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ABSTRACT The partially understood phosphoinositide signaling cascade regulates
multiple aspects of cellular metabolism. Previous studies revealed that INPP5E, the
inositol polyphosphate-5-phosphatase that is mutated in the developmental disor-
ders Joubert and MORM syndromes, is essential for the function of the primary
cilium and maintenance of phosphoinositide balance in nondividing cells. Here,
we report that INPP5E further contributes to cellular homeostasis by regulating cell
division. We found that silencing or genetic knockout of INPP5E in human and mu-
rine cells impairs the spindle assembly checkpoint, centrosome and spindle function,
and maintenance of chromosomal integrity. Consistent with a cell cycle regulatory
role, we found that INPP5E expression is cell cycle dependent, peaking at mitotic en-
try. INPP5E localizes to centrosomes, chromosomes, and kinetochores in early mitosis
and shuttles to the midzone spindle at mitotic exit. Our findings identify the previ-
ously unknown, essential role of INPP5E in mitosis and prevention of aneuploidy,
providing a new perspective on the function of this phosphoinositide phosphatase
in health and development.

KEYWORDS INPP5E, aneuploidy, cell cycle, centrosomes, mitosis, spindle assembly
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Cellular safeguards against genomic instability include mitotic checkpoints that
ensure faithful chromosome transmission across cell divisions. Aneuploidy due to

error-prone mitosis promotes mistimed proliferation and cancer through a multifacto-
rial impact on cellular metabolism (1). The spindle assembly checkpoint (SAC) prevents
erratic chromosome segregation and aneuploidy by arresting the dividing cell in
prometaphase until the dynamic kinetochore surveillance signaling network concludes
that all kinetochores have achieved correct amphitelic attachment to mitotic spindle
microtubules (2, 3). Satisfaction of the SAC activates the APC/CCDC20 ubiquitin ligase,
which simultaneously decreases cyclin-dependent kinase activity by targeting cyclin B1
for proteolysis and uncouples sister chromatids by degrading the separase inhibitor
securin, thus allowing the commencement of chromosome segregation.

Complete disruption of the SAC rapidly induces a degree of aneuploidy incompat-
ible with cellular survival. Partial impairment of SAC fidelity regulators causes develop-
mental abnormalities and promotes cancer. Through a genome-wide screen for SAC
phosphatases, we identified the inositol polyphosphate-5-phosphatase INPP5E as a
candidate regulator of this checkpoint (4). Phosphorylation of SAC proteins is well
known to control checkpoint activity, but less is known about how phosphorylation of
nonprotein signal messengers contributes to error-free mitosis. Phosphoinositides (PIs)
are membrane-bound phospholipids composed of a polar inositol ring connected to
hydrophobic fatty acid chains of a glycerophospholipid via a phosphate group. Dy-
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namic differential phosphorylation and dephosphorylation of the PI inositide ring’s
three hydroxyl groups (3, 4, and 5) by the network of phosphoinositide kinases and
phosphatases generates seven phosphoinositide phosphate (PIP) isoforms that play
distinct roles in cellular metabolism (Fig. 1) (5). INPP5E dephosphorylates the 5=-
hydroxyl group of the inositol ring in PI(3,4,5)P3, PI(3,5)P2, and PI(4,5)P2, which are
thought to act as localized protein recruiters to impact numerous processes, including
cell division (6). Previous studies implicated strict control of the spatiotemporal distri-
bution of phosphoinositides in mitosis, from the cell rounding that accompanies the
onset of mitosis to mitotic spindle function and execution of cytokinesis (7). Since a
disordered cell cycle promotes chromosomal instability and malignant transformation,
it is not surprising that several phosphoinositide-processing enzymes are implicated in
cancer. Loss of the inositol polyphosphate 4-phosphatase INPP4B stimulates tumori-
genesis in vivo at least partially through hyperactivation of the phosphoinositide-
regulated AKT-SGK3 signaling axis (8–10). Interestingly, overexpression of INPP4B may
paradoxically promote tumorigenesis in acute myeloid leukemia independently of the
INPP4B phosphatase activity through mechanisms that remain to be explained (11, 12).
The inositol polyphosphate 4-phosphatase PTEN (phosphatase and tensin homolog) is
an established tumor suppressor (reviewed in reference 13). However, the role of
INPP5E and other phosphoinositide-5-phosphatases in tumorigenesis is less clear: both
up- and downregulation of these enzymes have been reported in cancer (14, 15).
Further, germ line INPP5E mutations occur in a fraction of patients with Joubert and
MORM (mental retardation, obesity, retinal dystrophy, and micropenis) developmental
syndromes (16–18), although the pathogenesis of these disorders is not fully under-
stood from the mechanistic standpoint. Previous studies have demonstrated that
INPP5E regulates ciliary function in nondividing cells, but the role of this phosphatase
during cell division had not been examined in detail.

In this work, we demonstrate that INPP5E is essential for normal mitosis and the SAC
and that loss of INPP5E promotes genomic instability. We show that INPP5E expression
is cell cycle dependent and that INPP5E shuttles to the mitotic apparatus in dividing
cells to impact centrosome and spindle function. These novel roles of INPP5E in cell
division may be related to the roles of this phosphatase in development and cancer.

RESULTS
INPP5E is essential for the spindle assembly checkpoint. We identified INPP5E as

a candidate SAC regulator in an unbiased genome-wide small interfering RNA (siRNA)
screen aimed to identify phosphatases controlling mitosis (4). To test whether INPP5E
is required for the SAC (Fig. 2A), we employed two independent INPP5E siRNAs
validated by quantitative Western blotting (Fig. 2C). HeLa cells were transfected with
the indicated siRNAs, and the SAC was activated with the microtubule-stabilizing drug
paclitaxel (originally named taxol). Cells were then fixed and examined for SAC main-
tenance (Fig. 2B) in the quantitative multinucleation assay that we have previously
described (4). While negative-control cells maintained checkpoint arrest, cells trans-
fected with siRNA against the SAC regulator and tumor suppressor MAD2 (mitotic arrest
deficient-like 2) (19) exhibited extensive multinucleation. Similarly, INPP5E knockdown
promoted escape from the SAC (Fig. 2B to E). Stable short hairpin RNA (shRNA)-
mediated INPP5E knockdown also impaired the SAC in human fibroblasts and HeLa cells
(Fig. 3). INPP5E deficiency results in increased levels of its phosphoinositide substrates
(17). To confirm that INPP5E phosphatase activity is depleted upon INPP5E knockdown,
we confirmed that HeLa cells stably expressing INPP5E shRNA contain more total
PI(4,5)P2 (an INPP5E phosphoinositide substrate) than control cells as determined by
using a quantitative enzyme-linked immunosorbent assay (ELISA) (Fig. 3C). To verify
that impairment of the SAC was due to depletion of INPP5E, we quantified the SAC
efficiency upon Cre-mediated depletion of Inpp5e in Inpp5eflox/flox mouse embryonic
fibroblasts (MEFs) (17). Live imaging revealed shortened paclitaxel-induced SAC arrest
in Inpp5e knockout MEFs (Fig. 3E and F). Western blotting confirmed Inpp5e knockout
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upon Cre expression in Inpp5eflox/flox MEFs (Fig. 3G). We concluded that INPP5E knock-
down impairs SAC function.

The INPP5E substrate PI(4,5)P2 promotes SAC escape. Since INPP5E knockdown
promotes accumulation of PI(4,5)P2 (Fig. 3B), we asked if treatment with excess PI(4,5)P2

FIG 1 Phosphoinositide phosphatases that control mitosis. The complex network of phosphoinositide
phosphatases and kinases that together regulate cell cycle progression and prevent human disease has been
reviewed in detail elsewhere (see the text for references). Three phosphoinositide phosphatases (PTEN,
INPP5E, and SAC1) are shown here in the context of the simplified phosphoinositide (PIP) signaling network,
showing relevant primary phosphatase substrates. PTEN is an established tumor suppressor that controls
chromosome segregation and negatively controls the mitogen-activated protein kinase (MAPK) signaling
network. Inherited PTEN mutations occur in a variety of cancer predisposition/central nervous system (CNS)
malformation syndromes with partially overlapping clinical phenotypes, including Cowden syndrome and
Bannayan-Riley-Ruvalcaba syndrome. Congenital OCRL mutations are found in Lowe syndrome associated
with ocular abnormalities, mental retardation, and renal dysfunction. The OCRL phosphatase performs
multiple cellular functions, including control of mitotic exit by processing midbody-associated PIPs to locally
reorganize the midbody cytoskeleton at abscission. Germ line INPP5E mutations contribute to Joubert/MORM
ciliopathy syndromes in humans and cause severe perinatal lethality in mice, while acquired mutations within
INPP5E (green) occur in a variety of cancers. The SAC1 phosphatase controls mitotic spindle assembly and
function, and disruption of SacI causes embryonic lethality in mice. While the mechanistic role of these
phosphoinositide phosphatases in PIP metabolism and regulation of cellular homeostasis needs to be
dissected in detailed in future studies, the clinical phenotypes of INPP5E-, PTEN-, and OCRL-deficient humans
highlight the essential role of these cell cycle-regulating PIP phosphatases in preventing developmental
malformations and cancers.
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affected the SAC (Fig. 4A). Exposure to high-dose paclitaxel alone induced prolonged
SAC arrest leading to cell death (20), but excess PI(4,5)P2 promoted escape from
paclitaxel-induced death, premature mitotic exit, and multinucleation (Fig. 4B and C).
Furthermore, PI(4,5)P2 reduced the duration of paclitaxel-induced checkpoint arrest
(Fig. 4D). Thus, elevated levels of PI(4,5)P2 impair the SAC, suggesting one potential
mechanism of SAC failure resulting from INPP5E deficiency (Fig. 2). To determine
whether reducing PI(4,5)P2 rescues the SAC impairment in INPP5E-deficient cells, we
sought to inhibit cellular synthesis of PI(4,5)P2. Recent studies identified a selective
small-molecule inhibitor of phosphatidylinositol 4-phosphate 5-kinase 1 gamma
(PIP5K1C) and phosphatidylinositol-5-phosphate 4-kinase 2 gamma (PIP4K2C), kinases
that convert PI(4)P and PI(5)P, respectively, to PI(4,5)P2 (21, 22). The authors demon-
strated that this inhibitor, UNC3230, reduced PI(4,5)P2 staining in neurons cultured ex
vivo (22). We found that treatment with UNC3230 reduced PIP(4,5)P2 staining in HeLa
INPP5E knockdown cells (Fig. 4E). Live imaging revealed that pretreatment with

FIG 2 INPP5E regulates the spindle assembly checkpoint. (A) Assay schematic. Deficient SAC promotes
multinucleation in paclitaxel-exposed cells. (B) Multinucleation due to impaired SAC in INPP5E and MAD2
knockdown cells exposed to paclitaxel. Note prometaphase arrest (active SAC) in control cells (con-
densed chromosomes in round mitotic cells). (C) Target knockout confirmed by Western blotting. (D and
E) Quantification of multinucleation and mitotic arrest, respectively. One-way analysis of variance
(ANOVA) was used to calculate P values (n � 4 counts/siRNA). **, P � 0.01; ***, P � 0.001; ****, P � 0.0001.
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UNC3230 significantly decreased the number of INPP5E knockdown cells that escaped
SAC arrest (Fig. 4F). Overall, these findings suggests that disequilibrium of PI(4,5)P2

contributes to an impaired SAC in INPP5E-deficient cells.
INPP5E is required for normal mitotic progression. Since INPP5E regulated the

paclitaxel-induced SAC response, we asked whether INPP5E deficiency impaired mitosis
in unperturbed cells. We used time-lapse imaging to quantify time from nuclear
envelope breakdown (NEB) to anaphase onset (Fig. 5A). INPP5E-deficient cells pro-
gressed from NEB to anaphase at an increased speed (Fig. 5B to D). We noticed that
silencing INPP5E promoted multipolar divisions and asymmetric mitotic exit, with one
of the daughter cells requiring more time to complete the exit from mitosis (Fig. 5E). We
found that INPP5E is required for anaphase spindle elongation and completion of
cytokinesis (Fig. 5F and G). We examined INPP5E-deficient cells through deconvolution
microscopy to evaluate these structural mitotic defects in more detail. In agreement
with our live imaging data (Fig. 6A to G), INPP5E deficiency promoted early mitotic
defects (multipolar spindles and supernumerary centrosomes) (Fig. 5H) as well as late
mitotic abnormalities such as abnormal anaphases with nuclear bridges and cytokinesis
failure (Fig. 5I).

FIG 3 Stable INPP5E knockdown weakens the SAC in HeLa cells and primary human fibroblasts. (A) INPP5E levels in cell lines stably
expressing the indicated shRNAs. (B) Accumulation of an INPP5E substrate, PI(4,5)P2, in INPP5E knockdown HeLa cells. (C) Representative
images of the indicated cell lines treated with paclitaxel for 22 h. Note multinucleation reflecting a weakened SAC in INPP5E-deficient HeLa
cells and fibroblasts. (D) Quantification of SAC assay results. (E) Representative time-lapse images of Inpp5eflox/flox MEFs transduced with
negative-control GFP lentivirus (top panel) and GFP-Cre recombinase (bottom panel) following paclitaxel exposure. Note accelerated SAC
escape in the Inpp5eflox/flox cell. (F) Quantification of the length of time between NEB and SAC escape. The P value was calculated with an
unpaired t test. For both cell types, n � 30 (two pooled experiments). (G) Western blot of whole-cell lysates from Inpp5eflox/flox MEFs
transduced with lentivirus encoding GFP control or GFP-fused Cre recombinase.
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INPP5E expression and subcellular localization are cell cycle dependent. Given
the newly found role of INPP5E in cell division, we next examined whether expression
of INPP5E was cell cycle dependent. Consistent with the novel role for INPP5E in
mitosis, the INPP5E level is low in serum-starved, G1-arrested cells (Fig. 6A to D) but rises
as cells progress through S and G2 toward mitotic entry (Fig. 6E to G) and peaks in
mitosis (Fig. 6H and I).

We examined subcellular INPP5E localization throughout the cell cycle via decon-
volution and superresolution structured illumination microscopy (SR-SIM). Consistent
with known ciliary localization of INPP5E (17), we found INPP5E at interphase centrioles

FIG 4 Excess PI(4,5)P2 impairs the SAC. (A) Assay schematic. Prolonged SAC arrest triggers cell death
unless checkpoint escape occurs. (B) Representative time-lapse images of cells treated with paclitaxel
alone versus paclitaxel plus PI(4,5)P2. (C) Cells treated with paclitaxel plus PI(4,5)P2 are less likely to die
and more likely to escape SAC upon prolonged arrest within 24 h of mitotic entry than cells treated with
paclitaxel alone (n � 100 arrested cells tracked via time-lapse imaging per condition; P values were
calculated with Fisher’s exact test). Percentages of categorical values are shown. (D) Cumulative inci-
dence of SAC escape in cells treated with paclitaxel plus DMSO versus paclitaxel plus PI(4,5)P2. The P
value for risk of SAC escape was calculated with the log rank Mantel-Cox test. (E) Representative images
of HeLa cells stably expressing shRNA against INPP5E stained with a PI(4,5)P2-specific antibody after a
24-hour exposure to DMSO (top) or the PIP5K1C/PIP4K2C inhibitor UNC3230 (100 nM) (bottom). Note
decreased nuclear PI(4,5)P2 in UNC3230-treated cells. (F) Cumulative incidence of SAC escape in stable
INPP5E knockdown HeLa cells treated with paclitaxel plus DMSO versus paclitaxel plus UNC3230. The P
value for risk of SAC escape was calculated with the log rank Mantel-Cox test. For DMSO- and
UNC3230-treated cells, n � 53 and 60, respectively.
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FIG 5 INPP5E controls unperturbed mitosis. (A) Representative time-lapse imaging of a control cell progressing through mitosis. (B)
Cumulative percentage of anaphase onset after NEB. P values were calculated with Fisher’s exact test. (C) Fraction of anaphase cells 20
min after NEB (P � 0.0078 by Fisher’s exact test; percentages of categorical values are shown). (D) Silencing INPP5E accelerates progression
from NEB to anaphase. The P value was calculated with an unpaired t test (n � 50 control cells and 51 INPP5E knockdown cells). (E)
Knockdown of INPP5E increases frequency of multipolar divisions and asymmetric mitotic exit in HeLa cells examined via time-lapse video
microscopy compared to cells expressing nontargeting shRNA. P values were calculated with Fisher’s exact test for multipolar divisions
and with the chi-square test with Yates’ correction for asymmetric mitotic exit. At least 500 dividing cells were quantified per genotype
and condition. (F) Anaphase spindle elongation assay design. Cells were monitored through mitosis via time-lapse imaging, and the ratio
of anaphase B length to metaphase length was determined for each cell to quantify the efficiency of anaphase spindle elongation similarly
to previously described assays (63, 64). (G) Knockdown of INPP5E decreases anaphase spindle elongation in HeLa cells (dot plot, P � 0.0001

(Continued on next page)
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(data not shown). Overexpressed INPP5E localized to selected biological membranes
(data not shown). A fraction of INPP5E was present inside the nucleus (Fig. 7). In
agreement with our biochemistry data (Fig. 6), nuclear INPP5E immunofluorescence
increased in prophase (Fig. 7A). Upon nuclear envelope breakdown, INPP5E diffused
throughout the cell, with a fraction of INPP5E accumulating around chromosomes (data
not shown). Detergent extraction prior to fixation removed diffuse INPP5E from mitotic
cells (Fig. 7B) and revealed that a fraction of INPP5E colocalizes at mitotic centrosomes
with Aurora kinase A (AURKA), a known INPP5E-interacting protein (23) (Fig. 8A), and
Polo-like kinase 1 (PLK1) (24) (Fig. 8B). More-detailed analysis of cross sections through
prometaphase centrosomes showed that INPP5E colocalizes with AURKA at the peri-
centriolar material (PCM) proximal to spindle microtubule attachment sites (Fig. 8A). A
fraction of insoluble INPP5E colocalized with kinetochore markers NUP85 and centro-
mere protein A (CENPA) during prometaphase (Fig. 8D). In metaphase, the spindle was
surrounded by diffuse INPP5E, which shuttled to the midzone in anaphase (Fig. 8C, top
panel). By anaphase onset, the extraction-resistant fraction of INPP5E dissociated from
kinetochores (Fig. 8C, bottom panel). INPP5E was observed at the midbody during
telophase (Fig. 8E), with a large fraction returning to the nuclei upon nuclear envelope
reassembly (Fig. 7 and 8).

We wondered whether the INPP5E phosphoinositide substrates were also present at
mitotic centrosomes. Immunofluorescence using a PI(4,5)P2-specific antibody demon-
strated that PI(4,5)P2 was present at centrosomes throughout mitosis (Fig. 9A). We
validated this finding by imaging HeLa cells transfected with a red fluorescent protein
(RFP)-fused phospholipase C � (PLC�)-pleckstrin homology (PH) domain, which binds
PI(3,4,5)P3 and PI(4,5)P2 (25) (Fig. 9B). A fraction of RFP–PLC�-PH colocalized with the
centrosomal marker pericentrin (PCNT) during cell division (Fig. 9B). These observations
are consistent with a role for INPP5E and its substrates at the centrosome.

INPP5E regulates the function of the chromosome-segregating apparatus.
Since INPP5E localizes to the PCM, the organized proteinaceous network (26)
responsible for spindle assembly (27, 28), we asked whether INPP5E knockdown
affected the centrosome’s ability to nucleate microtubules in modified cold spindle
destabilization assays (29) (Fig. 10A). Live HeLa cells were cold treated to disrupt
microtubules (Fig. 10B), allowed a brief recovery in warm medium, fixed, immuno-
stained, and imaged to assess microtubule repolymerization. INPP5E knockdown
impaired microtubule nucleation from mitotic centrosomes (Fig. 10C to E). Quan-
tification confirmed that INPP5E knockdown reduced both the number (Fig. 10D)
and length (Fig. 10E) of spindle microtubules. We validated this phenotype in
CRISPR (clustered regularly interspaced short palindromic repeat)/Cas-edited
INPP5E knockout cells (data not shown). HeLa cells treated with PI(4,5)P2 exhibited
similar microtubule nucleation defects (Fig. 10F and G), suggesting that the abnor-
mal mitotic progression in INPP5E-deficient cells may be at least partially due to a
disrupted phosphoinositide balance. Quantitative live imaging demonstrated im-
paired anaphase spindle elongation in INPP5E knockdown HeLa cells (Fig. 6F and G),
providing further evidence of spindle malfunction resulting from INPP5E deficiency.

Knockdown of INPP5E promotes genomic instability. Aneuploidy is a potential
consequence of impaired mitosis; therefore, we sought to examine the effect of INPP5E
knockdown on genomic stability. To directly assess the effect of knockdown of INPP5E
on ploidy, we examined metaphase chromosome spreads in the stable fibroblast lines.
INPP5E-deficient cells frequently exhibited an abnormal chromosome number (Fig.
11A) associated with a significant increase in the percentage of aneuploid cells (Fig.
11B).

FIG 5 Legend (Continued)
in two-tailed t test, n � 117 control cells and 132 INPP5E shRNA cells) and increases the frequency of cytokinesis failure (red dots, P �
0.0001 in Fisher’s exact test) in HeLa INPP5E knockdown cells compared to cells transfected with negative-control siRNA. Each dot
represents a single cell. (H) INPP5E-deficient cells undergo abnormal mitosis more frequently than control cells. (I) Examples of abnormal
mitotic figures in INPP5E knockdown cells compared to controls. P values for early mitosis (prophase through metaphase) and late mitosis
(anaphase through cytokinesis) are shown.
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FIG 6 INPP5E protein expression is cell cycle dependent. (A and B) Serum starvation-induced G1 arrest in HCT cells. (C) Decreased endogenous INPP5E in HCT
cells arrested in G1 via serum starvation. (D) Quantification of infrared Western blotting results shown in panel C. P values were calculated via ANOVA with
Sidak’s multiple-comparison test (3 replicates). (E) Representative cell cycle flow cytometry profiles of cells at the indicated time points after release from
starvation-induced G1 arrest. (F) INPP5E accumulates as cells progress through the cell cycle. (G) Quantification of INPP5E protein levels at the indicated time
points. P values for INPP5E were determined using unpaired t tests (n � 3 replicates). (H) Western blots of HeLa cell lysates released from RO3306-induced
G2 arrest at the indicated time points. (I) Quantification of INPP5E and cyclin B1 protein (normalized to actin, n � 3 replicates) at the indicated time points.
P values were calculated by one-way ANOVA.
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To determine whether SAC impairment contributed to aneuploidy in INPP5E-
deficient cells, we performed a cytochalasin B micronucleus assay as previously de-
scribed (30). The control and INPP5E knockdown lines were treated with the cytokinesis-
blocking drug cytochalasin B and subsequently assessed for micronucleus formation via
fluorescence microscopy. To distinguish between micronuclei arising from whole mis-
seggregated chromosomes (i.e., SAC failure) and micronuclei comprised of chromatid
fragments resulting from unrepaired DNA double-strand breaks, the cells were immu-
nostained for CENPA as a marker of kinetochores. Micronuclei were quantified as
kinetochore positive or kinetochore negative (Fig. 11C). INPP5E knockdown resulted in

FIG 7 Nuclear localization of INPP5E in interphase and mitosis. (A and B) Representative images of soluble (A) and insoluble (B) fractions of endogenous INPP5E
in interphase and mitosis. Note that detergent extraction removes most of the soluble endogenous INPP5E after nuclear envelope breakdown in late prophase.
Insoluble INPP5E returns to nucleus upon nuclear envelope reassembly in telophase. Images are representative of a total of least 30 cells across three separate
experiments. (C) Decreased nuclear INPP5E immunofluorescence signal upon shRNA-mediated INPP5E knockdown. (D) Validation of endogenous INPP5E nuclear
localization via another anti-INPP5E primary antibody. (E) Stably overexpressed DDK-INPP5E localizes to the nucleus.
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FIG 8 INPP5E localizes to mitotic structures. (A) The insoluble fraction of endogenous INPP5E associates with mitotic centrosomes as demonstrated by
colocalization with Aurora kinase A proximal to centrosome-microtubule attachment sites (immunofluorescence line intensity profiles shown as insert). (B)
Coimmunofluorescence with Polo-like kinase PLK1 validates localization of endogenous INPP5E to mitotic centrosomes. (C) A fraction of extraction-resistant
endogenous INPP5E binds prometaphase kinetochores, as demonstrated by coimmunofluorescence with the kinetochore markers NUP85 and CENPA. Note that

(Continued on next page)
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a significant increase in the percentage of cells with both kinetochore-positive and
kinetochore-negative micronuclei (Fig. 11D). These observations suggest that knock-
down of INPP5E causes aneuploidy through both impairment of the SAC and unre-
paired chromosomal breakage.

DISCUSSION

Error-free mitosis prevents congenital abnormalities and cancer (1). Mitotic failure
during embryonic growth leads to spontaneous abortion as well as a variety of
developmental syndromes (31). After birth, chromosomal instability promotes carcino-
genesis (32). Mitotic checkpoints that ensure faithful chromosome transmission across
cell divisions provide safeguards against genomic instability. The SAC is one such key
genomic guardian, and our genome-wide RNA interference (RNAi) screen identified
INPP5E as a candidate regulator of the SAC (33).

We found that INPP5E functions outside interphase as a regulator of paclitaxel-
triggered SAC (Fig. 2) and multiple stages of mitosis (Fig. 5). We confirmed the mitotic
phenotype of impaired INPP5E expression with multiple distinct INPP5E siRNAs in HeLa
cells, INPP5E-targeting shRNAs in HeLa cells and human fibroblasts, and Inpp5e knock-
out MEFs (Fig. 2 and 3 and data not shown). Further, we confirmed that INPP5E siRNAs
did not impact MAD2 (data not shown), whose transcript is sensitive to nonspecific
siRNA silencing (34). INPP5E overexpression caused cellular toxicity, as described before
(references 6 and 35 and data not shown). Consistent with its role in cell division,
INPP5E accumulates as cells progress through interphase toward mitosis (Fig. 6). INPP5E
maintains the function of centrosomes and the spindle during cell division (Fig. 8 and
10), which suggests an explanation for abnormal mitosis resulting from INPP5E defi-
ciency. Interestingly, a recent study revealed an interaction between INPP5E and

FIG 8 Legend (Continued)
INPP5E kinetochore localization is cell cycle dependent and decreases after anaphase entry. (D) Endogenous INPP5E is enriched around the metaphase and
anaphase spindle as demonstrated by coimmunofluorescence with alpha-tubulin and PLK1, respectively. Immunofluorescence line intensity profiles are shown.
(E). INPP5E shuttles to the midbody during telophase. Alpha-tubulin was used as a midbody marker to demonstrate localization of endogenous INPP5E (left)
and GFP-INPP5E (right). Three-dimensional midbody models were generated in Imaris. HeLa cells were used for all images shown. Images are representative
of at least 3 cells per cell cycle phase from two experiments.

FIG 9 Phosphoinositides localize to mitotic centrosomes. (A) HeLa cells stained with a PI(4,5)P2-specific antibody
and anti-phospho-Aurora to mark mitotic centrosomes. (B) Representative images of HeLa cells transiently
expressing an RFP-fused construct of the PI(4,5)P2- and PI(3,4,5)P3-binding domain of phospholipase C (PLC�-PH).
Cells were costained with antipericentrin to mark centrosomes.
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AURKA, a key mitotic kinase that controls centrosome maturation, mitotic progression,
and ciliary stability (23). In support of these findings, we found that INPP5E colocalizes
with PLK1 and AURKA at the PCM in early mitosis (Fig. 8).

Centrosomes and the basal body of cilia are assembled on the same core molecular

FIG 10 INPP5E regulates nucleation of spindle microtubules at mitotic centrosomes. (A) Assay schematic. (B) Cold
spindle destabilization in control and INPP5E knockdown prometaphase cells. (C) Impaired microtubule spindle reas-
sembly in a representative INPP5E knockdown cell compared to a control. (D and E) Quantification of the number of
microtubules per centrosome (D) and the microtubule length (E). P values were calculated by two-tailed t tests (n � 14
centrosomes/170 microtubules for controls and 20 centrosomes/76 microtubules for INPP5E knockdown cells). (F)
Representative image of prometaphase microtubule repolymerization in cold-treated cells following treatment with
carrier only (top panel) or 20 �M PI(4,5)P2 (bottom panel). (G) Quantification of microtubule length. the P value was
calculated with an unpaired t test. For control cells, n � 175; for PI(4,5)P2-treated cells, n � 76.
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framework that undergoes extensive structural and functional reorganization in re-
sponse to cell cycle cues (36–40). Therefore, it is not surprising that the cilium-
associated INPP5E regulates function of the primary cilia in interphase (17, 18) and
centrosome activity in mitosis (Fig. 12). Since INPP5E is enriched at kinetochores, the

FIG 11 Loss of INPP5E causes genomic instability. (A and B) Chromosome instability in INPP5E-deficient cells. Representative metaphase
chromosome spreads prepared from stable control and INPP5E shRNA-expressing primary human early-passage fibroblasts are shown. For
quantification of abnormal karyotypes (B), the P value was calculated with the two-tailed Fisher’s exact test (n � 50/genotype). (C) Design
of cytochalasin B micronucleation assay. (D) Micronucleation assay quantification. P values were determined via the two-tailed Fisher’s
exact test (n � 12 counts/phenotype/genotype). Representative micronuclei are shown.
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spindle, the midbody, and centrosomes (Fig. 8 and 9), future studies will likely identify
additional mitotic roles for INPP5E. Future work will also determine whether abnormal
spindle function and orientation (Fig. 6 and 11) contribute to dysmorphogenesis (41,
42) in human congenital INPP5E deficiency syndromes, similar to the spindle malfunc-
tion mechanisms proposed in other ciliopathies (41, 42).

Phosphoinositides and their regulatory phosphatases contribute to multiple cellular
processes, from cytoskeletal rearrangements to cell motility/adhesion, membrane traf-
ficking, signal transduction (including Ca2�/AKT signaling), and gene expression (43–
46). Loss of INPP5E promotes accumulation of PI(4,5)P2 (23). We found that PI(4,5)P2

localizes to mitotic centrosomes and impairs the SAC (Fig. 4 and 10), offering one
potential explanation for the dysfunctional SAC in INPP5E-deficient cells, although it
remains to be investigated whether the mitotic function of INPP5E is entirely phos-
phoinositide dependent and whether other INPP5E-regulated phosphoinositides con-
tribute to mitotic progression. Interestingly, INPP5E-truncating mutations that do not
affect phosphatase activity but disrupt ciliary localization by removing the C-terminal
CAAX domain cause MORM syndrome, indicating that phosphoinositide-directed en-
zymatic activity of INPP5E is not sufficient to prevent disease if the phosphatase’s
subcellular targeting is disrupted (17).

Consistent with a role in mitosis, we found that INPP5E prevents aneuploidy. INPP5E
knockdown caused chromosomal instability in primary human fibroblasts (Fig. 11A and
B). Micronucleus assays revealed increased frequencies of both mitotic errors and
unrepaired double-strand DNA breaks in INPP5E-deficient cells (Fig. 11C and D). Germ

FIG 12 INPP5E controls cellular homeostasis by regulating cilia and centrosomes throughout the cell
cycle. INPP5E regulates ciliary stability in interphase and controls mitotic apparatus during cell division.
See the text for discussion.
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line mutations of two critical DNA damage response (DDR)-orchestrating phosphati-
dylinositol kinase-related kinase (PIKK) family kinases, ATM and ATR, cause progressive
cerebellar dysfunction in ataxia-telangiectasia (47) or microcephaly with dwarfism in
Seckel syndrome type I, respectively (48) in, addition to DNA damage hypersensitivity.
INPP5E is phosphorylated at ATM/ATR recognition sites following exposure to ionizing
radiation (49). Thus, it will be interesting to determine whether INPP5E contributes to
the DDR as well.

Chromosome instability is a hallmark of carcinogenesis (32). Somatic INPP5E abnor-
malities occur in cancer, although it is not clear whether loss of INPP5E promotes
malignant transformation, as microarray studies reported both elevated and decreased
INPP5E transcription in different malignancies (reviewed in references 14 and 50).
Increased INPP5E transcription was reported in cervical cancers, uterine leiomyomas,
and lymphomas (51–53), while decreased INPP5E transcription was found in gastric
carcinomas and metastatic adenocarcinomas (54, 55). Since these microarray-based
studies examined INPP5E expression but did not address the functionality of INPP5E
transcripts, we independently analyzed somatic cancer-associated INPP5E mutations in
the Cancer Genome Atlas (TCGA) database. We found that most cancer-associated
INPP5E mutations cluster within the phosphatase domain (Fig. 13), suggesting that
enzymatic activity may contribute to this phosphatase’s tumor suppressor function. It
is unknown whether germ line INPP5E mutations predispose to cancer: INPP5E muta-
tions occur in only approximately 3% of Joubert syndrome (JBTS) patients (16), and
many patients affected with this rare disorder die young. However, benign tongue
tumors occur in JBTS (16, 56), and Burkitt lymphoma has been reported in Joubert
syndrome (57). Since Inpp5e deficiency causes profound perinatal lethality in mice (17),
future animal studies should employ inducible or tissue-specific knockout technology
to explore the proposed tumor suppressor function of this phosphatase in vivo.

We conclude that INPP5E belongs to the expanding family of disease-associated
phosphoinositide phosphatases that proofread mitosis to prevent aneuploidy. The
tumor suppressor PTEN ensures chromosome integrity (58) and is phosphorylated by
PLK1 (59). The oculocerebrorenal syndrome of Lowe (OCRL) phosphatase is recruited to
the midbody by the Rab35-GTPase to regulate midbody-associated PI(4,5)P2 and
reorganizes the actin cytoskeleton for abscission during cytokinesis (46). The PIPP/
INPP5J phosphatase was shown to suppress breast cancer initiation and progression
through negative regulation of oncogenic PI3K/AKT signaling (60). Our findings dem-
onstrate new mitotic functions of INPP5E, thereby uncovering a new avenue through

FIG 13 Acquired INPP5E mutations in cancer. Note that most cancer-associated mutations cluster within the INPP5E
phosphatase domain. Cancer types are indicated by colors of mutation-associated circles as shown. The results shown
here are based upon data generated by the TCGA Research Network (http://cancergenome.nih.gov/).
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which INPP5E and phosphoinositides may direct human development and the preven-
tion of cancer.

MATERIALS AND METHODS
Cell culture. Primary human fibroblasts (HDFa) were purchased from ATCC. HeLa and HCT cells were

a gift from D. Wade Clapp (Indiana University [IU]). All cells were cultured in Dulbecco modified Eagle
medium (DMEM) with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin. INPP5E knockout
HAP1 cells were purchased from Horizon Discovery (HZGHC002902c010) and maintained in Iscove
modified Dulbecco medium (IMDM) with 10% FBS and 1% penicillin-streptomycin. Inpp5eflox/flox MEFs
were generated by crossing Inpp5eflox/� mice, a gift from Stéphane Schurmans (University of Liege). MEFs
were maintained in DMEM with 15% FBS, 1% L-glutamine, 1% sodium pyruvate, and 1% penicillin-
streptomycin. All siRNAs were purchased from Ambion. Using siPORT NeoFX transfection reagent
(Ambion), cells were reverse transfected in 6-well plates (37,440 cells per well) with 25 nM siRNA on day
1, then forward transfected with 25 nM siRNA on day 2, and then allowed 48 h of growth before
harvesting or further processing.

To generate stable shRNA-expressing HeLa and fibroblast cells, lentiviral shRNA plasmids targeting
luciferase (negative control; pLKO.1-puro luciferase shRNA control plasmid DNA [Sigma]) or INPP5E
(pLKO.1-puro INPP5E shRNA TRCN0000082677 [Sigma]) were used to produce lentiviral particles as
described previously (61). Upon transduction, cells were selected with 1 �g/ml puromycin.

INPP5E-depleted MEFs were generated by transduction of Inpp5eflox/flox MEFs with lentivirus encoding
green fluorescent protein (GFP)-fused Cre recombinase. Control cells were generated by transducing
Inpp5eflox/flox MEFs with lentivirus encoding GFP only. Transduced cells were sorted by GFP positivity via
flow cytometry (Flow Cytometry Facility, IU Simon Cancer Center) before further processing.

For overexpression experiments, HeLa cells were transfected with 1 �g of the indicated plasmids
using Lipofectamine LTX (Life Technologies) or X-tremeGENE HP (Roche). Cells were processed at 24 to
48 h posttransfection. GFP-INPP5E and DDK-INPP5E constructs were purchased from Origene (RG206984
and RC206984, respectively). The RFP–PLC�-PH construct was a gift from Yang Sun (IU).

Quantitative Western blotting. Whole-cell lysates were prepared for Western blotting by incubat-
ing cells in M-PER mammalian protein extraction reagent (Life Technologies) with protease (Complete
Mini, EDTA-free; Roche) and phosphatase inhibitors (Pierce Phosphatase Inhibitor Mini tablets; Thermo
Scientific) on ice (10 min). Lysates were centrifuged at top speed in a microcentrifuge for 10 min. Prior
to loading onto gels, samples were diluted with NuPAGE sample-reducing agent and NuPAGE lithium
dodecyl sulfate (LDS) sample buffer (Life Technologies) and boiled (95°C, 5 min). Following protein
separation on NuPAGE 4 to 12% polyacrylamide– bis-Tris gels (Life Technologies) and transfer to
nitrocellulose, membranes were probed using the indicated primary antibodies. Fluorescent dye-
conjugated secondary antibodies (Li-Cor Biosciences) were used for infrared fluorescence-based detec-
tion (Odyssey CLX). Protein levels were quantified by measuring the relative fluorescence intensities of
bands (normalized against an actin or GAPDH [glyceraldehyde-3-phosphate dehydrogenase] loading
control) using Image Studio 2.1 software.

Deconvolution and SR microscopy. Cells grown on ultrafine glass coverslips were fixed with 4%
paraformaldehyde–PBS (Electron Microscopy Sciences) for 10 min at room temperature (RT). When
indicated, soluble proteins were extracted prior to fixation with 0.1 to 0.2% Triton X-100 –PBS (1 min at
RT). Cells were next permeabilized and blocked in 0.2% Triton X-100 –5% bovine serum albumin–PBS (1
h at RT) and then incubated with primary antibodies in PBS (1 h at RT or overnight at 4°C). Cells were
washed with PBS (3 times for 5 min each at RT), incubated with fluorophore-conjugated secondary
antibodies (Life Technologies) in PBS (1 h at RT), and washed with PBS as before. DNA was detected by
counterstaining cells with Hoechst 33342 (Invitrogen). To detect actin, cells were stained with
fluorophore-conjugated phalloidin (Life Technologies). Coverslips were mounted in SlowFade antifade
reagent A (Life Technologies) and sealed with nail polish.

For deconvolution microscopy, images were acquired as a series of z-sections using a DeltaVision
personalDx microscope (Applied Precision) fitted with 60� and 100� lenses and a charge-coupled
device (CCD) camera, and deconvolved using SoftWoRx (10 iterations, conservative) (4). SR-SIM images
were acquired with a Zeiss ELYRA PS.1 superresolution microscope using a 63� objective and the
smallest z-section thickness possible. Laser powers and exposure time were kept consistent for all images
in a given experiment. Images were processed in manual mode to preserve the raw intensity scale, with
all other settings as for automatic processing, using a structured illumination (SIM) algorithm in Zen 2011
software. Postprocessing fluorescent-channel alignment was performed using slide-mounted TetraSpeck
Microspheres (Life Technologies). All images were processed with Imaris (Bitplane). Images shown in
figures represent individual z-sections of deconvolution or SIM stacks unless stated otherwise.

Primary antibodies. The primary antibodies used were as follows: rabbit anti-INPP5E (17797-1-AP;
Proteintech); rabbit anti-INPP5E (HPA065758; Sigma), rabbit anti-DDK (14793S; Cell Signaling); rabbit
antipericentrin (ab4448; Abcam); mouse anti-PLK1 (ab17056; Abcam); mouse anti-gamma-tubulin (GTU-
88; Sigma); mouse phospho-Aurora (2914S; Cell Signaling); mouse anti-alpha-tubulin (A11126; Life
Technologies); mouse anti-PI(4,5)P2 (Z-P045; Echelon Biosciences), rabbit anti-CENPA (2186S; Cell Signal-
ing); mouse antiactin (A5441; Sigma); mouse anti-GAPDH (sc-365062; Santa Cruz Biotechnology), anti-
phospho-H3 (9701L; Cell Signaling), and anti-cyclin B1 (4135S; Cell Signaling); and mouse anti-lamin A�C
(ab40567; Abcam).

Live cell imaging. Cells were grown in DMEM plus 10% FBS plus 1% penicillin-streptomycin on Hi-Q4
four-chambered imaging plates (IBIDI) in the environmentally controlled chamber (5% CO2, 37°C) of a
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BioStation IM-Q (Nikon). Using the integrated microscope, phase-contrast and/or fluorescence time-lapse
images were acquired every 2 min and analyzed using Imaris (Bitplane).

For live imaging of drug-treated HeLa cells, paclitaxel was added to the growth medium immediately
before imaging (final concentration, 200 nM). MEFs were treated with 2 �M paclitaxel. For paclitaxel-
PI(4,5)P2 treatment, PI(4,5)P2 [metabolically stable PI(4,5)P2 P-F4516; Echelon Biosciences] was combined
with unlabeled Shuttle PIP Carrier 3 (P-9C3; Echelon Biosciences) per the manufacturer’s instructions, and
the complex was diluted to a final concentration of 10 �M in growth medium. Cells were grown in the
PI(4,5)P2-carrier complex-containing medium for 44 h, at which point paclitaxel was added (final
concentration, 200 nM) and time-lapse imaging was initiated.

Inhibition of PI(4,5)P2 synthesis. HeLa cells stably expressing shINPP5E were treated with 100 nM
UNC3230 (Tocris) or dimethyl sulfoxide (DMSO) for 24 h. Paclitaxel was added to the growth medium at
a final concentration of 200 nM. At 22 h after paclitaxel exposure, cells were observed via live time-lapse
imaging or fixed for immunofluorescence.

Quantification of PI(4,5)P2. Phosphoinositides were extracted from cells using the NeoBead PIP
purification system from Echelon Bioscience (P-B999). PI(4,5)P2 was then quantified via PI(4,5)P2 Mass
ELISA (Echelon Biosciences; K-4500). Both procedures were performed per the manufacturer’s instruc-
tions.

Micronucleation assay. Primary human fibroblasts stably expressing shRNAs targeting luciferase or
INPP5E were plated on coverslips, treated with 2 �g/ml cytochalasin B in growth medium for 24 h, fixed,
and immunostained for CENPA as described above. Cells were counterstained with fluorophore-
conjugated phalloidin and Hoechst stain for detection of cell borders and DNA, respectively. Images were
acquired and analyzed via deconvolution microscopy (described above). Cells were scored for the
presence of micronuclei, which were defined as kinetochore positive or negative based on the respective
presence or absence of CENPA signal within the stack of z-images spanning the entire volume of
micronuclei.

Microtubule cold-destabilization assay. At 48 h posttransfection with the indicated siRNAs,
coverslips with live HeLa cells were transferred to individual wells on 12-well plates, submerged in cold
DMEM plus 10% FBS plus 1% penicillin-streptomycin, and incubated at 4°C (1 h). The medium was then
aspirated, replaced with medium prewarmed to 37°C, and left for 15 s. Cells were then immediately fixed
and processed for immunofluorescence as described above.

For PIP2 treatment, PI(4,5)P2 [metabolically stable PI(4,5)P2 P-F4516; Echelon Biosciences] was com-
bined with unlabeled Shuttle PIP Carrier 3 (P-9C3; Echelon Biosciences) in accordance with the manu-
facturer’s instructions, and the complex was diluted to a final concentration of 20 �M in growth medium.
Cells were grown in the PI(4,5)P2-carrier complex-containing medium for 24 h before the microtubule
cold-destabilization assay was performed as described above.

Cell cycle assays. HCT cells were arrested in G1 by starvation (48 h) and released by reintroduction
of 10% FBS as described previously (54). Cells were harvested at the indicated time points for Western
blotting as described above or for flow cytometry as follows. Cells were detached using HyQTase cell
detachment reagent (HyClone), washed twice with cold PBS, fixed in cold 70% ethanol overnight
(�20°C), washed with PBS twice, and then stained with FxCycle PI/RNase staining solution (Life Tech-
nologies). Cell cycle profiles were generated using a FACSCalibur machine (BD) and analyzed with ModFit
LT software (Verity Software House). For G2/mitotic release, HeLa cells were G2 arrested with 9 �M
RO3306 (EMD Millipore) for 24 h (62) and released by four 5-min washes with drug-free medium at 37°C.

Metaphase chromosome spreads. Human fibroblasts were arrested in metaphase with 1 �g/ml
colcemid (2 h, 37°C) (KaryoMAX colcemid; Life Technologies), trypsinized, resuspended in serum-
containing medium, centrifuged (1,500 rpm, 5 min), resuspended in 5 ml of 75 mM KCl, and incubated
at RT (10 min). Seven drops of fresh 3:1 methanol-acetic acid fixative were then added, and cells were
centrifuged (1,500 rpm, 5 min). After removing all but 100 �l of the fixative, cells were resuspended in
4.5 ml of fresh fixative added dropwise while vortexing at low speed and then incubated in fixative
overnight (4°C), centrifuged (1,500 rpm, 5 min), resuspended in 1 ml of fresh fixative, pelleted in a
microcentrifuge at top speed, washed with fixative, again pelleted in a microcentrifuge at top speed for
2 min, and resuspended in 250 �l fixative. One hundred microliters of suspension was dropped onto
ethanol-precleaned microscope slides and dried in a fume hood (1 h). The slides were washed in
ultrapure water and mounted in DAPI (4=,6=-diamidino-2-phenylindole)-containing Vectashield medium
(Vector Laboratories) prior to deconvolution microscopy.

Statistics. All statistical analyses were performed using GraphPad Prism. All graphs show mean
values � standard errors of the mean (SEM) unless indicated otherwise.
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