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    Introduction 
 The plasma membrane of polarized columnar-shaped epithelial 

cells is segregated into functionally distinct apical and baso-

lateral domains that face different biological compartments and 

regulate vectorial transport of ions and solutes. Biogenesis of 

these membrane domains and maintenance of cell shape depend 

on protein sorting during vesicle budding from the TGN and 

endosomes, transport of vesicles along the actin and micro-

tubule cytoskeleton, and their fusion with the appropriate mem-

brane domain ( Griffi ths and Simons, 1986 ;  Matter and Mellman, 

1994 ;  Mostov et al., 2000 ;  Rodriguez-Boulan et al., 2005 ). 

 The microtubule cytoskeleton is involved in long-range 

transport of vesicular carriers and in the morphogenesis of 

columnar-shaped, polarized epithelial cells ( Musch, 2004 ). 

During polarization, microtubules are organized into a vertical 

network that orients along the apicobasal cell axis ( Musch, 

2004 ;  Rodriguez-Boulan et al., 2005 ). TGN-derived vesicular 

carriers associate with microtubules ( Van der Sluijs et al., 1990 ; 

 Hirschberg et al., 1998 ;  Toomre et al., 1999 ), and disruption of 

the microtubule cytoskeleton and its motor proteins reduces the 

effi ciency of apical and basolateral protein delivery to their re-

spective membrane domains ( Rindler et al., 1987 ;  Lafont et al., 

1994 ;  Grindstaff et al., 1998 ;  Kreitzer et al., 2000 ;  Jaulin et al., 

2007 ). How release and transport of vesicles from the Golgi 

complex to the plasma membrane are coordinated with micro-

tubule organization is unknown. 

 In the budding yeast  Saccharomyces cerevisiae , polar-

ized membrane growth is spatiotemporally coordinated by 

septins ( Barral et al., 2000 ;  Gladfelter et al., 2001 ), a family of 

conserved fi lamentous GTPases that associate with cell mem-

branes and the cytoskeleton ( Spiliotis and Nelson, 2006 ). 

In mammalian cells, septins bind to microtubules ( Surka et al., 

2002 ;  Nagata et al., 2003 ;  Spiliotis et al., 2005 ), but the func-

tional signifi cance of this association in interphase cells and 

the role of septins in the morphogenesis of polarized epithelia 

are unknown. Here, we examine the distribution and function 

of the mammalian SEPT2 with respect to the microtubule 

cytoskeleton of Madin-Darby canine kidney (MDCK) cells. 

We show that SEPT2 associates with a distinct subset of micro-

tubule tracks and is required for efficient Golgi-to-plasma 

membrane transport and the morphogenesis of columnar-shaped 

epithelial cells. 

I
n epithelial cells, polarized growth and maintenance of 

apical and basolateral plasma membrane domains de-

pend on protein sorting from the trans-Golgi network 

(TGN) and vesicle delivery to the plasma membrane. Septins 

are fi lamentous GTPases required for polarized membrane 

growth in budding yeast, but whether they function in epi-

thelial polarity is unknown. Here, we show that in epithelial 

cells septin 2 (SEPT2) fi bers colocalize with a subset of 

microtubule tracks composed of polyglutamylated (polyGlu) 

tubulin, and that vesicles containing apical or basolateral 

proteins exit the TGN along these SEPT2/polyGlu micro-

tubule tracks. Tubulin-associated SEPT2 facilitates vesicle 

transport by maintaining polyGlu microtubule tracks and 

impeding tubulin binding of microtubule-associated protein 4 

(MAP4). Signifi cantly, this regulatory step is required for 

polarized, columnar-shaped epithelia biogenesis; upon 

SEPT2 depletion, cells become short and fi broblast-shaped 

due to intracellular accumulation of apical and basolateral 

membrane proteins, and loss of vertically oriented polyGlu 

microtubules. We suggest that septin coupling of the micro-

tubule cytoskeleton to post-Golgi vesicle transport is required 

for the morphogenesis of polarized epithelia.

 Epithelial polarity requires septin coupling of vesicle 
transport to polyglutamylated microtubules 
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 Results and discussion 
 Immunofl uorescence microscopy of nonpolarized MDCK cells 

with antibodies to SEPT2 and the Golgi resident protein p115 

revealed a juxtanuclear tuft of SEPT2 fi bers closely apposed to 

the Golgi complex ( Fig. 1, A and B ). SEPT2 fi bers co-aligned 

with microtubules (Fig. S1 A, available at http://www.jcb.org/

cgi/content/full/jcb.200710039/DC1), and their distribution was 

dependent on microtubule structural integrity (Fig. S1 B). Because 

formation and transport of Golgi-derived vesicles occur along 

microtubules ( Hirschberg et al., 1998 ;  Toomre et al., 1999 ), we 

determined if SEPT2 localized to sites of vesicle export from 

the Golgi complex. We used high resolution live-cell imaging 

of MDCK cells that stably expressed a YFP-tagged SEPT2 at 

sub-endogenous levels ( Spiliotis et al., 2005 ) and transiently co-

expressed marker proteins of either the apical (CFP-tagged glycosyl 

phosphatidylinositol [gpi] or neurotrophin receptor protein 75 

[p75]) or basolateral membrane (CFP-tagged vesicular stoma-

titis virus G protein [VSV-G] or low density lipoprotein receptor 

[LDL-R]). Note that SEPT2-YFP fi bers colocalized with micro-

tubules around the TGN similar to endogenous SEPT2 ( Fig. 1 F ). 

Strikingly, the majority of tubular – vesicular carriers containing 

apical ( Fig. 1 C ; Video 1 and Fig. S2, B and D) or basolateral 

marker proteins (Fig. S2, C and E) exited the Golgi complex 

along SEPT2-YFP fi bers ( Fig. 1 E ). In contrast, membrane tu-

bules containing a TGN resident protein (galactosyltransferase; 

GalTase) rarely overlapped with SEPT2-YFP fi bers ( Fig. 1, D 

and E ; Video 2; Fig. S2 A). 

 In some instances SEPT2-YFP was not static but traversed 

the cytoplasm as tubular – vesicular elements (Video 3) with in-

stantaneous velocities (0.38  ±  0.16  � m/s;  n  = 33) similar to 

those of kinesin-driven vesicles ( Toomre et al., 1999 ). Consis-

tent with this observation, and with septin binding to membrane 

phosphoinositides ( Zhang et al., 1999 ) and synaptic vesicles 

( Beites et al., 1999 ), SEPT2 cofractionated with vesicle mem-

branes that contained exocytic cargo (E-cadherin) and the small 

GTPase Rab8 (Fig. S3). SEPT2 also colocalized with Golgi-

derived membrane tubules induced by expression of the inactive 

form of protein kinase D1 (PKD-K618N;  Fig. 1 G ), which blocks 

fi ssion from the TGN of vesicles that are specifi cally destined 

for the plasma membrane ( Liljedahl et al., 2001 ). 

 To test if SEPT2 is required for vesicle transport from the 

TGN to the plasma membrane, SEPT2 organization was dis-

rupted by microinjecting cells with anti-SEPT2 IgGs and exam-

ining the effects on traffi cking of the basolateral membrane 

marker VSV-G (ts045-VSV-G-YFP) and the apical membrane 

marker p75-GFP. In the presence of anti-SEPT2 IgGs, delivery 

 Figure 1.    SEPT2 fi bers localize to TGN sites of apical and basolateral pro-
tein export.  (A and B) Subconfl uent monolayers of MDCK cells were stained 
with SEPT2 and p115 antibodies, and imaged by confocal microscopy. 
Optical sections from the bottom, middle, and top of the highlighted Golgi 
region are shown at higher magnifi cation (B). (C and D) MDCK-SEPT2-
YFP cells were transiently transfected with gpi-CFP or GalTase-CFP, and 
imaged by time-lapse microscopy at 37 ° C. Non-neighbor deconvolution 
was applied and linear dynamic ranges were renormalized equally across 

the entire image to enhance the fl uorescence intensity of tubular – vesicular 
structures. Arrows point to tubular vesicular elements extending from the 
Golgi complex. (E) Tubular – vesicular carriers containing CFP-tagged gpi, 
GalTase, VSV-G, and p75 were scored for overlap with SEPT2-YFP fi bers 
( n  = 80 – 100; mean values  ±  SEM from three independent experiments). 
(F) 3D-rendered confocal images of a Golgi region from MDCK-SEPT2-
YFP cells stained with  � -tubulin and furin convertase antibodies. (G) HeLa 
cells were transfected with the protein kinase D1 mutant PKD-K618N 
(PKD1-KD) tagged with GST. Cells were stained with GST and SEPT2 anti-
bodies. Arrowheads point to a PKD-K618N – containing tubular extension. 
Bars,  � 5  � m.   
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tenance of polyGlu microtubules. To further test whether SEPT2 

is required for tubulin polyglutamylation, SEPT2 was buffered 

away from microtubules by overexpressing its cytoplasmic bind-

ing partner MAP4-GFP ( Kremer et al., 2005 ). Excess cytoplas-

mic MAP4-GFP (high levels of expression;  Fig. 3, C and F ) not 

only eliminated SEPT2 association with microtubules as re-

vealed by loss of juxtanuclear/Golgi-proximal SEPT2 fi bers, but 

also decreased the level of polyGlu microtubules ( Fig. 3, C and F ). 

These effects were specifi c for MAP4 because overexpression of 

the neuronal MAP1B ( Ding et al., 2002 ) ( Fig. 3 D ) or MAP8 

(unpublished data) light chains did not disrupt SEPT2 fi bers or 

polyGlu microtubules. 

 We next examined whether loss of SEPT2 fi bers and 

polyGlu microtubules affected vesicular transport between the 

Golgi and the plasma membrane. Indeed, loss of SEPT2 fi bers 

and polyGlu microtubule tracks upon MAP4-GFP overexpres-

sion resulted in decreased delivery of ts045-VSV-G-YFP to the 

of ts045-VSV-G-YFP ( Fig. 2, A and C ) and p75-GFP ( Fig. 2, B 

and D ) from the Golgi to the plasma membrane was greatly re-

duced compared with that in the presence of control IgGs. 

 Co-alignment of SEPT2 with microtubules near the TGN 

( Fig. 1 F  and Fig. S1 A) raised the possibility that SEPT2 might 

enhance vesicle transport on a qualitatively and/or functionally 

distinct subset of microtubule tracks. Immunofl uorescence with 

antibodies to acetylated and detyrosinated tubulin revealed little 

or no colocalization between these post-translationally modi-

fi ed microtubules and SEPT2 fi bers (unpublished data). In con-

trast, the preponderance of juxtanuclear/Golgi-proximal SEPT2 

fi bers colocalized with microtubules composed of polygluta-

mylated (polyGlu) tubulin ( Fig. 3 A ), which contains C-terminal 

side chains with 2 – 6 glutamate residues ( Edde et al., 1990 ). 

When levels of SEPT2 were reduced by SEPT2 siRNAs, there was 

a concomitant decrease in the level of polyGlu microtubules 

( Fig. 3, B and E ), indicating that SEPT2 is required for the main-

 Figure 2.    SEPT2 is required for effi cient Golgi-to-plasma membrane transport of basolateral and apical membrane proteins.  (A and B) Preimmune (mock; 
blue) or anti-SEPT2 (red) IgGs were microinjected into MDCK cells with plasmid vectors encoding for the temperature-sensitive mutant of the basolateral 
membrane protein VSV-G (ts045-VSV-G-YFP; A) or the apical protein p75-GFP (B). After accumulation of tsO45-VSV-G-YFP and p75-GFP in the Golgi 
complex at 19 ° C, live cells were imaged at 32 ° C. Arrows point to the plasma membrane of cell – cell contacts; arrowheads point to juxtanuclear Golgi 
regions. Bars,  � 5  � m. (C and D) Net fl uorescence intensities of cell surface (plasma membrane) and juxtanuclear Golgi regions were measured. Scatter 
plots show ratios (mean values  ±  SEM;  n  = 6) of plasma membrane to Golgi fl uorescence for ts045-VSV-G-YFP –  (C) and p75-GFP – expressing cells (D). Data are 
representative of three different experiments.   
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septins in sequestering MAP4 from microtubules ( Kremer et al., 

2005 ), which controls the stability of microtubules, microtubule-

associated SEPT2 is required for the maintenance of a distinct 

subset of microtubules (polyGlu microtubules) that facilitate 

effi cient vesicle transport. 

 To further examine whether the polyGlu side chains of tu-

bulin or polyGlu tubulin-bound SEPT2 directly affect MAP4 –

 tubulin binding, we used a competitive blot overlay assay, 

which has been used previously to map tubulin binding sites 

of motors and MAPs and quantitatively examine the effect of 

tubulin polyglutamylation on their binding ( Larcher et al., 1996 ; 

plasma membrane ( Fig. 3 G ). Direct disruption of SEPT2 fi bers 

in cells cotransfected with SEPT2 siRNAs and ts045-VSV-G-

YFP also reduced Golgi-to-plasma membrane transport of VSV-G 

(ratio of plasma membrane [PM] to intracellular [IC] fl uor-

escence of 0.6  ±  0.04 [ n  = 21] vs. 1  ±  0.1 [ n  = 9] in control cells; 

P  <  0.0001). However, cotransfection of a mixture of SEPT2 

and MAP4 siRNAs resulted in an intermediate VSV-G deliv-

ery phenotype (PM:IC fl uorescence 0.81  ±  0.1 [ n  = 22]; P  <  

0.003), indicating that SEPT2 and MAP4 counteract each other 

in regulating vesicle transport along microtubules. Therefore, 

in addition to the previously characterized role of cytoplasmic 

 Figure 3.    SEPT2 fi bers colocalize with, and are required 
for, polyglutamylated microtubule tracks.  (A and B) Un-
treated (A) and SEPT2-siRNA-treated (B) MDCK cells were 
stained with SEPT2 and polyGlu ( ≥ 2 glutamate residues) 
tubulin (mAb B3) antibodies and imaged by confocal 
microscopy. In A, arrows point to juxtanuclear/Golgi SEPT2 
fi laments that colocalize with polyGlu-microtubule tracks 
(see insets for higher magnifi cation). In B, the asterisk 
marks a SEPT2-depleted cell. (C and D) MDCK cells were 
transfected with MAP4-GFP and FLAG-tagged MAP1B light 
chain (MAP1B-FLAG), and stained with SEPT2, polyGlu-
tubulin, and FLAG antibodies. Arrows point to polyGlu 
microtubules and SEPT2 fi laments (see insets for higher 
magnifi cation), and arrowheads point to the juxtanuclear/
Golgi regions of MAP-expressing cells. (E) Bar graph shows 
mean SEPT2 and polyGlu tubulin fl uorescence ( ±  SEM) in 
control (white columns;  n  = 11) and SEPT2 (black columns; 
 n  = 13) siRNA-treated cells. **, P = 0.0042; ***, P  <  
0.0001. (F) Bar graphs show mean SEPT2 ( n  = 19) and 
polyGlu tubulin ( n  = 25) fl uorescence ( ±  SEM) as a func-
tion of MAP4-GFP expression after binning GFP fl uor-
escence into low, mid, and high range values. *, P = 
0.04; **, P = 0.003. (G) MDCK cells were transfected 
with MAP4-GFP and ts045-VSV-G-cherry at 41 ° C and 
then shifted to 32 ° C for 1.5 h. Arrowheads (MAP4-GFP-
expressing cells) and arrows (nonexpressing cells) point 
to the plasma membrane at cell – cell contacts. Bar graph 
shows mean ( ±  SEM) ratios of plasma membrane to intra-
cellular fl uorescence for cells ( n  = 30) with low, middle, 
and high levels of MAP4-GFP expression from three inde-
pendent experiments. **; P = 0.001; ***; P  <  0.0001.   
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 Having shown that SEPT2 plays roles in vesicular trans-

port, we tested whether SEPT2 is required for the establish-

ment of epithelial membrane polarity and columnar cell shape. 

We depleted endogenous SEPT2 from nonpolarized,  “ contact-

na ï ve ”  MDCK cells with siRNAs, and then assayed cell polarity 

and shape in monolayers of polarized cells grown on fi lters ( Fig. 5, 

A and B ). In contrast to the columnar morphology of cells 

treated with control siRNAs, SEPT2-depleted cells lacked an 

apical dome and honeycomb morphology characteristic of a 

polarized, columnar epithelium ( Fig. 5 C ). Signifi cantly, SEPT2-

depleted cells were elongated along their long axis and were 

shorter compared with control cells ( Fig. 5 D ). These defects 

 Bonnet et al., 2001 ). Overlaying purifi ed brain tubulin (high 

polyGlu content) with recombinant SEPT2/6/7 complex decreased 

tubulin binding of the C-terminal microtubule binding domain 

of MAP4 (C-MBD-MAP4) ( Fig. 4 A ); note that in vivo SEPT2 

functions as a heterotrimer with SEPT6 and SEPT7 (SEPT2/6/7 

complex; see  Kinoshita et al., 2002 ). SEPT2 complexes also 

decreased C-MBD-MAP4 binding to tubulin in a concentration-

dependent manner ( Fig. 4 B ). In contrast, increasing concentra-

tions of anti-polyGlu antibody ( Fig. 4 D ) or kinesin heavy chain 

( Fig. 4 C ) did not interfere with binding of C-MBD-MAP4 to 

tubulin. Thus, polyGlu tubulin-bound SEPT2 can directly inter-

fere with MAP4 – tubulin binding. 

 Figure 4.    Tubulin-bound SEPT2 complexes inhibit 
binding of the microtubule-binding domain of MAP4 
(C-MBD-MAP4) to tubulin.  Equal amounts (2  � g) of 
purifi ed tubulin were separated by 10% SDS-PAGE, 
transferred to nitrocellulose, and stained with Ponceau 
red. (A) Tubulin-containing strips were overlaid with 
increasing concentrations (0 – 4  � g/ml) of GST-tagged 
C-MBD-MAP4 directly (solid line; blot #1), or fi rst over-
laid with His-tagged SEPT2/6/7 (2  � g/ml) and then 
increasing concentrations of C-MBD-MAP4-GST (dot-
ted line; blot #2). (B) Tubulin-containing strips were 
overlaid with increasing concentrations (0 – 4  � g/ml) 
of His-SEPT2/6/7 (1 °  overlay) and then with C-MBD-
MAP4-GST (2  � g/ml; 2 °  overlay). (C) Tubulin strips were 
overlaid with increasing concentrations (0 – 4  � g/ml) of 
GST-tagged kinesin heavy chain (KHC-GST; 1 °  overlay) 
and then, with C-MBD-MAP4-GST (2  � g/ml; 2 °  overlay). 
(D) Tubulin was overlaid with an increasing concentra-
tion (0 – 6.4  � g/ml) of anti-polyGlu tubulin (mAb B3; 
1 °  overlay) and then with C-MBD-MAP4-GST (2  � g/ml; 
2 °  overlay). Tubulin-bound proteins were detected with 
GST, His, MAP4, and Ig antibodies. Band intensities were 
quantifi ed and plotted against protein concentrations.   
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Na/K-ATPase shifted toward fractions of low buoyant density 

( �  = 1.03 – 1.08 g/ml) compared with controls. These fractions 

did not contain the TGN resident protein furin ( Fig. 5 J ) and 

their low densities resembled those of post-Golgi vesicle mem-

branes ( Wandinger-Ness et al., 1990 ;  Deretic and Papermaster, 

1991 ), which is consistent with the accumulation of gp135/

podocalyxin and Na/K-ATPase in punctate intracellular struc-

tures ( Fig. 5 G ). Note that caveolin, which traffi cs from the 

Golgi to both the apical and basolateral membranes in stable 

microdomains distinct from the dynamic mechanisms of vesicle 

formation that characterize most membrane proteins ( Tagawa 

et al., 2005 ), was unaffected by SEPT2 depletion ( Fig. 5 J ). 

 Based on these data, we suggest that SEPT2 is required 

for effi cient Golgi-to-plasma membrane transport of vesicles 

correlated with a lack of vertically oriented polyGlu microtubules; 

note that in columnar-shaped control cells polyGlu microtubules 

colocalized with SEPT2 fi bers parallel to the lateral membrane 

in the apicobasal cell axis ( Fig. 5 E ). Moreover, in SEPT2-

depleted cells, levels of endogenous apical (gp135/podocalyxin) 

and basolateral (Na/K-ATPase) membrane markers were signif-

icantly reduced from their respective membrane domains ( Fig. 5, 

F and I ), and these proteins accumulated intracellularly in punc-

tate structures ( Fig. 5, G and H ); this was not due to loss of the 

diffusion barrier between the apical and basolateral membrane 

domains as tight junctions were unaffected in SEPT2-depleted 

cells (unpublished data). In OptiPrep density gradients of mem-

branes from control and SEPT2 siRNA-treated cells ( Fig. 5 J ), 

the distribution of membranes containing gp135/podocalyxin and 

 Figure 5.    SEPT2 is required for the morphogenesis of polarized, columnar-shaped epithelia.  (A) Non-polarized,  “ contact-na ï ve ”  MDCK cells were trans-
fected with control and SEPT2 siRNAs for 60 h. Cell extracts were analyzed by SDS-PAGE and Western blotting with antibodies to SEPT2 (red) and glycer-
aldehyde-3-phosphate dehydrogenase (GAPDH; green). (B) Schematic of the experimental setup. (C) Representative dorsal views of 3D-rendered confocal 
images of MDCK cells stained for SEPT2 and  � -tubulin. (D) Representative contour sketches of control and SEPT2-depleted cells. The ratios (mean  ±  SEM) 
of lengths of major-to-minor cell axes are shown for control ( n  = 33) and SEPT2-depleted ( n  = 30) cells from three independent experiments (P  <  0.0001). 
Cell heights were measured from cross sections (xz) of confocal images and their values (mean  ±  SEM) are shown for control ( n  = 20) and SEPT2-depleted 
( n  = 20) cells (P  <  0.0001). (E) Representative mid-section confocal images of MDCK cells stained for SEPT2 and polyGlu tubulin; fi xation/permeabilization 
conditions differed from those in F (see Materials and methods). Arrowheads point to SEPT2 and polyGlu microtubules that run parallel to the lateral mem-
brane in the apicobasal axis. (F) Representative confocal cross sections (xz) of MDCK cells stained for SEPT2, Na/K-ATPase, and gp135/podocalyxin. 
Asterisks outline SEPT2-depleted cells; arrowheads point to lateral cell – cell contacts. (G) High resolution 3D-rendered images of the regions outlined by 
arrows in F. Yellow arrows point to punctate structures containing gp135/podocalyxin and Na/K-ATPase. (H) Cartoons of Na/K-ATPase (green) and 
gp135/podocalyxin (red) localizations in control and SEPT2-depleted cells. (I) Apical (gp135/podocalyxin) and basolateral (Na/K-ATPase) membrane 
and intracellular fl uorescence intensities were measured from confocal cross sections (xz) of control ( n  = 23) and SEPT2-depleted ( n  = 23) cells. Bar graphs 
show ratios (mean values  ±  SEM) of plasma membrane to intracellular fl uorescence from three independent experiments (***, P  <  0.0001). (J) Post-nuclear 
homogenates from control (red) and SEPT2-depleted (blue) MDCK monolayers separated in iodixanol (OptiPrep) gradients, and analyzed by SDS-PAGE 
and blotted with antibodies to gp135/podocalyxin (apical), Na/K-ATPase (basolateral), caveolin (apical and basolateral), and furin convertase (TGN). 
Protein band intensities were plotted as a percentage of their sum intensity. Vertical lines demarcate the peak fractions of apical, basolateral, and Golgi 
proteins in gradients from control cells. Data are representative of three independent experiments.   
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University of Virginia, Charlottesville, VA), and FLAG-tagged MAP1B and 
MAP8 (gifts from Y. Yang, Stanford University, Stanford, CA) were trans-
fected using the Lipofectamine 2000 reagent (Invitrogen). MDCK cells 
were transfected with siCONTROL nontargeting siRNA #1 (Dharmacon RNA 
Technologies), MAP4 (ON-TARGET plus SMART pool; Dharmacon RNA 
Technologies), and SEPT2 siRNA oligonucleotides as described previously 
( Spiliotis et al., 2005 ). 

 Immunofl uorescence microscopy 
 Subconfl uent cell monolayers ( Figs. 1, 3,  and S1) were fi xed with warm 
PHEM (60 mM Pipes-KOH, pH 6.9, 25 mM Hepes, 10 mM EGTA, and 1 mM 
MgCl 2 ) containing 3% paraformaldehyde (PFA; EM Sciences) and 0.1% 
Triton X-100, and stained with antisera to SEPT2 (N5N; rabbit polyclonal), 
 � -tubulin (DM1A; Sigma-Aldrich), p115 (a gift from S. Pfeffer, Stanford 
University), furin convertase (ABR), GST (mAb B-14; Santa Cruz Biotechnology, 
Inc.), polyglutamylated tubulin (IgM clone B3; Sigma-Aldrich), FLAG (mAb 
M2; Sigma-Aldrich), and with secondary FITC- or Rhodamine red X – conjugated 
F(ab ’ ) 2  goat or donkey anti – mouse and anti – rabbit IgGs, Rhodamine red 
X – conjugated F(ab ’ ) 2  goat anti – mouse IgM and Cy5-conjugated F(ab ’ ) 2  
donkey anti – rabbit IgG (Jackson ImmunoResearch Laboratories). 

 Confl uent MDCK monolayers grown on Transwell fi lters ( Figs. 5 F  and 
S4) were fi xed in PBS containing 3% PFA and stained with antibodies to 
SEPT2, gp135/podocalyxin (3F2/D8 mouse hybridoma supernatant), and 
Na/K-ATPase (chicken polyclonal; Novus). To stain for  � -tubulin and polyGlu 
tubulin ( Fig. 5, C and E ), cells were fi xed with warm microtubule stabilizing 
buffer (80 mM Pipes-KOH; pH 6.8, 5 mM EDTA, and 2 mM MgCl 2 ) contain-
ing 0.5% Triton X-100 and 0.3% glutaraldehyde (EM Sciences). 

 Samples were imaged in Vectashield mounting medium (Vector Lab-
oratories) with a confocal laser scanning microscope (LSM 510; Carl Zeiss, 
Inc.) by obtaining 0.4 – 0.8- � m optical sections with a 100 �  1.4 NA oil ob-
jective. Fluorescence quantifi cations ( Fig. 3 ) were performed after importing 
LSM images into Slidebook 4.2 software (Intelligent Imaging Innovations). 
Data were binned into three categories based on the range of GFP fl uores-
cence intensities; 0 – 20 arbitrary units (low; e.g., top right cell in  Fig. 3 G ), 
20 – 40 arbitrary units (mid; e.g., top left cell in  Fig. 3 G ), or  > 40 arbitrary 
units (high; e.g., top cell in  Fig. 3 C ). Cell heights were measured using LSM 
software (Carl Zeiss, Inc.). The lengths of the major and minor cell axes 
were automatically calculated using the ellipse best-fi t module of the Slide-
book 4.2 software. 3D volume rendering and fl uorescence quantifi cations 
( Fig. 5  and S4) were performed with Volocity 4.2 software (Improvision). 
Data were statistically analyzed using an automated unpaired  t  test (http://
www.physics.csbsju.edu/stats/t-test.html). Image manipulations were limited 
to renormalization of linear dynamic ranges and applied equally across the 
entire image. No gamma corrections were applied. 

 Microinjections and live-cell imaging 
 Preimmune and anti-SEPT2 (N5N; 0.5 – 1 mg/ml needle concentration) sera 
were dialyzed, concentrated on Microcon 50.000 MW columns (Millipore), 
mixed with plasmid DNA in 10 mM Hepes, 140 mM KCl, pH 7.4, and in-
jected into the cytoplasm and nuclei of cells with an Eppendorf microinjec-
tion system. In  Fig. 1 , MDCK-SEPT2-YFP cells were transfected with plasmids 
for CFP-tagged p75, LDL-R (gifts from E. Rodriguez-Boulan, Weill Medical 
College of Cornell University, New York, NY), gpi (a gift from M. Edidin, 
The Johns Hopkins University, Baltimore, MD), VSV-G or GalTase (gifts from 
J. Lippincott-Schwartz, NICHD, National Institutes of Health, Bethesda, 
MD). In  Fig. 2 , tsO45-VSV-G-YFP – injected cells were maintained at 41 ° C 
for 2 h before shifting the temperature to 32 ° C for 10 min, and then to 19 ° C 
for 30 min in the presence of cycloheximide (50  � g/ml); p75-GFP-injected 
cells were maintained at 19 ° C before transferring to media with cycloheximide 
for 30 min. Subsequently, cells were imaged in cycloheximide (10  � g/ml) 
containing media. 

 Cells were imaged in phenol red – free DME supplemented with 25 mM 
Hepes using the Marianas system (Intelligent Imaging Innovations) equipped 
with a 175-Watt Xenon light source, a dual galvanometric fi lter changer 
with CFP and YFP excitation/emission fi lters, CoolSNAP HQ interline CCD 
camera, and a Plan-Apo 100 �  1.4 NA oil objective. No-neighbors de-
convolution and post-acquisition analysis were performed using Slidebook 
4.2. Sum fl uorescence intensities for Golgi and plasma membrane regions 
were measured after image segmentation using the mask and pencil tools of 
Slidebook. Spatial overlap between tubular – vesicular structures and SEPT2 
fi laments was determined by the overlap of YFP and CFP fl uorescence. 

 Recombinant proteins and blot overlay assays 
 Bovine brain tubulin and GST-human kinesin heavy chain motor domain 
were purchased from Cytoskeleton, Inc. The C-terminal microtubule-binding 
domain of human MAP4 (aa 654 – 1090; a gift from I. Macara) and 

containing apical or basolateral membrane proteins. This is sup-

ported by: (1) presence of SEPT2 at TGN sites of plasma mem-

brane protein export ( Fig. 1 ); (2) decreased post-Golgi vesicle 

traffi c in nonpolarized MDCK cells upon microinjection of 

function-blocking SEPT2 antibodies ( Fig. 2 ); and (3) reduced 

membrane growth ( Fig. 5, G and H ) and columnarization ( Fig. 5, 

C and D ) of MDCK cell monolayers upon SEPT2 depletion. 

Although SEPT2 is involved in microtubule-dependent vesicle 

transport at TGN exit sites, we cannot exclude the possibility that 

SEPT2 also functions in vesicular transport from and to post-Golgi 

compartments (e.g., recycling endosomes) en route to the plasma 

membrane. Recent studies indicate that apical and basolateral 

proteins traffi c through transport intermediates upon exit from 

the TGN ( Ang et al., 2004 ;  Fields et al., 2007 ;  Gravotta et al., 

2007 ). Interestingly, SEPT2 localization to endosomes and 

cell – cell junctions has been observed in MDCK cells by 

immuno-EM (unpublished data). Future studies will test whether 

septins regulate vesicle transport at these sites of membrane fi s-

sion and fusion. 

 Similar to the Ras-like (e.g., Rab, Rho/Rac) and myosin-

kinesin superfamilies of P-loop NTPases, septins comprise a 

unique superfamily of GTPases ( Leipe et al., 2002 ). Although 

cytoplasmic septin complexes have been shown to regulate 

microtubule stability ( Kremer et al., 2005 ), the function of 

the microtubule-associated, filamentous septins is unknown. 

We suggest that SEPT2 regulates the effi ciency of vesicle transport 

by antagonizing MAP4, whose inhibitory role in vesicle trans-

port is independent of its role in microtubule stability ( Bulinski 

et al., 1997 ). Because microtubule-associated proteins inhibit the 

binding of TGN-derived vesicles to microtubules in vitro ( Van der 

Sluijs et al., 1990 ) and membrane motility and traffi c in vivo 

( Bulinski et al., 1997 ), we suggest that SEPT2 binding to poly-

glutamylated microtubules specifi es a functionally distinct 

subset of microtubule tracks on which  “ fast track ”  vesicle trans-

port occurs without the impediment of MAP  “ speed bumps. ”  

Therefore, the balance between the levels of polyGlu microtubules, 

SEPT2, and MAP4 may control the amount of vesicle transport 

to the plasma membrane. For example, different amounts of vesicle 

transport may be required for rapid membrane growth during 

morphogenesis of a columnar epithelium compared with those 

required to maintain homeostasis or in response to physiologi-

cal stress (wound healing). This type of regulation may be im-

portant in other cell types, as microtubule-dependent vesicle 

transport in neurons requires polyGlu microtubules ( Ikegami 

et al., 2007 ) and the dissociation of MAPs from microtubules 

( Mandelkow et al., 2004 ). 

 Materials and methods 
 Cell culture and DNA constructs 
 HeLa and MDCK clone II cells were maintained as described previously 
( Spiliotis et al., 2005 ). The plasmid vector encoding for ts045-VSVG3-SP-
cherry was constructed by subcloning mCherry into pVSVG3-SP-YFP-N1 
(a gift from K. Simons, Max Planck Institute of Molecular Cell Biology and 
Genetics, Dresden, Germany). 

 Plasmid DNA and siRNA transfections 
 Plasmids for ts045-VSVG3-SP-cherry, GST-tagged PKD1-K618N (a gift 
from V. Malhotra, CRG, Barcelona, Spain), MAP4-GFP (a gift from I. Macara, 
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His-SEPT2/6/7 complexes were purifi ed as previously described ( Kinoshita 
et al., 2002 ;  Kremer et al., 2005 ). 

 In blot overlay assays, brain tubulin was separated by 10% SDS-
PAGE and transferred onto nitrocellulose membranes, which were stained 
with Ponceau S (Sigma-Aldrich). Membranes were scanned, cut into strips, 
destained, and incubated overnight at 4 ° C in blocking buffer (10 mM Tris 
HCl, pH 6.8, 150 mM NaCl, 1 mM DTT, 0.1% Tween 20, 5% nonfat dry 
milk, and 0.5% BSA). Recombinant proteins and antibodies were diluted 
in blocking buffer and overlaid onto membrane strips. To visualize tubulin-
bound proteins, membranes were washed with TBS, 0.1% Tween 20, and 
incubated in the same buffer containing 2% BSA and antibodies. Blots were 
subsequently incubated with secondary AlexaFluor 680 and IRDye800-
conjugated antibodies and scanned in a Li-COR infrared imager. Quantifi -
cation of protein bands was performed with the Odyssey Infrared Imaging 
System (LI-COR Biosciences). 

 MDCK cell fractionation on OptiPrep density gradients 
and Western blotting 
 Non-polarized  “ contact na ï ve ”  MDCKs were transfected with siCONTROL 
and SEPT2 siRNAs, and passaged twice while being maintained in regular 
medium for 60 h. Cells (15  �  10 6 ) were plated onto collagen-coated 75-mm 
Transwell fi lters (Costar) for 24 h, and ball-bearing homogenized in buffer I 
(25 mM sucrose, 20 mM Hepes KOH, pH 7.1, 90 mM potassium acetate, 
2 mM magnesium acetate, 2 mM Pefabloc, and protease inhibitors). Post-
nuclear supernatants were adjusted with buffer I and OptiPrep (Axis-Shield) 
to 30% (wt/vol) iodixanol, overlaid with equal volumes of 20 and 10% 
 iodixanol solutions, and centrifuged at 350,000  g  for 3 h in a VTI 65.1 rotor 
(Beckman Coulter). Equal volume fractions were collected from the top 
( �   � 1 g/ml) through the bottom ( �   � 1.3 g/ml) of the gradient, and the refrac-
tive index ( � ) of each fraction was measured using a refractometer (Bausch 
 &  Lomb). Densities were determined in g/ml [ �  = ( �   �  3.443)  �  3.599]. 
For the linear portions of these gradients (fractions 1 – 23), the densities for 
the same numbered fractions were equivalent across gradients. Fractions 
were boiled in SDS sample buffer and analyzed by SDS-PAGE and immuno-
blotting with antibodies to gp135/podocalyxin, Na/K-ATPase ( � 3NKA), 
caveolin (Transduction Laboratories), furin convertase (ABR-Affi nity Bio-
Reagents), glyceraldehyde-3-phosphate dehydrogenase (6C5; Abcam), and 
AlexaFluor 680 goat anti – rabbit and anti – mouse IgGs (Invitrogen). Scanning 
of membranes and quantifi cation of protein bands were performed with the 
Odyssey Infrared Imaging System (LI-COR Biosciences). 

 Subcellular fractionation of vesicle membranes 
 MDCK cells were homogenized in buffer containing 10 mM Hepes-NaOH, 
pH 7.4, 140 mM KCl, 5 mM EGTA, 1 mM DTT, 2 mM Pefabloc, and pro-
tease inhibitors. Post-18,000  g  supernatants were adjusted with OptiPrep 
to 30% iodixanol, overlaid with equal volumes of 25 and 5% iodixanol, 
and centrifuged at 300,000  g  for 3 h to obtain a fourth layer (clathrin-free 
vesicle fraction) at the interphase between the 5 and 25% iodixanol solutions. 
Vesicle fractions were drawn with a syringe and centrifuged at 100,000  g  
for 1 h in a TL-100 Tabletop Ultracentrifuge (Beckman Coulter). Membrane 
pellets and cytosolic supernatants were boiled in SDS sample buffer before 
SDS-PAGE and immunoblotting with antibodies to E-cadherin (rabbit 
polyclonal E2), clathrin heavy chain (Clone 23; BD Biosciences), Rab8 (BD 
Biosciences), and membrin (Assay Designs). 

 Online supplemental material 
 Fig. S1 shows localization of SEPT2 fi bers with respect to microtubules in un-
treated and nocodazole-treated MDCK cells. Fig. S2 is a gallery of still images 
from time-lapse movies of SEPT2-YFP and Golgi-derived vesicular – tubular 
carriers containing CFP-tagged GalTase, gpi, ts045-VSV-G, p75, and LDL-R. 
Fig. S3 demonstrates SEPT2 co-fractionation with vesicle membranes. Videos 
1 and 2 are time-lapse movies of SEPT2-YFP and Golgi-derived vesicular 
carriers that contain CFP-tagged gpi and GalTase, respectively. Video 3 
shows vesicular movement of SEPT2-YFP. Online supplemental material is 
available at http://www.jcb.org/cgi/content/full/jcb.200710039/DC1. 
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