
sensors

Article

Multisensorial Assessment of Laser Effects on Shellac
Applied on Wall Paintings

Jana Striova 1, Raffaella Fontana 1, Ilaria Barbetti 2, Luca Pezzati 1,* , Annamaria Fedele 1

and Cristiano Riminesi 3

����������
�������

Citation: Striova, J.; Fontana, R.;

Barbetti, I.; Pezzati, L.; Fedele, A.;

Riminesi, C. Multisensorial

Assessment of Laser Effects on Shellac

Applied on Wall Paintings. Sensors

2021, 21, 3354. https://doi.org/

10.3390/s21103354

Academic Editor: Guillermo

Villanueva

Received: 1 April 2021

Accepted: 8 May 2021

Published: 12 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 National Research Council, INO, Largo E. Fermi 6, 50125 Firenze, Italy; jana.striova@cnr.it (J.S.);
raffaella.fontana@cnr.it (R.F.); afedele32@gmail.com (A.F.)

2 Soprintendenza Archeologia, Belle Arti e Paesaggio per le Province di Pisa e Livorno,
Lungarno A. Pacinotti 46, 56126 Pisa, Italy; ilaria.barbetti@beniculturali.it

3 National Research Council, ISPC, Via Madonna del Piano 10, 50019 Firenze, Italy; cristiano.riminesi@cnr.it
* Correspondence: luca.pezzati@cnr.it

Abstract: The assessment of five different laser treatments in the conservation of wall paintings
was devised on the basis of the surface temperature monitoring by infrared thermography (IRT),
ultraviolet-induced fluorescence-visible (UV-VIS) imaging, and optical coherence tomography (OCT).
A series of yttrium-aluminum-garnet (YAG) lasers were tested for removal of shellac layers from wall
painting mock-ups. The mock-ups were realized as buon fresco with different mineral based pigments
(earths and iron oxide) on a lime- and sand-based mortar. After the carbonatation process, all the
samples were treated with shellac (5% in ethanol). The effects of neodymium (Nd):YAG, holmium
(Ho):YAG, and erbium (Er):YAG laser sources, in different operative modes, on average temperature
of the surface, color, and morphology were inspected with complementary sensors. The results show
the necessity to adopt a combined approach in establishing safe laser operating conditions to avoid
any undesired effects induced on the artefacts by the laser treatments. We demonstrate, for the first
time, the performance of the Ho:YAG laser in the removal of a conservation treatment.

Keywords: laser cleaning; shellac coating; wall painting; thermal infrared imaging; Ho:YAG laser

1. Introduction

The cleaning is an irreversible restoration intervention on cultural heritage assets
involving the removal of unwanted substances generally deposited on (or embedded into)
the surface of the object. The undesirable materials may include alteration products of the
constituent materials, dust, salts efflorescence, soluble and insoluble concretions due to the
alteration of organic materials or crystallization of inorganic materials, layers of products
applied in the past, altered and no longer functioning [1]. The principal task of cleaning
is the removal of harmful or potentially dangerous substances. The decision as to what
material should be preserved or removed is crucial for planning the restoration, along with
the definition of the most appropriate methods to carry out a selective, effective and safe
cleaning. These choices imply a proper knowledge of the artwork’s materials and history,
as well as of the expected performance of the cleaning methods. A cultural heritage object
is a unique and irreplaceable testimony of cultural and social identity; thus, the aim of
cleaning must be first of all its preservation. The target for the restorer is to exploit the most
suitable techniques and their combination in order to guarantee the best possible results in
terms of cleaning intervention.

Mechanical, chemical, and laser methods can be involved in the cleaning of wall
paintings, either standalone or in combination. The mechanical cleaning entails tools,
such as brushes, soft tires, vacuum cleaners, scalpels, and abrasive materials, for the
removal, thinning or abrasion of the undesired material [2]. The chemical cleaning exploits
solvents or reagents capable of modifying the state of aggregation of the substances to
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be removed. A variety of them are used in the form of pure solvent, such as: water or
organic solvents; aqueous solutions; acids and bases with controlled pH; complexing
and chelating agents; surfactants; multicomponent formulations containing ion-exchange
resins; emulsions; artificial saliva, or solvent surfactants gels [3]. The products can be
applied directly, by cotton swabs, a sheet of paper, cellulose-based poultice, or by gels. The
latter approach allows the controlling of solvent release and of its penetration depth in the
substrate. Then, the removal of the solubilized or swelled material can be performed by
means of physical action. The laser techniques have gradually gained a prominent position
thanks to scientific studies proving their potential for a selective, gradual, and accurate
removal [4]. The interaction mechanism (photoacoustic or thermal) depends on both the
material characteristics and the lasing parameters. The correct selection of these latter, that
should keep the laser power below the damage threshold, is indeed crucial for a safe and
efficient treatment [5–8].

A rigorous assessment of the cleaning outcomes is crucial to avoid damaging the
substrate, and in particular the paint layers. Scientific investigations have been performed
before, during, or after the cleaning intervention by measuring chemical and physical
properties, such as molecular composition, color, surface roughness, and by quantifying the
thickness of the preserved patina using various non-invasive diagnostic tools [9–14]. The
heating induced by laser treatments is another important effect to be kept under control,
especially when treating materials with a high optical absorption coefficient in relation to
the laser wavelength, as it often occurs during interventions on thermosensitive pigments
and materials [10,15].

Laser treatment is nowadays largely diffused for cleaning different materials: metals,
paintings, and wall paintings [8,16–18]. A preliminary setting of the laser parameters and
a real-time control of the temperature of the surface exposed to laser radiation should
prevent both instant and long-term damages [4,19]. Indeed, the interaction mechanisms
between the laser radiation and the materials constituting the artworks are complex due to
the stratified systems composed by diverse intercorrelated organic and inorganic materials,
all potentially affected by the laser radiation during the treatment. A preliminary stage of
diagnostics is mandatory to define the safe treatment protocol and to prevent undesired
effects and damages. Conservation interventions may be undertaken with various laser
sources, the Nd:YAG and Er:YAG lasers being the most diffused ones. The desired outcome
can be tuned by a proper setting of parameters, such as the wavelength, the fluency, the
pulse duration, the repetition rate (frequency), and the time of exposure [6,19]. However,
laser absorption by the material constituting the wall painting contributes to raising the
temperatures of both the surface and the underlying volume. Previous studies proposed
the detection of the temperature increase upon the Er:YAG laser irradiation in medical and
commercial field by exploiting thermocouples [20,21]. A similar approach was applied to
monitor the effects of the Er:YAG laser in the cultural heritage field by De Cruz et al. [22].
Temperature monitoring following laser irradiation in Raman spectroscopy has been
devised by Osticioli et al. [23]. The authors used a thermopile sensor (response time of 1.3
s, absolute accuracy of 0.5 ◦C at 25 ◦C, 10◦ field of view) and an optical circuit to monitor
the effects of the laser radiation focused on the target surface.

Here, we describe a multisensorial approach to monitor the effects on the laser-treated
surface combining infrared thermal imaging (IRT), optical coherence tomography (OCT),
and UV-VIS imaging. We tested the efficiency of high-speed IRT in revealing the tem-
perature of the surface under treatment. Several laser sources, in particular Nd:YAG,
Er:YAG, and Ho:YAG, were exploited in removal of shellac layer from the wall painting
mock-ups. Their performances in terms of induced effects were compared in relation
to the operational mode of lasers (wavelength, energy, fluency, pulse duration, and fre-
quency). While the Nd:YAG and Er:YAG lasers are routinely applied in conservation
interventions [5–8,12,13,17,18], the Ho:YAG laser emitting at 2100 nm is used up-to-now
mainly in medical treatments, specifically in intracorporeal lithotripsy [24–26]. To the best
of our knowledge, this is the first time that the use of a Ho:YAG laser to remove conserva-
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tion treatments is reported. Depending on the operative conditions, its potential advantage
could dwell in the sub-ablative action that mechanically compromises the material to be
subsequently removed by a cotton swab. The free-running pulse emitted by the Ho:YAG
laser acts mainly through the photothermal mechanism leading to the material expansion
or vaporization in a way similar to that of the Er:YAG laser. Indeed, the radiation at the
fundamental wavelength (2.1 µm) is weakly coupled with the -OH or -NH combination
modes as compared with the Er:YAG (2.9 µm) radiation which is in resonance with these
stretching modes. These wavelengths are also attractive due to the eye-safe nature of the
radiation. This could be seen as a major advantage over the excimer lasers emitting, with
different pulse duration, in the UV region and that prove extremely efficient in thinning
the varnish layers by exploiting their high absorption at those wavelengths [27–30]. Fi-
nally, the shellac and other organic compounds exhibit poor absorption at 1064 nm thus
compromising the cleaning efficiency of the Nd:YAG laser at its fundamental emission.

2. Materials and Methods

In this section the samples used for the experiments are described along with the laser-
removal approaches and the diagnostic techniques employed to assess the surface chenges.

2.1. Samples

The mock samples for the tests simulating the buon fresco technique were prepared
using calcium hydroxide mixed with sand at a ratio of 1:3 for the first mortar layer (arriccio)
and 1:2 for the final mortar layer (intonachino). The fresh mortar surface was then polished
with a trowel and painted with yellow ochres, morellone (a mixture of red and black
pigments), and green earth (Figure 1, Table 1). For simulating the pictorial layer, we
chose the most common inorganic and organic pigments in the medieval and renaissance
palette for wall paintings. The pigments are based on iron oxides or hydroxide, complex
aluminosilicate minerals, and amorphous carbon.
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morellone (MO), green earth (GE) pigments; t0—reference area, t1 —treatment with shellac; (b) set-up scheme for tempera-
ture monitoring: IR camera is positioned at 45° and laser at 90° with respect to the sample surface. 

Figure 1. (a) Affresco mock-up (45 × 12 cm2) subdivided in 3 areas (15 × 12 cm2). From left to right: yellow ochre (YO),
morellone (MO), green earth (GE) pigments; t0—reference area, t1—treatment with shellac; (b) set-up scheme for temperature
monitoring: IR camera is positioned at 45◦ and laser at 90◦ with respect to the sample surface.

Table 1. Pigments and their acronyms used in the fresco mock-up.

Pigment Acronym Pigment Type

YO Yellow Ochre

MO Morellone

GE Green Earth

An artificial patina was then applied in the zone referred to as t1, composed of 5 (w/v)
% shellac in ethyl alcohol, a natural fixative widely used in the past that over time becomes
progressively less soluble and dark. In each of the pigmented zones, a reference area (t0)
was left uncovered by the patina to facilitate analytical checks (Figure 1a).



Sensors 2021, 21, 3354 4 of 15

2.2. Laser Treatments

Preliminary tests were performed for each type of pigment by setting the optimal
laser parameters (energy—E; fluence—F; frequency—f ; pulse width—τ) for removing or
thinning the varnish layer. For each pigment, 18 areas were selected for the preliminary
tests (1 × 1 cm2) to define the conditions for five tests (1 × 2 cm2) with the five different laser
types, as described in Table 2 (I–V). The abbreviations QS, LQS, SFR stand, respectively,
for Q-switched, long Q-switched, short-free running pulse durations. The fluence was
calculated according to

F = E/A, (1)

where A is the area of laser beam.

Table 2. Laser parameters used for treatments, all in modality wet.

Treatment
No. Laser Source Wave-Length λ

[nm]
Pulse

Width τ
Energy E

[mJ]
Fluence F

[J/cm2]
Frequency f

[Hz]

I Nd:YAG
QS 1064 15 ns 60 1.2 5

II Nd:YAG LQS 1064 100 ns 150 3.1 5

III Nd:YAG SFR 1064 5 µs 100 2.0 5

IV Ho:YAG
Ablation (short) 2100 95 µs 500 10.2 10

V Er:YAG Long 2940 500 µs 150 3.1 10

A mask, made of PVC and masking tape, was used to localize the treatment areas in
the same position on each pigment to allow a fast and simply performance comparison
(Figure 1b). On the mask, each hole corresponding to a treated area was then unambigu-
ously labeled. The selected area was preventively wet with demineralized water, then it
was laser irradiated for five times, and successively a mild mechanical action was applied
by rolling on the surface for five times a cotton swab moistened in ethyl alcohol.

2.3. IR Thermography to Assess the Surface Temperature

During the cleaning, the temperature on the treated area was monitored in real-time
by using an infrared (IR) camera, the Optris PI 450, a high resolution and multi-purpose
infrared thermal imaging camera. The camera is equipped with a 9–14 µm band-pass
filter and it has an average sensitivity of 0.03 ◦C in all its temperature-measuring range
(from −20 ◦C to 900 ◦C). The camera framerate is 80 fps, corresponding to a sampling time
τ = 12.5 msec. The recording of the temperature during the laser treatment was performed
using a common photographic mini-tripod for positioning the camera (Figure 1b) at 45◦

and 25 cm of distance. The average temperature values refer to the 1 × 2 cm2 area under
the cleaning for a time interval of 60 s. It may be useful to note that the sampling time of
the IR camera (12.5 ms) was not synchronized with the laser pulse duration (from 15 ns
to 500 µs) and the laser repetition rate (5 or 10 Hz). The acquired thermal images were
recorded on a PC and processed in real-time through a dedicated software. The statistical
information about the temperature was extracted in real-time for the selected area and
plotted during the treatment.

2.4. UV-VIS-NIR Imaging and Color Measurements

The specimen was examined by the visible-near-infrared (VIS-NIR) multispectral
scanner described in detail elsewhere [31]. The scanner operates in the visible and the
near-infrared regions (from 400 nm to 2500 nm), with a spectral resolution of 20–30 nm and
50–100 nm, respectively. Acquisitions were performed at time 0 (t0)— painted surface, at
time 1 (t1)—after shellac application (Figure 1a) and at time 2 (t2)—after laser treatment
(Figure 2). The RGB and the CIELab 1931 images (CIELAB 1931, Commission Internationale
de l’Eclairage) were both calculated from the reflectance values of the VIS channels, using
the standard D65 illuminant and the observer at 2◦. The L*a*b* coordinates were used to
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calculate the color change ∆E, induced by both the shellac application (t1−t0) and the laser
irradiation (t2−t0), according to the equation [32].

∆E =

√
∆L∗2 + ∆a∗2 + ∆b∗2, (2)

where
∆L∗ = L∗

x − L∗
t0, ∆a∗ = a∗x − a∗t0, ∆b∗ = b∗

x − b∗
t0; (3)

x = t1 refers to the color parameters of the surface treated with the shellac, while x = t2 refers
to the surface treated with the laser irradiation. ∆L* value describes a change in brightness
where the L* value ranges between 100 (white) and 0 (black). The a* and b* values represent
the color directions: +a* is red, −a* green; +b* yellow and −b* blue, ranging between +60
and −60. The positive (negative) values of ∆a* and ∆b* indicate that the treated areas are,
respectively, more red (green) and yellow (blue) than the reference surface.
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Figure 2. RGB image of the mock-up: white rectangles denote 1 × 2 cm2 zones of I–V laser tests as
reported in Table 2, and are referred to as time 2 (t2). Other zones report the preliminary laser tests.

UV induced fluorescence images were acquired with a Nikon D750 camera, equipped
with a 105 mm f/2.8 AF micro lens. A Wood’s lamp, placed at nearly 45◦ with respect to the
surface, was used to excite the sample, with the camera set parallel to its surface. Due to the
low visible emission, fluorescence measurements were performed under dark conditions.

2.5. OCT for Thickness and Morphologic Evaluation

A device for measuring spectral-domain OCT (Telesto II, Thorlabs) was used to
monitor the thickness of the shellac varnish and the effects of the laser treatments. The
instrument operates at 1300 nm (center wavelength) with axial and lateral resolution of
5.5 (in air) and 13.0 microns, respectively. OCT cross sections were acquired at the cleaned–
uncleaned interface for all the tests and the pigmented layers. The data were elaborated
with ImageJ software. The thickness of organic layer as measured by OCT (dOCT) was
corrected for the refractive index n to achieve the real thickness estimate. Being n = 1.516
the refractive index of shellac [33,34], the real shellac thickness (dr) is given by dr = dOCT/n.
In total, 10 measurements for each mean value were considered and the standard deviation
provides indication on the homogeneity of the treatment. The maximum and minimum
thickness values (dmax and dmin) were extracted from the tomograms as well.

3. Results

A series of preliminary treatment tests were performed to assess each laser’s best
configuration for removing or thinning the shellac layer. These led to the definition of the
best possible experimental lasing conditions which are reported in Table 2 and labelled I–V.
Figure 2 shows the true-color image of the mock-up, following all the laser tests. The I–V
tests are evidenced by the white rectangles. The image was produced by processing the
visible region spectral dataset acquired with the VIS-NIR multispectral scanner, collected
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in a 45◦/0◦ illumination/detection geometry, by using the standard D65 illuminant and
the CIE 1931 standard observer.

3.1. Real-Time Temperature Monitoring

The 1 × 2 cm2 sample surfaces were monitored in real-time with the infrared thermal
camera for time intervals of 60 s, the time necessary to treat the whole test area. The graphs
in Figure 3 show the average temperature values for the dry and wet irradiation conditions.
The comparison demonstrates that the increase in surface temperature can be reduced by
wetting the surface prior to the laser treatment. In wet conditions, used and discussed later
in the text, the plot in Figure 3b shows that for all the laser treatments and the pictorial
layers the average temperatures measured by the thermal infrared camera keep within
the 20–25 ◦C interval. The exception is the Ho:YAG laser: higher average temperatures, in
the 25–35 ◦C range, were actually registered during this treatment. Table 2 shows that the
Ho:YAG laser uses the highest fluence (F = 10.2 J/cm2, more than 3× higher as compared
to other lasers) to efficiently remove the shellac layer. For this laser, the radiation–material
interaction is principally based on a thermal mechanism and the associated thermal effects
generally increase as a function of fluence and diminish with the pulse duration [35].
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Figure 3. Plot of average temperatures measured with the infrared thermal camera as a function of
laser treatment and pictorial layer of the irradiated 1 × 2 cm2 zones (a) in dry and (b) wet conditions.

While the monitoring of the temperature by IRT may reflect well the average thermal
state of the sample under the treatment, it underestimates the maximum and instantaneous
temperature value induced by laser radiation because the pulse durations are several
orders of magnitude shorter than the camera response time (15 ns to 500 µs versus the
12.5 ms of the IRT sampling rate).

3.2. UV-VIS Imaging and Colorimetric Characterization

The RGB and the UV-induced fluorescence images, acquired after the cleaning tests,
are shown in the following subsections for each paint layer. The colorimetric parameters
referred to the reference surface (t0), to the surface with shellac treatment (t1), and to the
laser-treated surface (t2) are also reported. The interpretation of the data considers both the
observation of the visible and UV-induced fluorescence images, as well as the colorimetric
coordinates and their changes as a function of the laser treatment. The organic layer exhibits
UV-induced orangish fluorescence, which can be used to monitor the presence of shellac
on the surface [36]. The data provided a reliable base for the evaluation of the laser effects
and for further corroboration of the results by complementary optical measurements.

3.2.1. Yellow Ochre

Figure 4a,b report images of the YO specimen after I–V laser treatments, respectively,
in visible light and of UV-induced fluorescence.
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Following the treatment by the Nd:YAG QS and LQS lasers emitting at their funda-
mental wavelength (1064 nm), the areas labeled I and II in Figure 4a exhibit darkening,
evidenced by a decrease in L* values from 69.0 at t0 and 54.0 at t1 to, respectively, 51.0 and
53.0 at t2. As compared to t0, the values of b* show a decrease in the yellow component 
(Δbt2−t0* < 0) for both the Nd:YAG lasers (I and II), suggesting the modification of the pig-

Figure 4. Yellow Ochre specimen as a function of laser treatment (I–V): (a) visible image; (b) UV-induced
visible fluorescence; (c) bar plot of ∆E(t2–t0) values. Each tested area I–V refers to 1 × 2 cm2 area.

Table 3 documents the colorimetric coordinates of the painted surface at t0, t1, t2. The
data show that the shellac application (t1) induced the diminishment of L* (∆Lt1–t0 = −15.0)
and a significant increase in both a* and b* parameters (∆at1–t0* = 8.0 and ∆bt1–t0* = 12.0).

Table 3. Colorimetric L*, a*, b* parameters and their standard deviations (std) of Yellow Ochre
mock-up: reference t0, after shellac application t1, after I–V laser treatment t2.

Surface L* std a* std b* std ∆L* ∆a* ∆b*

t0 69.0 0.0 10.7 0.6 39.3 2.1

t1 54.0 1.7 18.7 0.6 51.3 1.2 −15.0 8.0 12.0

t2 I 51.0 1.0 12.7 0.6 36.3 1.5 −18.0 2.0 −3.0

t2 II 53.0 1.0 13.3 0.6 35.7 1.2 −16.0 2.7 −3.7

t2 III 58.0 0.0 17.5 0.6 46.0 0.6 −11.0 6.8 6.7

t2 IV 58.7 0.6 17.0 0.0 45.7 0.6 −10.3 6.3 6.3

t2 V 60.0 1.0 16.0 0.0 43.7 1.2 −9.0 5.3 4.3

Following the treatment by the Nd:YAG QS and LQS lasers emitting at their funda-
mental wavelength (1064 nm), the areas labeled I and II in Figure 4a exhibit darkening,
evidenced by a decrease in L* values from 69.0 at t0 and 54.0 at t1 to, respectively, 51.0 and
53.0 at t2. As compared to t0, the values of b* show a decrease in the yellow component
(∆bt2−t0* < 0) for both the Nd:YAG lasers (I and II), suggesting the modification of the
pigment’s chromophore (yellow goethite and lepidocrocite, α-FeOOH and γ-FeOOH, re-
spectively). As described in literature, these thermolabile chromophores may transform to
dark maghemite (γ-Fe2O3), especially in presence of organic matter [33]. In either case, the
presence of the dark material can be most likely attributed to the transformation of both the
pigment and the residues of the organic layer. The colorimetric measurements evidenced
that that the irradiation with a short-pulse Nd:YAG laser (I) induced greater extent of
darkening than the long-pulse Nd:YAG (II) laser (∆E(I) > ∆E(II)). Generally, photothermal
effects diminish with longer laser pulse duration [35]. The opposite effect (an increase
in L* values at t2 as compared to t1) is observed for the III, IV, and V areas suggesting a
partial removal of shellac. The data suggest that the cleaning with the Er:YAG laser (V)
has rendered the surface, by removing partially the shellac film, the most similar to its
original colorimetric aspect at t0 (the smallest ∆L). As compared to t0, the values of b* show
a decrease in the yellow component (∆b* < 0) for the Nd:YAG lasers (I and II) whereas
∆b* > 0 for the other systems indicates the restoring of the original aspect of the paint
layer, in the greatest extent for the V laser (b* at t0 = 39.3; t2 = 43.7). The UV-induced
orangish fluorescence (Figure 2), typical for shellac, provides information on the presence,
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the distribution and the integrity of this organic film on the surface. The area V appears the
darkest—the most similar to the reference paint layer—corroborating the hypothesis about
the film removal.

Figure 4c shows a plot of global color change (∆E) values, calculated according to
Equations (2) and (3), where the delta is referred to the surface after the laser treatment
(t2)—reference surface (t0). The smaller the ∆E, the more similar the surface colorimetric
properties. The values exhibit a clear trend (I > II > III > IV > V) suggesting that the cleaning
with Er:YAG Long (V) laser is the most effective, followed by Ho:YAG Ablation (IV) and
Nd:YAG SFR (III). On the other hand, the lasers Nd:YAG QS and LQS induced negative
colorimetric changes that translated also into the high ∆E values, suggesting a damage of
the substrate.

3.2.2. Morellone

Figure 5a,b report MO specimen images after laser treatment, respectively, in visible
light and of UV-induced fluorescence.
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Table 4 documents the colorimetric coordinates at t0, t1, t2. The shellac application (t1)
induced a decrease in L*, ∆Lt1−t0 = −14.0, and an increase in a* and b* values (∆at1−t0 = 7.0
and ∆bt1−t0 = 11.7) which is comparable with the effect of shellac on YO.

Table 4. Colorimetric L*, a*, b* parameters and their standard deviations (std) of the morellone
mock-up: reference t0, after shellac application t1, after I–V laser treatment t2.

Surface L* std a* std b* std ∆L* ∆a* ∆b*

t0 36.3 0.6 14.3 0.6 5.3 0.6

t1 22.3 0.6 21.3 0.6 17.0 1.0 −14.0 7.0 11.7

t2 I 33.0 1.0 13.3 0.6 9.0 1.7 −3.3 −1.0 3.7

t2 II 33.3 0.6 10.0 0.0 8.7 1.2 −3.0 −4.3 3.3

t2 III 29.5 0.6 16.5 0.6 9.5 0.6 −6.8 2.2 4.2

t2 IV 30.0 0.0 16.7 0.6 9.3 0.6 −6.3 2.3 4.0

t2 V 30.0 1.0 17.0 0.0 8.7 1.2 −6.3 2.7 3.3

The I–III laser treatments with Nd:YAG lasers were performed at the fundamental
wavelength (1064 nm) by varying the pulse duration (from the shortest to the longest
QS < LQS < SFR pulse width). Regarding the impact of laser treatment, the colorimetric
values at t2 provide evidence of a very efficient cleaning by the Nd:YAG QS laser (I). Indeed,
low differential values (t2–t0) (∆L = −3.3, ∆a = −1.0 and ∆b = 3.7) suggest a very effective
ablation of the shellac film. This was achieved, probably, through the photomechanical
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action of the very short-pulsed laser (QS, 15 ns). However, a slight decrease in the red
component (at0* = 14.3; at2* = 13.3) suggests a minor modification of the surface appearance
due to probably both some laser-degraded shellac residues and the pigmented substrate.
The UV-fluorescence image shows indeed only very local shellac remains. An analogue
situation is found following the treatment with the Nd:YAG LQS laser (II). However, only
local ablation and film detachment from the surface is achieved with the longer pulse
width laser (LQS, 100 ns) as evidenced by the fluorescence image and OCT data. This
agrees with a less pronounced photomechanical effect of the laser with the increasing
pulse duration. The reduction in the red component is more pronounced (at0* = 14.3;
at2* = 10.0) owed mainly to a laser-induced modification of the shellac film that remains
on the surface. All the colorimetric coordinates tend to approach the original reference
values of the surface before the shellac treatment (t0). This is also the case of the last two
irradiations with Ho:YAG and Er:YAG lasers (IV and V). The better cleaning results were
achieved with the latter, as deduced from the combination of all the data. The ablation
is gradual and respectful of the surface characteristics, leaving a thin residual film on the
surface, as observed from the UV-induced fluorescence (Figure 5b).

3.2.3. Green Earth

Figure 6a,b show the visible and UV-induced fluorescence images of the treated GE
sample. The colorimetric parameters of the reference (t0), shellac-treated (t1), and laser-
treated (t2) Green Earth mock-up are reported in Table 5. The shellac application induced
relevant changes mainly in the L* and b* parameters (∆L = −13 and ∆b = 15.0) with
relatively high standard deviation values at t1. The latter suggests an inhomogeneous
shellac distribution owed probably to the sample morphology.
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Figure 6. Green Earth specimen as a function of laser treatment (I–V): (a) visible image; (b) UV-induced
visible fluorescence; (c) bar plot of ∆E values. Each tested area I–V refers to 1 × 2 cm2 area.

Table 5. Colorimetric L*, a*, b* parameters and their standard deviations (std) of the Green Earth
mock-up: reference t0, after shellac application t1, after I–V laser treatment t2.

Surface L* std a* std b* std ∆L* ∆a* ∆b*

t0 55.7 0.6 −17.0 1.0 13.0 0.0

t1 42.7 4.0 −12.0 0.0 28.0 2.6 −13.0 5.0 15.0

t2 I 46.0 1.7 −10.0 1.0 19.7 1.5 −9.7 7.0 6.7

t2 II 42.3 0.6 −8.7 1.2 21.7 1.5 −13.3 8.3 8.7

t2 III 46.0 1.2 −11.5 0.6 20.0 0.6 −9.7 5.5 7.0

t2 IV 46.3 1.2 −12.3 0.6 17.0 0.0 −9.3 4.7 4.0

t2 V 42.7 0.6 −12.7 0.6 17.3 0.6 −13.0 4.3 4.3
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The laser treatments performed on GE produced quite different effects as compared
with the YO and MO samples. First of all, no damage was induced to the substrate, all
the colorimetric parameters at t2 tend to approach the original paint surface values at t0,
as evident from Table 5. This can be explained by the high stability of the siliceous Green
Earth pigment, as compared to the thermolabile pigments containing iron oxides, such as
Yellow Ochre and Morellone [30,37,38]. In terms of cleaning efficiency, the Ho:YAG laser
(IV) emitting at 2.1 µm showed the best performance, documented by the lowest ∆L*,
∆a*, and ∆b* values that translate into the lowest ∆E(t2−t0). This is also confirmed by
the UV-induced fluorescence image (Figure 6b) where a reduced fluorescence is observed,
especially in sectors IV and V. The cleaning efficiency of all other laser systems (I, III, V)
seems comparable in terms of colorimetric coordinates but for the Nd:YAG LQS (II), which
shows a very little impact on the surface.

3.3. Thickness Evaluation of the Shellac Removal by OCT

The OCT data give complementary information about the impact of laser cleaning,
as they can directly reveal the quantity of the material removed and remaining on the
surface. The non-invasive OCT method returns stratigraphic images of the sample under
investigation. Figure 7 reports such data as a function of the laser cleaning and the
paint type recorded on the irradiated and non-irradiated portion for each sample and
treatment. As apparent from Figure 7, the varnish settles mainly in the concave portions
of the samples. It can also be deduced that the GE sample has the most irregular surface
morphology, that translates into the highest maximum varnish thickness value as compared
with other samples. Table 6 reports the maximum varnish thickness values (dmax) before
laser treatment to be 16, 21, 27 microns, respectively, for Yellow Ochre, Morellone and
Green Earth.
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Table 6. Maximum, minimum and mean thickness values (respectively dmax, dmin, dr) of the shellac layer before and after
I–V laser treatments. Standard deviation is a measure of the thickness variability. N.d. stands for not detectable thickness
(i.e., below the instrumental limit of detection which is about 3.5 µm in z).

Sample YO MO GE

Thickness [µ] dmax–dmin dr std dmax–dmin dr std dmax–dmin dr std

Non-irradiated 16–7 11 4 21–7 12 5 23–7 15 5
I 16–5 7 3 n.d. n.d. n.d. 23–7 14 6
II 9–2 6 2 n.d. n.d. n.d. 22–9 14 6
III 12–5 7 3 12–7 10 2 21–7 14 4
IV 12–7 9 2 16–5 11 3 12–5 8 2
V n.d. n.d. n.d. 6–4 6 2 16–5 11 4

Table 6 reports maximum, minimum and mean thickness values of shellac. The
standard deviations reflect the spread of the measured values attributable to the inhomoge-
neous distribution of the polymer on the sample surface.

OCT data confirm what has been deduced previously by the colorimetric measure-
ments. For the Nd:YAG laser on the MO sample, OCT does not reveal the presence of
the superficial film, meaning its thickness is <3.5 µm (below the instrumental detection
limit). The same situation is revealed for the Er:YAG laser on the YO specimen. The highest
efficiency of the Er:YAG laser is, therefore, confirmed for all the samples but for the GE,
where the Ho:YAG laser achieved a higher ablation efficiency (residual shellac thickness
8 µm). The average cleaning rate can be estimated as 1–2 microns/pulse for the Er:YAG
laser by considering the initial and the final shellac thickness and 5 passages by the laser as
described in the methods.

4. Discussion

Table 7 summarizes the global color change values as a function of all the painted
surfaces. The ∆E values in the first row describe the impact of the shellac treatment (t1) on
the painted surface (t0) which is comparable for all the paint types (∆E~20). The I–V data
characterize the effect of laser treatment type (t2) as referred to the reference surface (t0).
Generally speaking, the highest cleaning efficiency has been obtained on the MO sample for
all the laser treatments, achieving values of ∆E < 8.4, whereas ∆E values for the YO and GE
samples span between 11 and 18.5. The darker substrate of morellone facilitates the shellac
removal. However, the visible and UV-induced fluorescence images and colorimetric data
revealed that the Nd:YAG QS and LQS lasers induced darkening of pigment both in the
YO and MO surfaces, being the harmfulness slightly higher in the QS regime for the YO
surface. On the other hand, other lasers did not produce significant adverse effects in terms
of color changes induced to the substrate. Indeed, the colorimetric parameters of surfaces
after III–V cleaning tend to approach their original values at t0. The decreasing values of
∆E for the Nd:YAG SFR > Ho:YAG > Er:YAG lasers indicate the highest efficiency for the
Er:YAG laser in all the samples but for the GE, where the efficiency seems slightly higher
for the Ho:YAG laser. These data are corroborated by the OCT measurements.
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Table 7. Global color change values (∆E) as a function of the paint type following the shellac
application (t1–t0) and the I–V laser treatments (t2–t0).

Treatment YO MO GE

t1−t0 20.8 19.5 20.5

I 18.4 5.1 13.7

II 16.6 6.2 18.0

III 14.6 8.3 13.1

IV 13.7 7.8 11.2

V 11.3 7.6 13.8

The overall results considering all the data from the sensors are summarized in Table 8. It
can be seen that the Nd:YAG laser at 1064 nm with Q-switched pulse (15 ns) ablated well in
the MO sample and enabled very partial thinning of the film from YO sample, at the cost,
however, of some induced damage. The average temperature measured did not account
for the instantaneous temperature raise during the very short pulse that could easily reach
several hundreds of ◦C with fast thermal recovery.

Table 8. Overall observations of the effects of the I–V laser treatments (t2−t0).

Treatment YO MO GE

I Thinning
Surface darkening

In-depth ablation
Surface darkening

No evident cleaning
No substrate modifications

II Thinning
Surface darkening

Delamination/Surface
darkening

No evident cleaning
No substrate modifications

III Thinning
No substrate modifications

Thinning
No substrate modifications

No evident cleaning
No substrate modifications

IV Thinning
No substrate modifications

Thinning
No substrate modifications

Thinning
No substrate modifications

V Thinning
No substrate modifications

Thinning
No substrate modifications

Thinning
No substrate modifications

The laser treatment II with the Nd:YAG laser at 1064 nm with long Q-switched pulse
(100 ns) is quite similar in its effects as compared with I treatment, with less pronounced
adverse effects and a lower photomechanical efficiency.

The laser treatment III with the Nd:YAG laser at 1064 nm with short-free running
pulse width (5 µs) enabled only a very partial thinning of the film (OCT residual thickness
is 7 and 10 microns, respectively, for the YO and MO samples), as testified also by the
colorimetric data. Minimal effects were achieved for the GE sample.

The laser treatment IV with the Ho:YAG laser at 2.1 µm achieved the highest efficiency
on the GE sample and a little less efficiency on the other two samples. No damage was
induced on any sample. Average temperature is the highest of all the lasers due to both a
high fluence and a higher repetition rate (10 Hz).

The laser treatment V with the Er:YAG laser emitting at 2.9 µm with long pulse width
(500 µs) proves to be gradual and very versatile as good cleaning results were achieved on
all the sample types, enabling steady thinning of shellac layer to about half of its thickness
at reasonable ablation rate.

Both the Ho:YAG and the Er:YAG lasers probably act through similar principles in-
volving water vaporization, gas expansion, and micro-distillation phenomena to gradually
remove material from the treated surface. The Er:YAG laser acts more efficiently due to
a more efficient coupling of the laser radiation with the -OH vibrational modes of the
shellac itself.



Sensors 2021, 21, 3354 13 of 15

5. Conclusions

Three YAG lasers—doped with Nd, Ho, and Er ions—emitting, respectively, at 1064,
2100, and 2940 nm were tested for the removal of a shellac layer from mural painting
mock-ups. The Nd:YAG laser was tested at three different pulse durations: 15 ns, 100 ns,
and 5 µs, while for the Ho:YAG and Er:YAG the pulse widths were, respectively, 95 and 500
µs. The lasing conditions were set just above the ablation threshold at frequencies allowing
the cleaning of 1 × 2 cm2 areas (5 Hz for Nd:YAG and 10 Hz for Ho:YAG and Er:YAG). The
laser effects were inspected by four complementary techniques (infrared thermography
microscopy, optical coherence tomography, and ultraviolet-visible-infrared imaging).

The data obtained through the proposed multisensorial approach proved that among
all the lasers, the Er:YAG one is the most versatile and gradual in removing the organic
layer. For the first time, the Ho:YAG laser efficiency is demonstrated in gradual thinning
of a shellac layer while safeguarding the substrate. The two abovementioned treatments
require the subsequent cleaning of the mechanically compromised layer with the ethanol-
soaked cotton swab. On the other hand, the Nd:YAG QS and LQS lasers at 1064 nm
allowed contactless removal only from specific mock-ups, at the cost of local damage. The
Nd:YAG SFR at 1064 nm proved very poor efficiency in removal of shellac. The infrared
thermography is efficient in monitoring the average surface temperature but is not fast
enough to capture the instantaneous temperature rise induced by the short laser pulses.
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