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We report herein a facile Hiyama cross-coupling reaction of arylsilanes with thiuram
reagents (tetraalkylthiuram disulfides or tetraalkylthiuram monosulfide) enabled by
copper fluoride. Compared to our previous work, this protocol is an alternative
protocol for the generation of S-aryl dithiocarbamates. It features low toxic and readily
available substrates, cost-effective promoter, easy performance, and provides good
yields.
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INTRODUCTION

Transition-metal-catalyzed cross-coupling reactions have been found broad applications for the
construction of carbon-carbon and carbon-heteroatom bonds enable the facile preparation of more
complex molecules (Miyaura, 2002; Magano and Dunetz, 2011; Negishi, 2011; Suzuki, 2011; Guo and
Rueping, 2018; Zhang et al., 2020). In 1972, Kumada and Tamao (Tamao et al., 1972) reported the
cross-coupling reaction of Grignard reagents (RMgX) with organic halides (R’X) catalyzed by nickel/
phosphine system. From then on, a wide range of organometallic reagents such as lithium
(Yamamura et al., 1975; Murahashi et al., 1979), aluminum (Negishi et al., 1978), zinc (Sekiya
and Ishikawa, 1976; King et al., 1977; Negishi and Van Horn, 1977; Negishi, 2011), zirconium
(Negishi et al., 1977; Okukado et al., 1978) and tin (Milstein and Stille, 1979a; Milstein et al., 1979b)
have emerged and exerted a ubiquitous influence on the synthesis community. However, their
instability, air and moisture sensitivity and the production of corrosive halogen wastes are
disadvantageous from both synthetic and environmental points of view. In addition to these
well-established organometallic reagents, the silicon reagent which was developed by Hiyama
and co-workers, is an alternative and attractive coupling partner for cross-coupling reactions
(the so-called Hiyama cross-coupling) (Nakao and Hiyama, 2011; Sore et al., 2012; Denmark
and Ambrosi, 2015; Komiyama et al., 2016). Generally, organosilicon reagents exhibit some
remarkable advantages such as non-toxicity, high stability, good tolerance toward various
functional groups and natural abundance of silicon. In the overpast several decades, significant
advances on transition-metal-catalyzed Hiyama cross-coupling have been achieved (Nareddy et al.,
2017; Nareddy et al., 2018; González et al., 2019; Han et al., 2019; Zhang et al., 2019; Idris and Lee,
2020; Lu et al., 2020; Wu et al., 2021), nevertheless, the diverse applications of this methodology are
still less explored and worthy of in-depth exploration under the concept of green chemistry.

Thiuram reagents (tetraalkylthiuram disulfides TMTD, or tetraalkylthiuram monosulfide
TMTM) are cheap and stable organosulfur compounds which can be widely used in biologically

Edited by:
Simone Brogi,

University of Pisa, Italy

Reviewed by:
David Morales-Morales,

Instituto de Química, Universidad
Nacional Autónoma de México,

Mexico
Kevin Alan Lobb,

Rhodes University, South Africa
Michal Szostak,

Rutgers University, United States

*Correspondence:
Mengqi Chen

479820476@qq.com
Weimin Song

gongyishi@126.com
Zhiyong Wu

zhiyongwu@henau.edu.cn

Specialty section:
This article was submitted to

Organic Chemistry,
a section of the journal
Frontiers in Chemistry

Received: 01 February 2022
Accepted: 09 March 2022
Published: 26 April 2022

Citation:
Wang Y, Shen H, Qiu J, Chen M,
Song W, Zhao M, Wang L, Bai F,

Wang H and Wu Z (2022) Copper-
Promoted Hiyama Cross-Coupling of
Arylsilanes With Thiuram Reagents: A

Facile Synthesis of
Aryl Dithiocarbamates.

Front. Chem. 10:867806.
doi: 10.3389/fchem.2022.867806

Frontiers in Chemistry | www.frontiersin.org April 2022 | Volume 10 | Article 8678061

ORIGINAL RESEARCH
published: 26 April 2022

doi: 10.3389/fchem.2022.867806

http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2022.867806&domain=pdf&date_stamp=2022-04-26
https://www.frontiersin.org/articles/10.3389/fchem.2022.867806/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.867806/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.867806/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.867806/full
http://creativecommons.org/licenses/by/4.0/
mailto:479820476@qq.com
mailto:gongyishi@126.com
mailto:zhiyongwu@henau.edu.cn
https://doi.org/10.3389/fchem.2022.867806
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2022.867806


active compounds, agricultural pesticides and vulcanization
accelerators (Enders et al., 2010), and also act as readily
available sulfur reagents in organic synthesis. (Zeng et al.,
2017a; Zeng et al., 2017b; Wu and Yan, 2019). Among them,
organic dithiocarbamates have been extensively investigated for
their outstanding biological activities (Hou et al., 2006; Zou et al.,
2014; Liénard et al., 2008; Horita et al., 2011) and synthetic value
(Boas et al., 2004; Derouet et al., 2009; Wults and Greene, 2007;
Zhang et al., 2005). Hence, much attention has been paid to the
development of highly efficient and convenient methods for the
construction of such scaffolds. Traditionally, the portion of S-aryl
dithiocarbamates was prepared through the reactions of classical
organometallic reagents with tetramethyllitium disulfide (Jen and
Cava, 1982; Knochel et al., 2006) (Scheme 1A). The reactions of
sodium dialkyldithiocarbamates with diaryliodonium salts (Chen
et al., 1987), aryl halide (Liu and Bao, 2007) or aryl boronic acid

(Gao et al., 2018) were also proved to be an effective strategy
(Scheme 1B). Recently, the three-component reactions of amines,
carbon disulfide, and diverse electrophiles including alkyl halides
(Azizi et al., 2006), aryl halides (Bhadra et al., 2008),
aryldiazonium fluoroborates (Chatterjee et al., 2011),
pentafluorobenzonitrile (Yin et al., 2015), and phenylboronic
acid (Qi et al., 2016) (Scheme 1C) have been achieved by
some research groups. Moreover, the cross-coupling reactions
of tetraalkylthiuram disulfide with aryl iodide (Dong et al., 2017;
Cao et al., 2018; Wu and Yan, 2019), phenylboronic acid (Xu
et al., 2018), diaryl disulfides (Peng et al., 2019), or
diaryliodonium salts (Zeng et al., 2017b) were also successively
established by some chemists (Scheme 1D). However, these
methods always suffer from one or more disadvantages such
as toxic reagents, multiple reaction steps or flammable and
explosive substrates, which limit their applications. To our

SCHEME 1 | Different methodologies for the synthesis of aryl dithiocarbamates.

Frontiers in Chemistry | www.frontiersin.org April 2022 | Volume 10 | Article 8678062

Wang et al. C-S Bond Cross-Coupling

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


knowledge, the synthesis of S-aryl dithiocarbamates using
thiuram reagents (tetraalkylthiuram disulfides (TATD), or
tetraalkylthiuram monosulfide (TATM)) and arylsilanes as the
coupling partners has not been documented so far. As a
continuation of our interest in the cross-coupling of
tetraalkylthiuram disulfide (Wu et al., 2018; Lai et al., 2019a;
Cheng et al., 2019; Hu et al., 2020), herein we wish to report the
first example of copper-mediated C-S bond construction by
cross-coupling of arylsilanes with thiuram reagents (TATD or
TMTM) in the presence of CuF2 and N ligand (Scheme 1E),
which would be an alternative way for the synthesis of S-aryl
dithiocarbamates.

RESULT AND DISCUSSION

Initially, the reaction parameters were optimized using
trimethoxy (phenyl)silane (1a) and tetramethylthiuram
disulfide (TMTD, 2a), and the results were summarized in
Table 1. Firstly, the reaction of 1a (0.1 mmol) and 2a
(0.2 mmol) was performed in the presence of CuF2 (3 equiv.)
together with 20 mol% of CoCl2 in Toluene at 120°C. To our
delight, the initial reaction conditions provided the desired
product 3a (phenyl dimethylcarbamodithioate) in 22% yield
(Table 1, entry 1). The exact structure of 3a was confirmed by
NMR and HRMS spectra. When the reaction was carried out in

TABLE 1 | Optimization of reaction conditions a.

Entry Promoter Ligand (Equiv.) Solvent T (°C) Yields of
3a (%)b

1c CuF2 - Toluene 120 22
2 - - Toluene 120 0
3 CuF2 - Toluene 120 23
4 CoCl2 - Toluene 120 0
5 CuF2 bipyridine (2) Toluene 120 61
6 CuF2 1,10-phenanthroline (2) Toluene 120 82
7 CuF2 pyridine (2) Toluene 120 78
8 CuF2 N,N,N′,N′-tetramethylethylenediamine (2) Toluene 120 0
9 CuF2 2,2’:6′,2’’-terpyridine (2) Toluene 120 43
10 CuF2 (R,R)-2,2’-(2,6-pyridinediyl)bis (4-isopropyl-2-oxazoline (2) Toluene 120 39
11 CuF2 8-benzoylaminoquinoline (2) Toluene 120 76
12 CuF2 1,2-bis(diphenylphosphino)ethane (2) Toluene 120 <5
13 CuF2 2,2′-bis(diphenylphosphino)-1,1′-biphenyl (2) Toluene 120 <5
14 CuF2 1,1′-bis(diphenylphosphino)ferrocene (2) Toluene 120 <5
15 CuF2 (R)-(+)-2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (2) Toluene 120 11
16 AgF 1,10-phenanthroline (2) Toluene 120 0
17 CsF 1,10-phenanthroline (2) Toluene 120 0
18 CuF2 1,10-phenanthroline (2) Xylene 120 38
19 CuF2 1,10-phenanthroline (2) Msitylene 120 43
20 CuF2 1,10-phenanthroline (2) 1,4-Dioxane 120 20
21 CuF2 1,10-phenanthroline (2) Acetonitrile 120 42
22 CuF2 1,10-phenanthroline (2) DMF 120 0
23 CuF2 1,10-phenanthroline (2) DMSO 120 0
24 CuF2 1,10-phenanthroline (3) Toluene 120 58
25 CuF2 1,10-phenanthroline (0.5) Toluene 120 74
26 CuF2 1,10-phenanthroline (2) Toluene 120 37
27d CuF2 1,10-phenanthroline (2) Toluene 120 55
28e CuF2 1,10-phenanthroline (2) Toluene 120 26
29 CuF2 1,10-phenanthroline (2) Toluene 100 85
30 CuF2 1,10-phenanthroline (2) Toluene 80 88
31 CuF2 1,10-phenanthroline (2) Toluene 60 59
32f CuF2 1,10-phenanthroline (2) Toluene 120 84
33g CuF2 1,10-phenanthroline (2) Toluene 120 54

aTrimethoxy (phenyl)silane 1a (0.10 mmol), Tetramethylthiuram disulfide 2a (0.20 mmol), promoter (3.0 equiv.), and Toluene (1 ml) for 16 h, under air.
bIsolated yields.
c20 mol% of CoCl2 was added.
dPromoter (4.0 equiv.).
ePromoter (2.0 equiv.).
f24 h.
g48 h.
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the absence of CuF2, it didn’t produce any products (Table 1,
entries 2 and 4). However, the reaction gave 23% yield of product
3a when CoCl2 was removed from the reaction system (Table 1,
entry 3). The control experiment clearly indicated that CuF2 was
indispensable for this reaction. Inspired by the reported literature
(Clarke., 2005; McManus et al., 2006; Fihri et al., 2007; Hachiya
et al., 2010; Wu et al., 2016; Sahani et al., 2018; Luo et al., 2020),
some nitrogen and phosphorus ligands were screened (Table 1,
entries 5-15, 0–78%), and 1, 10-phenanthroline was proved to be
the optimized N ligand, affording the product 3a in 82% yield
(Table 1, entry 6). Subsequently, other fluoride activators for the
C-Si bond cleavage were evaluated in this reaction (Table 1,
entries 16-17), but all of them turned out to be invalid. The effect
of solvents such as Xylene, Mesitylene, 1,4-Dioxane, Acetonitrile,
DMF and DMSO were also examined, and the experimental
results showed that Toluene was the most suitable candidate with
remarkably higher yields (Table 1, entry 6 vs entries 18-23, 82%
vs 0–43%). Furthermore, the effect of CuF2 and N ligand loading

was investigated (Table 1, entries 24-28, 26–74%). The obtained
results revealed that a relatively lower reaction efficiency was
detected in these reactions. Further optimization indicated that
the temperature also played an important role in this
transformation, and 80°C was identified as the ideal reaction
temperature (Table 1, entry 6 and entries 29-31, 88% vs 59–85%).
Meanwhile, the reaction time was also examined (Table 1, entries
32-33, 54–84%), and 16 h was found to be the best choice. Thus,
the reaction efficiently proceeded when 3 equiv. of CuF2 was used
in combination with 1,10-phenanthroline (2 equiv.) in Toluene at
80°C for 16 h. Noteworthily, the combination CuF2/
phenantroline acted as the activator of C-Si bond, and also
acted as the promoter on the formation of C-S bond.

Having the optimized conditions in hand, we then proceeded
to explore the scope of the reaction with respect to both the
organosilane reagents and the thiuram disulfides (Table 2 and
Table 3). Generally, phenylsilanes bearing diverse substituents
such as methyl, methoxyl, tert-butyl, chloro and fluoro groups

TABLE 2 | Reactions of arylsilanes 1) with tetramethylthiuram disulfide (2a) a,b.

a1 (0.1 mmol), 2a (0.2 mmol), CuF2 (3 equiv.), 1,10-phenanthroline (2 equiv.), Toluene (1 ml), 80°C, 16 h, under air.
bIsolated yields.
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TABLE 3 | Reactions of arylsilanes 1) with tetraalkylthiuram disulfides (2) a,b.

a1 (0.10 mmol), 2 (0.20 mmol), CuF2 (3 equiv.), 1,10-phenanthroline (2 equiv.), Toluene (1 ml), 80°C, 16 h.
bIsolated yields.

SCHEME 2 | Initial cross-coupling reaction of trimethoxy (phenyl)silane and TMTM a,b. a Reaction conditions: 1 (0.10 mmol), 5 (0.20 mmol), CuF2 (3 equiv.), 1,10-
phenanthroline (2 equiv.), Toluene (1 ml), 80°C, 16 h b Isolated yields.
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offered the desired products in moderate to good yields. Notably,
this reaction tolerated the electron-rich arylsilanes (Table 2, 3b-
g), as (4-methylphenyl) trimethoxylsilane, (4-methoxyphenyl)
trimethoxylsilane and (4-(tert-butyl)phenyl) trimethoxylsilane
coupled efficiently with tetramethylthiuram disulfide 2a to give
3b-d in 65–72% yields. When methyl, methoxyl, were introduced
into the meta position of phenylsiloxanes, slight lower yields were
obtained (3e-g, 43–55%), which may be caused by steric
hindrance effect. Excellent yields were got for electron-
deficient arylsilanes such as (4-chlorophenyl)trimethoxysilane
and (4-fluorophenyl) trimethoxysilane. Compared with
electron-rich substituents, arylsilanes with electron-
withdrawing groups on the aromatic ring presented relatively
higher reactivity (3b-c vs 3h-i, 65–72% vs 78–93%). This result
makes the said cross-coupling reaction particularly attractive for
further transformation by transition-metal-catalyzed coupling
reactions. Pleasingly, these reaction conditions were also
compatible with trimethoxy (4-vinylphenyl)silane, 1-
(trimethoxysilyl)naphthalene and 2-furan-trimethoxysilane,
which provided the corresponding products 3l-n in 52–72 yields.

This cross-coupling reaction also demonstrated a good
tolerance toward other N,N,N′,N′-tetraalkylthiuram disulfides
as shown in Table 2. The N,N,N′,N′-tetraethylthiuram
disulfide (TETD, 2b) showed a good reactivity and furnished

the corresponding S-aryl dithiocarbamates products in moderate
to good yields (4a-n, 39–85%). Comparatively, the reaction of
N,N,N′,N′-tetrabutylthiuram (TBTD, 2c) and arylsilanes showed
relatively lower reactivity, and afforded lower yields of the
corresponding products (4o-q, 46–59%). It is worth noting
that the yields of the resulting products were modulated by
the presence of different alkyl substituents on the
tetraalkylthiuram disulfides. Slightly lower yields were obtained
when longer chain-substituted tetraalkylthiuram disulfides were
used in these reactions (3a vs 4a and 4°).

To further evaluate the applicability of this reaction, the
reactivity of trimethoxy (phenyl)silane (1a) was investigated
using tetramethylthiuram monosulfide (TMTM, 5) as the
coupling partner (Wu et al., 2020). As expected, the cross-
coupling reaction occurred smoothly, and the phenyl
dimethylcarbamodithioate 3a was formed in 46% yield
(Scheme 2).

In order to find the appropriate conditions to achieve an ideal
yield, we spent a bit more time on the optimization of reaction
conditons. Some bidentate, tridentate N ligands as well as
diphoshines ligands and their loading to this reaction were
tested, and a summative result of the optimization was
presented in Supplementary Table S1. After the simple
optimization, we found that 1 equiv. of 2, 2′-bipyridine

SCHEME 3 | Mechanistic experiments.
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increased the yield to 68% (Supplementary Table S1, entry 3),
N,N,N′,N′-tetramethylethylenediamine, 2,2’:6′,2’’-terpyridine;
(R,R)-2,2’-(2,6-pyridinediyl)bis (4-isopropyl-2-oxazoline, 8-
benzoylaminoquinoline, 1,2-bis(diphenylphosphino)ethane,
2,2′-bis(diphenylphosphino)-1,1′-biphenyl, 1,1′-
bis(diphenylphosphino)ferrocene and (R)-(+)-2,2′-
bis(diphenylphosphino)-1,1′-binaphthyl resulted in a relatively
lower yields (Supplementary Table S1, entries 4-11). It probably
because of the coordination of 2, 2′-bipyridine with copper,
which provided a more stable and active copper intermediate
for the said cross-coupling reaction. After the simple
optimization, we found that 1 equiv. of 2, 2′-bipyridine acted
as the suitable N ligand. With the new optimized reaction
conditions in hand, some more substituted arylsilanes were
subjected to this reaction and the results were summarized in
Table 4.

In general, the results obtained from the cross-coupling
reaction of arylsilanes 1) with tetramethylthiuram monosulfide
(TMTM, 5) are different from the reaction with
tetramethylthiuram disulfide (TMTD, 2a), in which the
electron-rich arylsilanes are less active (3b-g, 28–63%). With
regard to the electron-deficient arylsilanes, they showed a
similar efficiency as the reaction with tetramethylthiuram
disulfide (TMTD, 2a), and the products (3h-k) were provided
in 60–88% yields. The 1-(trimethoxysilyl)naphthalene and 2-
furan-trimethoxysilane also participated in this reaction to give
the corresponding products (3m-n) in 65–68% yields, which are
nearly the same results compared with the reaction with TMTD
(2a). In contrast, the trimethoxy (4-vinylphenyl)silane exhibited a
less activity in this reaction and displayed lower yield (3l, 31%).

In order to ascertain the mechanism, some control
experiments were conducted and the results were exhibited

TABLE 4 | Reactions of arylsilanes 1) with tetramethylthiuram monosulfide (5) a,b.

a1 (0.10 mmol), 5 (0.20 mmol), CuF2 (3 equiv.), 2, 2′-bipyridine (1 equiv.), Toluene (1 ml), 80°C, 16 h.
bIsolated yields.
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in Scheme 3. When 2 equiv. of radical scavenger 2,2,6,6-
tetramethyl-1-piperidinyloxyl (TEMPO), butylated
hydroxyl toluene (BHT), galvinoxyl free radical or 1,1-
diphenylethylene were added to the reaction of 1a and 2a
under the standard conditions, a substantial decrease of the
reaction efficiency was observed (Scheme 3A). Subsequently,
the radical quencher 1,1-diphenylethylene was added to
the tetraalkylthiuram disulfides participated reaction
system, the thiuram radical was captured to give the
corresponding product six in 29% yield (Scheme 3B). The
above mentioned results illustrating that a radical process may
be exist in the reaction of 1a and 2a. In sharp contrast, when
the reactions were occurred between 1a and 5 in the
presence of radical inhibitors (2.0 equiv of TEMPO, BHT)
or 1,1-diphenylethylene, which gave the desired product 3a
in 77, 71, and 75% yields, respectively (Scheme 3C).
Furthermore, no desired product six was observed when
1,1-diphenylethylene react with 5 (TMTM) under the
standard conditions (Scheme 3D). These results suggesting
that the reaction of 1a and 5 is more likely to be an ionic-type
pathway.

Considering the experimental evidence as well the previous
reports (Lu et al., 2020; Dong et al., 2017; Luo et al., 2020; Hao
et al., 2020; Lai et al., 2019b), a plausible reaction mechanism
was tentatively proposed and described in Scheme 4. Firstly, the
coordination of 1, 10-phenanthroline with copper salts to
produce the copper complex A. Simultaneously, the C-Si
cleavage process occurred lead to the intermediate B, which
activated by fluoride ion (Sugiyama et al., 2008). In step ii, the
reaction of intermediate B with copper complex A generates the
Cu(II) complex C. Subsequently, thiuram radical D may be
formed through the homolysis of tetramethylthiuram disulfide
at 80°C probably assisted by Cu(II). Then, the interreaction of
Cu(II) complex C with thiuram radical D to provide the
intermediate E, which undergoes reductive elimination to

yield the desired product three along with the release of
Cu(II) species.

With regard to the reaction pathway between 1a and 5
(TMTM), a plausible ionic-type reaction mechanism was
tentatively proposed according to the obtained results as well
as the reported literatures (Dong et al., 2017; Luo et al., 2020;
Wu et al., 2020) and described in Scheme 5. Analogously, the
initial coordination of bipyridine with copper salts to produce
the copper complex F. Concurrently, the intermediate G is
generated by the C-Si cleavage manner, which activated by
fluoride ion (Sugiyama et al., 2008). Then, the intereaction of
intermediate G with copper complex F to generate the Cu(II)
complex H. In the meantime, nucleophile F probably produces
by the intereaction of copper ion with 5 at 80°C. Subsequently,
the interreaction of Cu(II) complex H with nucleophile I to
provide the intermediate J, which undergoes reductive
elimination lead to the desired product three along with the
release of Cu(II) species.

CONCLUSION

In summary, we have developed an interesting methodology on
the copper-promoted cross-coupling of arylsilanes and thiuram
reagents (TATD or TMTM), affording the valuable S-aryl
dithiocarbamates in moderate to good yields. This facile
strategy allows practical and friendly reaction conditions,
which significantly broadens the substrate scope, improves the
functional group compatibility, and emphasizes the synthetic
application in complex molecules. It offers not only a protocol
for the streamlined synthesis of S-aryl dithiocarbamates from
cheap and stable substrates, but also a new example for the
application of Hiyama cross-coupling in biological interesting
molecules’ construction.

SCHEME 5 | Proposed reaction mechanism for the reaction of
arylsilanes with TMTM.

SCHEME 4 | Proposed reaction mechanism for the reaction of
arylsilanes with TMTD.
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