon-
drial fragmentation [123], increased ROS production, and
reduced respiration rates accompanied by basal autophagy
impairment [124]. Complex I dysfunctions are common in
PD, and its inhibition, by rotenone or 6-hydroxydopamine
(6-OHDA) treatment, results in a DRP1-dependent mito-
chondrial fragmentation in neurons [125, 126], so suggesting
another link between bioenergetic dysfunctions and altered
mitochondrial dynamics in neurodegenerative diseases.

3.2.4. Amyotrophic Lateral Sclerosis. In the 20% of patients
affected by an autosomal dominant form of amyotrophic
lateral sclerosis (ALS), a gain of function mutation in SOD1
has been detected [87]. Defects of complex IV activity
and mtDNA rearrangement have been also reported in
patients affected by ALS [127, 128]. Abnormal aggregation
of mitochondria is common in the subsarcolemmal region
of muscles and in the anterior horn neurons of the lumbar
spinal cord [88, 89]. At ultrastructural levels, in the case of
ALS, mitochondria show disorganized cristae with expansion
of intermembrane space (IMS) [90, 91]. Of note, the
overexpression of a mutated form of SOD1 in ALS (SOD1-
G93A) induces fragmentation of mitochondria in NSC-34
motoneuronal-like cells [92]. Moreover, motor neurons from
mice overexpressing SOD1-G93A show impaired mitochon-
drial fusion both in axons and in the cell body with impaired
retrograde axonal transport and reduction of frequency and
speed of the movement [93].

3.2.5. Autosomal Dominant Optic Atrophy. Opa1 mutations
are responsible for the autosomal dominant optic atrophy
(ADOA) [94, 95]. Contrary effects regarding oxidative phos-
phorylation impairment related to this disease have been
published. Phosphorus magnetic resonance spectroscopy
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and luciferin/luciferase assays of muscle cells from ADOA
patients showed a reduced ATP production mainly due to
reduced complex I activity [129, 130]. On the other hand,
in other studies, no energetic impairment was observed
in lymphoblasts and muscle cells from ADOA patients
[96, 97]. Whatever the case, consistent with the role of
OPA1 in regulating mitochondrial dynamics, mitochondrial
fragmentation is a common feature of ADOA with a severity
score of the pathology directly proportional to the level of
fragmentation observed [97, 98, 130]. Interestingly, fibrob-
lasts from ADOA patients also reveal a major sensitivity to
death stimuli [98], in line with the antiapoptotic role of
OPA1 described above [8].

3.2.6. Other Neuropathies and Neurological Disorders.
Among other neuropathies Leber hereditary optic
neuropathy (LHON) has, as a primary cause, mutations in
mtDNA [131]. Recently, a possible link with mitochondrial
dynamics has been presented in a genome-wide linkage
scan study, in which a mutation in Parl (the mitochondrial
protease responsible for OPA1 cleavage, [132]) has been
associated with LHON [133].

MFN2 is involved in the most common form of the auto-
somal dominant axonal Charcot-Marie-Tooth (CMT2A)
disease [99]. Moreover, ganglioside-induced differentiation-
associated protein 1 (GDAP1), whose mutations cause an
autosomal recessive form of CMT, appears to be related to
mitochondrial fission in mammalian cells [100].

In addition, in a mouse model of apoptosis-inducing
factor (AIF) deficiency, MFN1 levels are decreased in the
cerebellum and are accompanied by death of Purkinije cells
[134]. This phenomenon is generally observed in many
neurological diseases such as autism, HD, AD, multiple
system atrophy, and epilepsy [135]. Consistently, also in
Mfn2 knock-out systems, death of Purkinije cells has been
observed, confirming a role for MFNs in protecting against
lack of mtDNA and dysfunction of mitochondria in the
cerebellum [136].

In the last decade, a link between neurological and lym-
phatic aspects has emerged in schizophrenia [137]. Recently,
a study in schizophrenia-derived lymphoblastoids revealed
altered oxidative phosphorylation at level of complex I and
clustering of mitochondria in a limited area of the cell, with
a reduction in OPA1 expression levels [138].

To conclude, neurons rely on mitochondrial distribution,
function, and dynamics to allow synapses and dendrites
formation, energy supply, and quality control. The main
properties of neurons constitute risk factors themselves
if we consider the effects of mitochondrial dysfunctions.
First, they are cells highly demanded in energy; second,
they have long processes connecting the soma to synapses
and dendritic spines; third, they are long-lived postmitotic
cells. Although knowledge is increasing about mitochondrial
role in neurodegenerative diseases, much remains to be
elucidated, in particular, why different subpopulations of
neurons are more vulnerable to mitochondrial fusion/fission
imbalance and dysfunctions.

4. Neuroinflammatory and
Autoimmune Diseases

Little is known about the link between mitochondrial
dynamics and neuroinflammatory or autoimmune diseases.
In this section we present correlations described to date with
multiple sclerosis (MS) and type I diabetes, as examples for
this category of diseases (see Table 3). We then introduce
some general outcomes about mitochondrial dynamics and
T-cell compartment with the potential for opening up
new perspectives regarding cellular mechanisms and clinical
therapies for many pathologies.

4.1. Optic Neuritis and Multiple Sclerosis. Optic neuritis
(ON) is a neuropathy characterized by demyelination of the
optic nerve; it can be present by itself or as part of MS.
Multiple sclerosis is an autoimmune disorder characterized
by chronic demyelination of the central nervous system
(CNS). The pathogenesis of MS is thought to involve self-
antigen-reactive T lymphocytes that have the capacity to
invade the CNS and to promote tissue damage.

It is not rare to find mtDNA mutations and mitochon-
drial abnormalities in patients affected by ON [143]. For
instance, in a case of OPA1 mutation (S646L) ADOA has
been shown to be associated with MS. This mutation leads
to reduction of respiratory rates with lower ATP production
[139], which is implicated in demyelination of axons in
MS [140]. Interestingly, it has been shown that symptoms
of autoimmune disorders, including MS, improve during
pregnancy due, at least in part, to the expression of embryo-
derived preimplantation factor (PIF). This protein is able
to reduce neuroinflammation and to promote neural repair
in the experimental autoimmune encephalomyelitis (EAE)
model of MS, through a general decrease in proinflammatory
cytokine and chemokine secretion, and a downregulation of
proapoptotic factors and of activating and migrating proteins
such as OPA1 [144].

4.2. Type I Diabetes. Type I diabetes is an autoimmune disor-
der caused by autoimmune elimination of insulin-producing
β cells in the pancreas, clinically leading to increased glucose
in blood and urine. Coronary endothelial cells from diabetic
mice are characterized by fragmented mitochondria with
a downregulation of OPA1 and an upregulation of DRP1
[141]. In addition, Prohibitin (Phb) has been shown to have
a protective role in β cells [142]. Interestingly, phb-genetic
ablation results in aberrant mitochondrial cristae structure
and an increased apoptosis, dependent on increased prote-
olytic processing of OPA1 [15]. Moreover, it has been shown
that the embryo-derived preimplantation factor (PIF) also
prevents type I diabetes in mouse models of this disease
[145].

4.3. Mitochondrial Morphology and T-Cell Function. The
importance of mitochondrial localization and activity in T
cell function is well established. T cells are activated at the
so-called “immunological synapse” between a T cell and an
antigen-presenting cell (APC) [146]. Mitochondria usually



8 International Journal of Cell Biology

Table 3: Mitochondrial dynamics and neuroinflammatory and autoimmune diseases.

Pathology
Proteins involved

(expression level and/or mutation)
Mitochondrial
phenotype

Mechanisms of pathophysiology
involving mitochondria

Multiple sclerosis OPA1 mutation Fragmentation.
Reduction of respiratory rates with lower
ATP production [139, 140].

Type 1 diabetes
OPA1 ↓↓
DRP1 ↑↑

PHBs mutation

Fragmentation,
disruption of cristae
structure.

Alteration in OPA1 processing in β-cells
in the pancreas and coronary endothelial
cells from diabetic animals [141, 142].

fragment and relocalize at the immunological synapse in
close proximity to the plasma membrane to buffer Ca2+

entrance and to avoid calcium-dependent T-cell inactivation
[147]. Moreover, upon activation, T cells migrate to the
site of inflammation towards a chemoattractant gradient.
Our group reported that mitochondria allow lymphocyte
migration by relocating and accumulating at the uropod
(the posterior area of an activated T cell) where they can
provide the necessary energy to class II myosin proteins,
these being the major cellular motors. Interestingly, this
reorganization needs mitochondrial fission while a forced
fusion inhibits both mitochondrial relocalization and lym-
phocyte migration [45]. In recent years, the polarization of
mitochondria towards cell-cell surface has also been shown
to occur between natural killer (NK) and tumoral cells
[148, 149].

Mitochondrial fission, driven by FIS1 and DRP1, also
contributes to the immune system tolerance and the tumor-
immune escape in a galectin-1 (GAL-1)-dependent manner.
GAL-1 sensitizes resting and activated T cells to FAS-
mediated cell death program, which is characterized by
mitochondrial dysfunctions, membrane potential alteration,
mitochondrial fission, and cytochrome c release [150].

It still remains to be elucidated whether or not mito-
chondrial dynamics play a crucial role in other important
physiological processes in T cells.

Finally, CD47 can trigger cell death in a B lymphocyte
leukemia. Also this apoptotic pathway is characterized by
DRP1 translocation to mitochondria, which depends on
chymotrypsin-like proteases, Δψ loss and ROS production
[151]. This last observation is an indication of a possible
role of mitochondrial dynamics in general in the whole
immune system, more than only in the T-cell physiology and
pathophysiology.

5. Conclusion

The observations here presented suggest a prominent role
for mitochondrial dynamics in a plethora of pathways
from cell proliferation to resistance to apoptosis, from cell-
energetic requirements to quality control mechanisms, from
homeostasis to activation and movement of immune system
cells. However our observations also suggest the potential
for many new findings to come. The aim of future studies
would, therefore, be to extend our knowledge of basic
mechanisms underlying pathologies, and their relationship
with mitochondrial morphology alterations. This, in turn,
could make it possible to draw up novel strategies and

treatments to improve the prognosis of an increasing number
of patients.
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[95] M. Ferré, D. Bonneau, D. Milea et al., “Molecular screening
of 980 cases of suspected hereditary optic neuropathy with a
report on 77 novel OPA1 mutations,” Human Mutation, vol.
30, no. 7, pp. E692–E705, 2009.

[96] V. I. Mayorov, A. J. Lowrey, V. Biousse, N. J. Newman,
S. D. Cline, and M. D. Brown, “Mitochondrial oxidative
phosphorylation in autosomal dominant optic atrophy,”
BMC Biochemistry, vol. 9, no. 1, article 22, 2008.

[97] M. Spinazzi, S. Cazzola, M. Bortolozzi et al., “A novel
deletion in the GTPase domain of OPA1 causes defects in
mitochondrial morphology and distribution, but not in
function,” Human Molecular Genetics, vol. 17, no. 21, pp.
3291–3302, 2008.

[98] A. Olichon, L. Baricault, N. Gas et al., “Loss of OPA1
perturbates the mitochondrial inner membrane structure
and integrity, leading to cytochrome c release and apoptosis,”
The Journal of Biological Chemistry, vol. 278, no. 10, pp.
7743–7746, 2003.
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