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Background: The mission of medicines regulatory agencies is to ensure the timely

access of innovative products for patients to improve public health. Thus, regulators

should foresee evolving technologies and build expertise prior to reviewing innovative

products. Novel modalities and new classes of therapeutics in biological or cell-based

products represent a regulatory challenge because of knowledge gaps, as exemplified by

the unexpected cytokine release syndrome in the first-in-human clinical trial of the CD28

super-agonist. Meanwhile, recent treatments harnessing T cell co-signaling pathways

provide an opportunity for investigation. Therefore, this study aimed to systematically

identify and evaluate novel modalities for T cell immunity to assess the need for

regulatory guidance.

Methods: A PubMed search was carried out using the query, “immun∗ AND t lymph∗” to

select publications. Subsequently, a citation network was created, followed by clustering

and text mining to identify the modalities and classes of therapeutics under development.

Results and Discussion: Analysis of the top 20 clusters revealed research domains

characterized by keywords such as immune checkpoint antibody, chimeric antigen

receptor (CAR)-T cells, microbiota, exosome, regulatory T cells, unconventional T cells,

and vaccines. After reviewing the pharmacological concepts, clinical trial information, and

available guidance, we presented a perspective on the future development of guidance

for these domains.

Conclusion: Bibliometric analyses identified a set of innovative modalities targeted for

drug development with which regulatory guidance is going to catch up. This strategy

could help in the successful development of upcoming modalities to ensure readiness

for clinical application as part of horizon scanning.

Keywords: regulatory science, horizon scanning, drug development, citation network, regulatory guidance,

immunotherapy, T cell therapy, novel modality
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INTRODUCTION

Our mission as medicines regulatory agency is to protect
and promote public health. We achieve our mission through
regulatory science, which underlies the objective evaluation of
the safety, efficacy, and quality of medical products and supports

science-based decision-making. The development of standards

and regulatory guidance accelerates product development and
regulatory review to make innovative products available to
the public in a timely manner. At the same time, regulatory

agencies are confronted with emerging technologies that may
have issues beyond the expertise gained from existing medical
products. Novel modalities in biological or cell-based products
represent a regulatory challenge in terms of efficacy, safety,
and quality because of the heterogeneous nature of the product
and the multifaceted mode of action. For example, the use
of intestinal microbiota as biological products poses a gap
to be filled, as they do not reach the systemic circulation
but rather modulate mucosal immunity (1). To respond to
innovation, medicines regulators worldwide, including in Europe
(2) and Japan (3), explore many ways for horizon scanning
and cooperate via an international framework, the International
Coalition of Medicines Regulatory Authorities (ICMRA) (4). As
described previously, it is common to use scientific literature,
committees, expert groups, the web, andDelphimethodologies to
identify innovation (5). Thus, a comprehensive and transparent
methodology is required.

To complement foresight capacity, text mining of a dataset of
scientific publications provides a tool for the early identification
of emerging technologies, as discussed for Tools for Innovation
Monitoring in Europe which makes an overall science survey
(6). Text mining technique has extensively been used by
policy-makers (6, 7). A combination of text mining and
network analysis reported the emergence and evolution of
research fronts in biomedical areas (8–11). This strategy, using
bibliometric analysis, has the advantage of being supported by
scientometric evidence and elucidates paradigms or key elements
organizing innovation.

A caveat for searching a database is to determine the
appropriate “search term,” which captures the panoramic view
of how the key elements of the target field are organized. One
solution is to select an encompassing search term that captures
the co-evolution of related paradigms (10).

Herein, we focused on the pharmacologic interventions that
have been developed for T cell immunity as a case study of
bibliometric analysis for horizon scanning. T cells play pivotal
roles in the immune system and have therapeutic potential
against cancer, autoimmune and/or infectious diseases, and
inflammatory conditions. The ability of T cells to form “memory”
cells is the fundamental basis of vaccination; however, they are
also responsible for harmful reactions such as graft-versus-host
disease (GvHD) or donor cell rejection in allogeneic transplants.
The first-in-human clinical trial of TGN1412 (monoclonal
antibody to co-stimulator CD28), which caused serious adverse
effects, highlighted the critical need for regulating the therapeutic
ability of T cells and their destructive potential (12). Recently,
however, harnessing T cell co-signaling pathways to re-ignite T

cell immunity has achieved the practical use as two modalities:
one is cellular modality targeting cancer antigens through highly
activated chimeric antigen receptor (CAR)-T cells, the other
is antibody re-activating endogenous quiescent T cells through
checkpoint blockade. These new treatment paradigms prompted
us to investigate the development of the core modality in T
cell immunity.

To systematically identify novel modalities, we took three
steps; network formation with direct citation links, followed by
dividing the network into several clusters, finally extracting the
characteristic keywords of each cluster. These steps allow us to
grasp the overall landscape of T cell immunity, position and
interpret each cluster as a distinct technical domain and analyze
the targeted clusters with keywords.

This study aimed to explore the possibility of a citation
network and clustering in identifying modalities and classes
of therapeutics under development. We hypothesized that
bibliometric analyses would reveal clusters of distinct modalities
in T cell immunity, which would warrant regulatory guidance.

METHODS

Citation Network Analysis and Text Mining
The search query “immun∗ AND t lymph∗” was selected for
PubMed search, which yielded seven key articles (13–19) in the
research history of immune checkpoint inhibitors based on the
official page for the Nobel Prize in Physiology or Medicine 2018
awarded to Dr. James P. Allison and Dr. Tasuku Honjo (20).

We retrieved 134,361 publications from PubMed (published
up to December 2020), of which 92,731 (69.0 %) resulted in a
citation network by extracting the largest connected component
from all linkage components via direct citation of publications.
The start date was not specified to collect publications in the
PubMed as much as possible. The year of the oldest paper in the
largest connected component was 1970.

As shown in Supplementary Figure 1, after forming a citation
network from PubMed publications, it was converted into an
unweighted network with publications as nodes and citation
relationships as links. The network was then divided into several
clusters using the topological clustering method with modularity
maximization (Louvain method) (21–23). Subsequently we
computed the term frequency-inverse cluster frequency (TFICF)
to extract the characteristic keywords of each cluster. TF provides
a measure of the importance of a term in a particular sentence.
ICF provides a measure of the general importance of a term. The
TFICF of a given term i in a given cluster j is calculated as follows:

TFICF = tfi,j · icfi = tfi,j · log(N/cfi)

where N is the total number of sentences. TFICF reflects how
important and specific a word is to a cluster in comparison
with the collection of clusters. The TFICF value increases
proportionally to the number of times a word appears in the
targeted cluster and is offset by the number of clusters that
contain the word. TFICF differentiates the characteristic words
in a cluster from words that appear in general. The keywords,
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ranked in the top 20 TFICFs related to harnessing T cells for
therapeutics, were listed.

Other Information
Clinical trial information was collected from ClinicalTrials.gov;
regulatory guidance information, as of July 2021, was retrieved
from the FDA, EMA, and PMDA websites.

RESULTS

We analyzed a citation network of publications obtained from
PubMed, and 38 clusters were formed. The clusters were arranged
in descending order of the number of included constituent
papers (Supplementary Figure 1); the top 20 clusters were used
for subsequent analyses, which covered 95.3% of papers in the
citation network.

Table 1 summarizes the cluster keywords, ranked in the
top 20 TFICFs, on the recently developed modalities and
research fields. Clusters 1, 2, 3, 11, 13, 16, and 20 were
chosen because they contained keywords related to the use of
T cells for therapeutics. Cluster 1 contained keywords related
to immunotherapy, including vaccines, immune checkpoints,
CARs, and cytotoxic T lymphocytes. This cluster also had
“oncolytic” as a keyword with a lower TFICF. Cluster 2 consisted
of keywords related to mucosal immunity, such as microbiota,
intestinal, and dendritic cells (DCs). In addition, clusters 1 and
2 were sub-clustered due to the large volume of publications
to extract specific topics, showing the detailed character of
each cluster. Cluster 3 included keywords on regulatory T cells
(Tregs), autoimmunity, and tolerance, while cluster 11 showed
exosomes at the top of TFICF. The keywords for cluster 13
were characterized by unconventional T cells, such as invariant
NKT (iNKT) cells and mucosal-associated invariant T (MAIT)
cells. The keywords for cluster 16 included coronavirus, vaccine,
and severe acute respiratory syndrome, while those for cluster
20 comprised mesenchymal stem cells (or mesenchymal stromal
cells) (MSCs). Our analysis identified novel modalities classified
into each cluster in the citation network.

We characterized the research trends in each cluster by
selecting papers on drug development or translational research,
which have been published recently (mainly in the last 5 years).
The clusters, categorized bymodality, are summarized inTable 2.
In addition, the clinical study information for each modality was
supplemented to validate drug development.

Recent studies on immune checkpoint antibodies were
classified mainly into sub-clusters 1-1, 1-3, and 1-6.

• Sub-cluster 1-1 included papers on a similar class of immune
checkpoint modulators, i.e., inhibitory or stimulatory immune
checkpoints. Although antibodies against the co-inhibitory
receptors, cytotoxic T lymphocyte antigen 4 (CTLA-4) and
programmed cell death 1 (PD-1), exhibit prominent efficacy in
several cancer indications, only 20% of cancer patients respond
to single-agent checkpoint inhibitors (24). Accordingly, an
increasing number of studies in developing novel checkpoint
modulators that can reverse the blockade or rejuvenate T cell
immunity and their combination has been observed (24–27).

Various immune checkpoint modulators, such as lymphocyte
activation gene 3 (LAG-3), TIM-3, TIGIT, VISTA, OX40, 4-
1BB, GITR, and CD40, have been reported in clinical trials,
in combination or compared with anti-PD-1 or anti-CTLA-
4 therapy (28–33). Given that cancer and chronic infections
share common features, such as chronic exposure to antigens
and the development of exhausted effector T cells, there is
growing interest in strategies that apply immune checkpoint
inhibitors to chronic viral infections (25, 26). In both cases,
the therapeutic goal is to rejuvenate T cell immunity to
eradicate tumors or virus-infected cells. On the other hand, in
transplantation settings, the focus on manipulating T cell co-
signaling is to induce tolerance rather than rejuvenation (27).

• Sub-cluster 1-3 contained issues of response and resistance
to immune checkpoint blockade, tumor microenvironment
(TME), and tumor mutation burden, which have been
proposed as predictive biomarkers for the response to immune
checkpoint blockade (34, 39). Loss of the interferon (IFN)-
γ pathway has been reported as a mechanism responsible
for the lack of clinical responses to checkpoint blockade in
some patients (35, 40). A phase II clinical trial is underway
to investigate the combination of checkpoint blockade and
IFN-γ production within the TME (41). Cancer vaccines
require co-treatments to overcome immune evasion and
immune-suppressive microenvironments (36). Another study
pointed out that a personal, multi-peptide, neoantigen vaccine
for melanoma was effective alone or in combination with
checkpoint blockade (37). This cluster also included a report
on boosting checkpoint blockade with microbiota therapy in
preclinical models (38) and clinical studies (42, 43).

• Sub-cluster 1-6 contained issues regarding immune-related
adverse events, specifically those related to immune
checkpoint blockade (44, 45) as well as a combination of
cancer immunotherapy, including cancer vaccines, adoptive
cellular immunotherapy, and oncolytic viruses, to improve
clinical response and minimize toxicities (46, 47). Clinical
studies on combination therapy of cancer vaccines (48–50) or
oncolytic viruses (51) have also been reported.

The papers on engineered T cells and bispecific antibodies were

predominantly compiled in sub-cluster 1-8. T cells genetically

engineered to express artificial receptors, such as CARs, have

been the subject of intense scrutiny (52, 53). The mechanism

of bispecific antibodies is similar to that of CARs: it involves

bridging two target cells, thereby bringing immune effector cells

into close contact with particular tumor-associated antigens to

facilitate cell killing (54). Compared to CAR-T cells in B-cell

malignancies, the treatment of solid tumors with CAR-T cells

is less effective. CAR-T cell treatment targeting EGFRvIII in
glioblastoma resulted in antigen escape because of selection
pressure favoring expansion of a subset of tumor cells that lacked
the targeted antigen in the clinical trial (55). NY-ESO-1-specific
T cell receptor-engineered T (TCR-T) cells have generated
clinical responses in patients with synovial cell sarcoma and
have received Sakigake andOrphan regenerativemedical product
designation in Japan (56, 88, 89). Clinical studies on the treatment
of solid tumors with TCR-T cells targeting MAGE-A4 (57) or
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TABLE 1 | Characterization of the identified clusters by TFICF keywords.

Relevant cluster or

sub-cluster

Average

year

Number of

papers

Top keywords on the modalities and key elements in research fields

Diseases and etiology

Cluster 1 2011 14,538 immunotherapy, vaccine, immune checkpoint,

ipilimumab, CAR, CD8, CTL

tumor, melanoma

1-1 2011 2,286 programmed death (PD), CTLA, TIM, TIGIT, VISTA,

ICOS, CD28, CD155

tumor

1-3 2017 1,606 immune checkpoint inhibitor, TMB, neoantigen,

microenvironment, STING

tumor, melanoma, BRAF, MCPyV

1-6 2014 1,231 anti CTLA, immune checkpoint inhibitor, ipilimumab,

nivolumab, tremelimumab, IRAEs

tumor, melanoma, hypophysitis

1-8 2011 1,084 CAR, bispecific antibody, adoptive tumor, leukemia, WT1

Cluster 2 2008 11,087 peptide, microbiota, intestinal, mucosal, pylorus,

dendritic cell (DC), tolerance, IFN, gamma, CD4

autoimmune, infection, allergen,

inflammation

2-3 2012 1,376 intestinal microbiota, probiotic, colitis, mucosal, Treg IBD, hepaticus, ILFs

Cluster 3 2011 9,628 Treg, foxp3, tolerance, CD4, CD25 tumor, autoimmune, T1D

Cluster 11 2008 2,471 exosomes, TCR tumor

Cluster 13 2007 1,977 iNKT, NKT, MAIT, alpha GalCer, CD1d tumor

Cluster 16 2010 1,255 vaccine covid, coronavirus, severe acute

respiratory syndrome (SARS),

sars cov infection, tumor

Cluster 20 2011 824 MSC, ASCS ITP

The following keywords were obtained as abbreviations. CAR, chimeric antigen receptor; CTL, cytotoxic T lymphocyteTIM, T cell immunoglobulin and mucin domain; PD, programmed

death; CTLA, cytotoxic T lymphocyte associated antigen; TIM, T cell immunoglobulin and mucin domain; TIGIT, T cell immunoreceptor with immunoglobulin and ITIM domains;, VISTA,

V-domain immunoglobulin suppressor of T cell activation; ICOS, inducible T cell costimulatory; TMB, tumor mutation burden; STING, stimulator of interferon genes; MCPyV, Merkel cell

polyomavirus; IRAEs, immune-related adverse events; IFN, interferon; Treg, regulatory T cell; IBD, inflammatory bowel disease; ILFs, isolated lymphoid follicles; T1D, type 1 diabetes;

TCR, T cell receptor; iNKT, invariant natural killer T (cell); MAIT, mucosal associated invariant T (cell); GalCer, galactosylceramide; MSC, mesenchymal stem cell; ASCS, adipose derived

stem cells; ITP, idiopathic thrombocytopenic purpura.

CAR-T cells targeting glypican 3 (GPC3) have been reported (58).
Cluster 1 showed research trends on enhancing the antitumor
activity of immunotherapy and expanding disease targets, while
minimizing adverse events based on the molecular mechanism of
immune checkpoint blockade and engineered T cells.

We focused on sub-cluster 2-3 in cluster 2, since it contained
unique papers on mucosal immunity, including studies involving
intestinal microbiota and commensal bacteria. Although this
sub-cluster did not have many recent publications, it included
those relevant to the clinical development of microbiota-based
products. The top-cited papers describe how commensal
microbiota affect specific host T cells (59, 60). A subsequent
study reported a preclinical study on the isolation of Treg-
inducing bacterial strains from human microbiota (61).
Together with the study by Sivan et al. (38), studies on the
mechanism of microbiota-host interaction provided evidence
regarding the therapeutic potential of selected microorganisms
for inflammatory disease and cancer immunotherapy
(62). Clinical studies designed to assess the efficacy of
microbiota in addressing specific diseases have also been
reported (63–66).

Cluster 3 involved studies on Tregs. Sharabi et al. summarized
clinical trials of therapies administering Tregs to treat
autoimmune diseases, transplantation, and cancer (67).
Practical issues related to the isolation and manufacture of
Tregs for cell therapy have been noted (68). Clinical studies,

on the use of Tregs in treating type 1 diabetes (69) and kidney
transplantation (70), have been reported. This cluster revealed
clinical applications and hurdles for Treg-based cell therapy.

Cluster 13 comprised papers on iNKT cells that recognize
specific glycolipid antigens (alpha galactosylceramides)
presented by CD1d protein (71). Innate-like or unconventional
T cells include iNKT, MAIT, and γδ T cells, which recognize
lipids, vitamin B2 metabolites, and specially modified peptides,
respectively. The properties of these cells encompass innate
and adaptive immune responses against cancer and infectious
diseases (72, 73). Notably, unconventional T cells are considered
as non-traditional adjuvants to improve vaccine efficacy and are
capable of stimulating a wide array of immune cells (74). Phase I
clinical studies on iNKT cells have also been reported (75, 76).

Cluster 16 was distinct in that it consisted of papers
on coronavirus and vaccines. The number of papers in this
cluster reached a maximum in 2020 (Supplementary Figure 1).
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2)-specific T cells in patients with acute respiratory distress
syndrome have been characterized (77). The kinetics of immune
responses, in relation to the clinical and virological features
of a patient with mild-to-moderate coronavirus disease 2019
(COVID-19), have been reported (78). Kim et al. discussed recent
evidence on the adaptive immune response against SARS-CoV-
2 and its potential implications for the generation of memory
responses from the vaccine viewpoint (79).
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TABLE 2 | Research trends in each cluster.

Modality Relevant cluster

or sub-cluster

Research trend and technological class References in

each cluster

Clinical development (excluding

the approved products)

immune check

point antibody

Cluster 1

1–1

Immune check point modulators

Inhibitory immune checkpoints

PD-1, CTLA-4, LAG-3, TIM-3, TIGIT, VISTA

(24–27) (28) LAG-3, TIM-3, (29) TIGIT; Phase

III as of July 2021, (30) VISTA

Stimulatory immune checkpoints

CD28, OX40, 4-1BB, GITR, CD40, ICOS

(31) OX40, 4-1BB, (32) GITR, (33)

CD40

1–3 Response and resistance to immune check point therapy

tumor microenvironment (TME), TMB, neoantigen

(34–38) (39) exploratory TMB, (40)

IFN-γ-related gene expression

signatures, (41) IFN-γ production

within the TME, (42) microbiota, (43)

fecal microbiota transplantation

1–6 IRAEs and immunotherapy combination

cancer vaccines, oncolytic viruses, adoptive cell therapy

and checkpoint blockade

(44–47) (48) melanoma antigens, (49)

autophagosome vaccine, (50) cancer

vaccine, (51) oncolytic virus

CAR-T cells 1–8 Engineered T cells and Bispecific T cell engager

CAR, bispecific antibody, TCR-engineered T (TCR-T) cells

(52–55) (56, 57) TCR-T cells; solid tumor, (58)

prime CAR-T cells; solid tumor

microbiota Cluster 2

2–3

Manipulation of gut microbiota for the treatment of diseases

microbiota, commensal bacteria, intestinal microbiota, IBD

(59–62) (63) Clostridioides difficile infection,

(64) Crohn’s disease, (65) melanoma,

(66) food allergy

T cell subtype Cluster 3 Treg for immune-suppression

Treg, FOXP3, CD25

(67–69) (69) T1D, (70) minimizing immune

suppression in kidney transplantation

Cluster 13 Unconventional T cell for immunomodulation

iNKT cell, MAIT cell, cd1d, alpha GalCer

(71–74) (75) iNKT cells, (76) allogeneic iNKT

cells

vaccine Cluster 16 SARS-CoV-2 and T cell response

COVID-19, coronavirus, vaccine, SARS

(77–79) –

exosome Cluster 1

Cluster 11

Cluster 20

Immunoregulation by exosomes (80, 81)

(82, 83)

(84, 85)

(86) DC-derived, (87) MSC-derived

LAG-3, lymphocyte activation gene 3; GITR, glucocorticoid-induced tumor necrosis factor-related protein; the other abbreviations are listed in Table 1.

Clusters 1, 11, and 20 contained papers on extracellular
vesicles (EVs), including exosomes which have been the subject of
intense scrutiny, with respect to therapeutic applications, because
of their capacity for intercellular communication in modulating
immune responses (82). Plasma-derived exosomes were found to
be predictive of non-invasive biomarkers of immune dysfunction
in head and neck cancer (83). Exosomes secreted by DCs
have been sought as therapeutic antitumor vaccines in clinical
studies (80, 86), while engineered tumor cell-derived exosomes
potentiated DC immunogenicity and long-lasting antitumor
immunity in preclinical models (81).

Cluster 20 contained papers on MSCs. Stem/progenitor cell-
derived EVs exert immuno-regulatory effects on immune cells,
such as natural killer (NK) cells, DCs, and T cells (84). The
immuno-modulatory activity of MSC-derived exosomes was
compared with that of parental MSCs (85). Respiratory diseases
were the most common indication in clinical trials registered for
MSC-derived EVs therapeutics (90). Clinical studies of exosomes
carrying siRNA (87) have also been reported.

Table 3 lists the regulatory guidance documents issued for
each modality identified in the present study, as well as the
time of approval of the first product. Guidance documents were
available for cancer vaccines, oncolytic viruses, microbiota, CAR-
T cells and bispecific antibodies, and unavailable for immune
checkpoint inhibitors and exosomes (as of July 2021).

TABLE 3 | Guidance issued for cutting-edge modalities.

Modality Guidance

(published year)

Reference Product

approved year

cancer vaccine FDA (2011) (91) US in 2010

oncolytic virus ICH (2009) (92) US in 2015

microbiota FDA (2016), PMDA

(2021, planning)

(93) (*)

CAR-T cells EMA (2020) (94) US in 2017

bispecific antibody FDA (2021) (95) US in 2014

exosome PMDA (2022, planning) – (*)

*Guidance needs to be developed or updated.

DISCUSSION

Our investigation revealed citation network and clustering
captured the structure of T cell immunity field as distinct clusters.
Subsequently, our review of knowledge in each cluster brought
understanding of research fronts of major modalities. These steps
allowed us to assess the needs to develop regulatory guidance
for each modality. Our method provides an effective tool for
regulators to identify state-of-the-art research fronts to develop

Frontiers in Medicine | www.frontiersin.org 5 October 2021 | Volume 8 | Article 756870

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Fukaya-Shiba et al. Insights on Regulatory Guidance Development

guidance documents in a timely manner, minimizing the gap
between scientific innovation and product review.

Bibliometric Snapshot of the Evolving
Paradigm
Using the “immun∗ AND t lymph∗”query, we identified several
clusters that contained coherent groups of immunological
paradigms. The construction of a network of direct citations
between papers is useful for structurally grasping the origin of
knowledge in the field, and the network clustering method can be
used to extract distinct sub-regions. It is reasonable that cluster 1,
the largest cluster, consisted of the immune checkpoint blockade
and CAR-T cells sub-clusters, and provided an abundance of data
for immunotherapies and interconnected concepts. The addition
of a co-stimulatory domain into the second-generation CAR
greatly enhanced efficacy over that of the first-generation CAR
(55), leading to FDA approval. We also observed some intra-
and inter-cluster-linked papers contributing to the conceptual
framework. The top-cited paper in cluster 1 described a phase III
trial demonstrating survival benefit in patients undergoing anti-
CTLA4 therapy (96) which has been cited by a preclinical study
in sub-cluster 1-3 that revealed the mechanism of tumor-specific
mutant antigen, and the target of checkpoint blockade therapy,
thus proposing personalized cancer-specific vaccines (97). While
this preclinical study is cited by a review on combination therapy
(98) in sub-cluster 1-1, it is also cited by a review on CAR-T cells
for solid tumors (55) in sub-cluster 1-8. Therefore, our method
allows us to trace how a paradigm is developed.

Assessing the Need of Regulatory
Guidance
Regulatory agencies must build their expertise prior to reviewing
forthcoming products developed from evolving technologies,
to ensure availability of innovative products to patients in a
timely manner. We collected guidance documents that show
current regulatory thinking on chemistry, manufacturing, and
controls (CMC) as well as preclinical and clinical issues for
specific modalities.

Developing guidance for EVs is the top priority among the
identified modalities, since there is no guidance available. The
PMDA Science Board, a high-level consultative body that discuss
the scientific aspects of medical product review, will develop
points to consider (PTC) for EV-based products in a year (90).
Although EVs, including exosomes, have drawn attention as
potential therapeutics, their quality requirements are yet to be
addressed by regulatory bodies. Given the high congruence of size
and behavior between EVs and viruses, any virus present in the
materials or manufacturing process could be enriched in the final
product. Thus, a sound basis for assessing EV-based products
must be established.

As a high priority, the updated guidance of microbiota
as biotherapeutic products is needed, as there is no product
approved. The guidance for live biotherapeutic products was
developed by the FDA in 2012 and subsequently revised in 2016,
while in Europe, in the absence of EU guidelines, a roadmap for
safety assessment was proposed (1). The PMDA Science Board

will be reporting PTC on live biotherapeutic products based on
the latest knowledge. There is a need to continuously update the
regulatory guidance based on scientific advances made in the
field, and such documentation can facilitate the development of
novel modality-based products.

As for CAR-T cells, more specialized guidance could be
considered. While EMA provided clinical considerations on
CAR-T cells in hemato-oncology in 2020 (94), it is reasonable
to expect multifaceted issues relevant to CAR-T cells will be
addressed, including their use in the treatment of solid tumors
(55) or allogeneic genome-edited CAR-T cells (99). Allogeneic
CAR-T cells, using T cells from healthy donors, would provide
timely access to the treatment for patients, with stable quality,
avoiding the problem of T cell exhaustion inherent to cancer
patients. Genome-editing of endogenous TCR is undertaken to
overcome the harmful effects inherent to these molecules, such as
GvHD (donor cells attacking recipient tissue). However, genome-
editing is accompanied with safety concerns regarding off-target
effects, as described in the PTC of the PMDA Science Board
(100). Besides the structure-engineering of CAR, consideration
as alternative sources of T cells, such as NK cells, unconventional
T cells, or Tregs should also be regarded, as discussed below.

Because of the HLA-independent monomorphic nature of
CD1d or MHC class I-related protein (MR1), which constrains
iNKT or MAIT cell development, unconventional T cells can
be potential CAR carriers. These cells may provide a platform
for CAR-T cell therapy in allogeneic settings that do not
induce GvHD (101). In addition, these cells may serve as
antitumor effector cells since they represent an effector and
memory phenotype.

We should carefully monitor the evolution of the translational
potential of these cells to assess the need for regulatory guidance.

Regarding other identified modalities, the priority to develop
guidance is not high, given that the guidance documents are
available, and the products were approved. FDA guidance for
cancer vaccines and ICH consideration for oncolytic viruses
were issued close to the product approval time, thereby ensuring
timely patient access. FDA guidance for bispecific antibodies was
issued after product approval, implying the intention to inform
the development of other types of bispecific or multi-specific
protein products.

Despite the tremendous impact on clinical use, there
has been no specific guidance for immune checkpoint
inhibitor development. We assume that this is because the
regulatory pathway for evaluating monoclonal antibodies is
well-established. Instead, the management of immune-related
adverse events, which are distinct from those of conventional
cytotoxic and molecular-targeted drugs, has drawn attention,
as discussed (44, 45). Recent progress in the development of
immunotherapy has altered the strategy for developing anti-
cancer drugs, necessitating revision of the guideline for these
clinical evaluations in Japan (102).

From a Different Perspective
From the regulatory perspective of T cell immunity, it is
imperative to discuss the consequence of the TGN1412 clinical
trial. TGN1412, a super-agonistic monoclonal antibody specific
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for CD28 (CD28SA) that is intended to activate Treg cells, was
found to be therapeutically active in multiple rodent models
of autoimmunity. However, a phase I trial of TGN1412 failed
to induce Tregs but instead caused life-threatening cytokine
storms in healthy volunteers (12, 103). In response to these
results, regulators committed to minimizing the risk of serious
adverse reactions by publishing guideline and its update (104).
It had repercussions not only on mitigating risks for first-in-
human trials, but also on improving the translational potential
of laboratory animals. A recent study showed that laboratory
mice failed to mimic the phenotype of human subjects, whereas
wildlings with natural microbiota closely mirrored human
immune responses (105), indicating the importance of antigenic
experience in immune cells when considering translational
research. Immune phenotypes and functions emerge from the
combination of genetics, epigenetics and environment, including
microbiota (106). These findings might trigger a revisit of
the ICH S6 guideline (107) on preclinical safety evaluation of
biotechnology-derived pharmaceuticals.

Apart from detecting novel modalities, our citation network
compiled scarce papers on TGN1412, sporadically found in
clusters 1, 5, and 6 with the keyword, “TGN1412,” in TFICF (108–
113). Although one review described TGN1412 in the perspective
of T cell manipulation technology in 2012 (113) and another
study reported a humanized mouse model (109), we manually
filled the gap in scientific progress in the subsequent years. We
admit that technological concepts with high volumes of linked
papers are easy to detect, while concepts with limited research
resulting in papers with low linkage need careful consideration.

Limitation
We acknowledge that our analysis of the network structure
does not have predictive power for future innovation. Other
information, such as patents and budgets of the target modalities,
should be considered to create a cohesive plan for timely
roadmaps. Another limitation of our study largely reflects the
nature of the clustering. Extracting publications by the largest
connected component from all linkage components might result
in possible missed insights. This strategy may exclude relevant
papers with weak linkages, which could be related to the
intended objectives. For example, groundbreaking research on
the translatability of wildling mice with natural microbiota (105)
was not included in the clusters analyzed. Likewise, most recent
papers could not be recovered in the citation network because of

the low frequency of citations, as observed for TGN1412-related
papers. Such possibilities need to be carefully considered. Thus,
it is important that bibliometric results be seen as starting points
for subsequent exploratory analyses and reviews.

CONCLUSION

The present bibliometric analysis captured a set of innovative
modalities targeted for drug development and revealed several
classes of therapeutics of importance. The keywords in the
clusters highlight the roadmap for the timely development of
regulatory guidance as well as features of research trends that
provide important perspectives for subsequent consideration.
The citation network offered an efficient and transparent
exploratory analysis for horizon scanning that could be
considered a starting point for further review and evaluation.
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