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Simple Summary: Antibiotic resistance is a growing threat; its indiscriminate use has led to manage-
ment restrictions in humans and animals. Bacteriocins are powerful antimicrobial peptides that have
great potential in the prevention and treatment of diseases in animals. Their antimicrobial activity
is rapid, and they show a lower propensity to develop resistance than conventional antibiotics.
Currently, their main application is in food preservation systems. However, several studies show
their bioactive role as antimicrobials, probiotics, and immunomodulators in animals. Therefore,
bacteriocins are an excellent alternative to be applied in several areas of veterinary medicine.

Abstract: In the search for an alternative treatment to reduce antimicrobial resistance, bacteriocins
shine a light on reducing this problem in public and animal health. Bacteriocins are peptides
synthesized by bacteria that can inhibit the growth of other bacteria and fungi, parasites, and viruses.
Lactic acid bacteria (LAB) are a group of bacteria that produce bacteriocins; their mechanism of action
can replace antibiotics and prevent bacterial resistance. In veterinary medicine, LAB and bacteriocins
have been used as antimicrobials and probiotics. However, another critical role of bacteriocins is
their immunomodulatory effect. This review shows the advances in applying bacteriocins in animal
production and veterinary medicine, highlighting their biological roles.

Keywords: bacteriocins; antimicrobials; lactic acid bacteria; probiotics; immunomodulation;
veterinary medicine

1. Introduction

Bacteriocins are heat-stable, ribosomally synthesized antimicrobial peptides. Both
Gram-positive and Gram-negative bacteria, and archaea release antimicrobial peptides ex-
tracellularly in the late-exponential to the early-stationary growth phases [1]. An essential
attribute of bacteriocins is the antimicrobial activity against different bacteria, fungi, para-
sites, viruses, and even against natural resistant structures, such as bacterial biofilms [2–5].
Lactic acid bacteria (LAB) are a heterogeneous group of Gram-positive bacteria. They are
classified according to glucose fermentation characteristics, cell morphology, capacity to
utilize sugars, and optimum growth temperature range [6]. Thus, this classification system
recognized a core group consisting of four genera: Lactobacillus, Pediococcus, Leucononstoc,
and Streptococcus [7]. Molecular biological methods have increased the number of genera,
including the following: Aerococcus, Alloiococcus, Carnobacterium, Dolosigranulum, Entero-
coccus, Lactococcus, Lactosphaera, Melissococus, Oenococcus, Tetragenococcus, Vagococcus, and
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Weissella [6,8]. Various studies have shown that LAB inhibit pathogenic microorganisms
growth, degrade mycotoxins, and have a probiotic effect [6]. LAB are found abundantly in
nature and symbiotically interact with higher organisms. They have been isolated from
several sources, including dairy products, meat, fruits, and vegetables. They can also be
found in mucous membranes of the respiratory, intestinal, and other anatomical sites of
man and animals, even in plants, wastewater, soil, and manure [9]. Bacteriocins have
been used as food preservatives, due to their ability to inhibit microorganisms potentially
harmful to human health. They are safe for consumption and do not alter the quality
and safety of food [10,11]. Furthermore, bacteriocins from LAB have had a significant
development in other fields, such as in the cosmetic industry and human and veterinary
medicine [12,13]. In animal production, bacteriocin-producing bacteria have been used as
probiotics in the diet or drinking water of pigs, poultry, and fish, which has increased their
growth rate [14,15].

LAB are among the important groups of bacteria that provide health benefits for
humans and animals. Therefore, in this review, we focus on showing the advances in
applying LAB bacteriocins as antimicrobials, probiotics, and immunomodulators in animal
production and veterinary medicine.

2. Bacteriocin Overview

Bacteriocins are a diverse group of antimicrobial cationic and hydrophobic peptides
composed of 20–60 amino acids. The ribosomal machinery is responsible for the synthesis
of bacteriocins. Several genes are implicated in modifying amino acids, the export and reg-
ulation of the bacteriocin, and self-immunity proteins [16–18]. Bacteriocin encoding genes
are organized into operons located in the chromosome, plasmids, or other mobile genetic
elements. In general, these operons are inducible and require secretion and extracellular
accumulation of bacterial peptides for induction [19,20]. Bacteriocins are extracellularly
released and can have bactericidal or bacteriostatic effects on species closely related to the
producing strain or affect other genera, phylum, or even domain [21,22].

Furthermore, the influence of environmental factors promotes the secretion of bac-
teriocins, including bacterial cell density, nutrient availability, the presence of acetic acid,
and signaling peptides (competence stimulating peptide molecules) [23]. Interestingly,
bacteriocins have been reported to be 103–106 times more potent than various other antimi-
crobials, including conventional antibiotics [13]. Therefore, bacteriocins-producing bacteria
synthesize self-immunity proteins that protect them from their bacteriocins by scavenging
bacteriocins or antagonist competition for receptor bacteriocin [17,24,25]. An important
advantage of bacteriocins is that they can have activity against pathogenic and oppor-
tunistic bacteria, including multidrug-resistant species, without discriminating between
antibiotic-resistant and sensitive strains [26]. Several bacteriocins have been shown to act
in synergy with conventional antibiotics, reducing concentrations, undesirable side-effects,
and the prevalence of resistant strains [27].

Interestingly, the combination of bacteriocins and antibiotics has been proposed as
novel therapeutic options for food-producing animals. The possibility of replacing the use
of antibiotics is explored to avoid bacterial resistance. Various reports have also established
LAB bacteriocins advantages and synergistic actions with other biomolecules, such as nisin
and citric acid, against Staphylococcus aureus and Listeria monocytogenes [28]. It has also
been documented that bacteria can develop resistance to bacteriocins. However, resistance
to bacteriocins is minimal compared to conventional antibiotics. Since the frequency of
spontaneous mutations in cells exposed to bacteriocins is low [28]. This resistance is
generally through modifications in the cell envelope, such as alterations in the charge and
thickness [20,29,30].

3. Classification of Bacteriocins

Numerous bacteriocins have been isolated from LAB and are described in several
databases. They have different characteristics, structures, modes of action, biochemi-
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cal properties, activity spectra, and target cell receptors [31,32]. Bacteriocins produced
by Gram-positive bacteria have been classified into three groups according to their bio-
chemical and genetic characteristics or the presence of disulfide or monosulfide bonds,
molecular weight, thermal stability, proteolytic enzymatic stability, presence or absence
of post-translational modification of amino acids, and antimicrobial action [33] (Table 1).
Initially, a fourth class of bacteriocins was described; however, it has been aborted and
renamed as bacteriolysins, which comprise large complexes with carbohydrate and lipid
residues [34,35].

Table 1. Classification of bacteriocins.

Class of Bacteriocin Subclasses Molecular Properties Reference

Class I
Lantibiotic

Ia
Lanthipeptides

Ib
Globular and inflexible bacteriocins

Ic
Sactipeptides

Small, heat-stable bacteriocins
(<5 kDa), have a post-translational

modification, resulting in the
formation of atypical amino acids

lanthionine and methyllanthionine.

[33,36–39]

Class II
Non-lantibiotic

IIa
Pediocin-like

IIb
Two peptides

IIc
Leader less

IId
Non pediocin-like

Single-peptide

Small and flexible bacteriocins
(<10 kDa), with an amphiphilic

helical structure. These peptides do
not contain modified amino acid

residues and are pH and
heat-resistant.

[13,40–46]

Class III

IIIa
Bacteriolysins

IIIb
Nonlytic

High molecular weight bacteriocins
(>30 kDa), thermolabile and

unmodified peptides.
[47,48]

Class I bacteriocins (lantibiotics) are small peptides (<5 kDa), 19 to 50 amino acids,
are heat-stable, and have a post-translational modification, resulting in the formation of
atypical amino acids lanthionine and methyllanthionine. These modify and introduce
intramolecular cyclic structures, providing rigidity and resistance to the action of pro-
teases [36–38]. Further, class I is divided into three subclasses: Class Ia comprises flexible,
elongated, positively charged, and hydrophobic peptides associated with a pore formation
in bacterial membranes; the most representative bacteriocin of this group is nisin [33]. Class
Ib is made up of globular and inflexible bacteriocins that are negatively charged or have no
net charge. These peptides can inhibit catalytic enzymes essential for the survival of sus-
ceptible bacteria [39]. Class Ic (sactipeptides) are sulfur-to-α-carbon-containing peptides.
No bacteriocin of this group from LAB has been characterized [38].

Class II (nonlantibiotic) bacteriocins are small and flexible (<10 kDa), with an am-
phiphilic helical structure. These peptides do not contain modified amino acid residues
and are pH and heat-resistant. Class II bacteriocins are divided into four subclasses based
on structure and modifications. Class IIa bacteriocins (pediocin-like) include peptides from
35 to 50 amino acids that contain the YGNGV consensus sequence at the N-terminus. These
bacteriocins have potent activity against L. monocytogenes [13,40,41]. Class IIb (two-peptide
unmodified bacteriocins) consists of two different complementary peptides. The optimal
antimicrobial activity requires both peptides that are members of this group in about
equal amounts [42]. Class IIc (circular bacteriocins) contains 35 to 70 amino acids. These
bacteriocins are associated with a leader peptide sequence and include one to two cysteine
residues in their structure; they are further divided into cystibiotics and thiolbiotics. These
peptides are resistant to many proteolytic enzymes [43–45]. Class IId comprises linear,
non-pediocin-like, single-peptide bacteriocins [46].
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Class III bacteriocins have high molecular weight (>30 kDa) and are thermolabile and
unmodified peptides. They have a bacteriolytic (class IIIa) or nonlytic mechanism of action
(class IIIb). These bacteriocins have been poorly studied [47,48].

4. Mechanism of Action of Bacteriocins

The mechanism of action of bacteriocins depends on their primary structure. Some can
exert their activity on the cytoplasmic membrane releasing compounds vital of susceptible
bacterial (cell lysis); others can enter the cytoplasm and affect gene expression and protein
synthesis (Figure 1) [26].
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Lantibiotics (class I) bacteriocins have a dual mode of action. They inhibit bacterial
cell wall biosynthesis through binding to lipid II, a hydrophobic carrier of peptidoglycan
monomers, from the cytoplasm to the cell wall, compromising cell viability. Additionally,
lantibiotics can use lipid II as a docking molecule to initiate a process of membrane insertion
and pore formation in the bacterial membrane [49–51].

Non-lantibiotics (class II), such as pediocin-like and the one-peptide nonpediocin-like
bacteriocins (class IIa and class IId), bind to MptC and MptD subunits of the mannose
phosphotransferase permease (Man-PTS). The insertion of these bacteriocins into the target
cell membrane leads to an irreversible opening of an intrinsic channel, which leads to the
diffusion of ions through the membrane, causing the death of the target cell [41,52,53].
Class IIb, two-peptide unmodified bacteriocins, permeabilize the membrane of sensitive
bacteria and form pores. These pores show specificity for monovalent cations, such as Na+,
K+, Li+, Cs+, and Rb+ (described in lactococin G) [41,54]. Circular bacteriocins (class IIc)
have a positive net charge. These peptides interact directly with the negatively charged
bacterial membrane without requiring any receptor molecules. Consequently, pores are
formed in the cell membrane, causing ions efflux and the dissipation of the membrane
potential, leading to cell death [55,56]. Bacteriolysins (class IIIa bacteriocins) catalyze cell
wall hydrolysis, resulting in cell lysis [48,57]. Nonbacteriolytic bacteriocins (class IIIb)
exert their action by disturbing the glucose uptake by cells, starving them, and disturbing
the membrane potential. Another mechanism is inhibiting the biosynthesis of DNA and
proteins of target bacteria [23,58,59].
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5. The Antimicrobial Properties of Bacteriocins in Veterinary Medicine

LAB bacteriocins have great potential in veterinary medicine. Several in vitro and
in vivo studies have evaluated their therapeutic use in small animals, livestock, and poultry
(Table 2). This evidence demonstrates that bacteriocins can be applied as a substitute
for antibiotics and represent an alternative as new antimicrobials that prevent bacterial
resistance [22,60].

Nisin is an antimicrobial cationic peptide produced by Lactococcus lactis subsp. lactis
and Streptococcus species. Nisin was the first antimicrobial agent in reaching the category
of food-safe additive in 1969. The use of nisin is, at present, licensed in more than 50 coun-
tries [61]. The United States granted the Generally Regarded as Safe (GRAS) designation
by the FDA [50]. Researchers have shown that the antimicrobial action of nisin can extend
to non-food-related bacteria. Thus, nisin has been included in clinical studies to prevent
the formation of dentobacterial plaque and gingivitis in dogs, with an effect comparable to
chlorhexidine [62,63]. An advantage of its use is the stability to remain active and express a
synergistic action among a series of topical delivery systems: mouthwash, toothpaste, and
guar-gum biogel [62,63]. In dogs, diverse oral bacteria species form a polymicrobial biofilm
in the tooth surface, developing periodontal disease (PD) [64]. Enterococcus faecalis is the
main bacteria in the oral cavity of dogs involved in PD, and it shows resistance to different
antibiotics [65]. Further, E. faecalis leads to adherence and aggregation of other pathogen
bacteria, all of them forming the biofilm of PD [66]. Pet animals have been considered
reservoirs of this species of potentially pathogenic bacteria that is potentially harmful
to high-risk individuals [67–69]. Nisin shows broad bactericidal action in vitro against
reference strains of E. faecalis and other bacteria involved in canine PD. The combination of
nisin–biogel inhibits and eradicates canine PD multispecies biofilms tested in a model of
co-aggregate bacteria in vitro with E. faecalis, Neisseria zoodegmatis, Corynebacterium canis,
Porphyromonas cangingivalis, and Peptostreptococcus canis [66]. Prolonged nisin use in oral
canine cleaning does not have the negative effects that chlorhexidine exhibits, such as
taste loss or pigmentation of the enamel [70–72]. Enterococcus faecium is another bacterium
implicated in PD disease; it is considered a zoonotic opportunist, and it is also the most
abundantly isolated from the feces of healthy dogs [73]. Paradoxically, some isolates of
E. faecium produce bacteriocins like enterocin A, B, and P, which inhibit the growth of L.
monocytogenes [74,75].

New alternatives in livestock are being sought to replace antibiotics and diminish
bacteria resistant to them. Nisin has been used as a treatment in bovine mastitis caused
by complex bacterial: Enterococcus spp., Staphylococcus spp., and Streptococcus spp. [76,77].
The main advantage is that nisin only remained in the milk for 12 h after its application
in concentrations that did not generate any risk in consuming the product, aside from
avoiding bacterial resistance [78,79]. Due to this, the FDA approved a nisin-based udder
disinfectant [33]. In addition, nanoparticles to which nisin was included have shown a
bactericidal effect against multidrug-resistant Staphylococcus spp. isolated from bovine
mastitis and methicillin-resistant S. aureus [80,81]. Some species of S. aureus produce
biofilm, a virulence factor that favors the establishment of infection in the udder and
interferes with antibiotics [82]. A study demonstrated the antimicrobial activity of nisin
on biofilm-producing S. aureus cultures. Furthermore, it penetrates the biofilm matrix,
which leads to the detachment of the biofilm. Likewise, the combination of nisin and
lysostaphin resulted in synergy against Staphylococcus spp. biofilm [83]. Nisin alters the
biofilm’s architecture and composition, reducing the polysaccharides that constitute the
biofilm of S. aureus and Staphylococcus epidermidis without affecting the integrity of the
proteins. In addition, nisin reduced the extracellular DNA in S. aureus biofilm, but this
effect was not observed in the S. epidermidis biofilm [84]. In pig production, there are
opportunistic pathogens, such as Streptococcus and Escherichia coli species. Streptococcus suis
serotype 2 is a zoonotic pathogenic that causes great economic losses in the pig industry.
The co-administration of nisin with conventional antibiotics for treating swine Streptococcus
infection can decrease antibiotic resistance. This bacteriocin elicits the bacterial membrane
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permeability to facilitate the antibiotic to reach the target [85]. In addition, nisin can cross
the capsule of S. suis, degrade biofilm, and kill the bacteria. In mice infected by S. suis, nisin
reduced bacterial load and avoided bacterial systemic dissemination [86]. Nisin V, a variant
of nisin (bioengineering synthesized), showed enhanced potency against L. monocytogenes
in vivo. Nisin V decreased the load of Listeria monocytogenes in the liver and spleen of mice
experimentally infected [87]. Avirulent strains of S. suis serotype 2 (isolated from the tonsils
of healthy pigs) produce bacteriocins suicin 90–1330, suicin 65, and suicin 3908. These
antimicrobial peptides have an antibacterial effect on virulent S. suis, including bacteria
resistant to erythromycin and tetracycline. Interestingly, structure amino acid sequences
within these suicins have little similarity to each other (<25%) [88–90]. A recombinant
suicin has shown inhibitory activity against Gram-positive strains [91]. Enterotoxigenic E.
coli causes diarrhea in piglets. The use of colistin (polymyxin E) has led to the development
of a resistant strain [92–94]. The combination of nisin or enterocin DD14 with colistin
showed a synergistic effect against colistin-resistant E. coli strains isolated from pigs. This
effect is because the loss of membrane stability induced by interacting colistin with LPS
allows the entry of bacteriocins to damage the cell wall [95]. In horses, enterocin M
in the diet reduced undesirable Gram-negative bacteria: coliforms, Campylobacter, and
Clostridium spp. No physiological parameter was altered by the administration of enterocin
M in horses [96]. Nisin added to water in weaned rabbits decreases harmful intestinal
microbiota: Staphylococcus coagulase-positive, coliforms, Pseudomonas, and Clostridiae.
Rabbits with nisin treatment increased their body weight average, and meat quality was
not affected [97,98]. A partially purified bacteriocin PPB CCM7420, isolated from E. faecium,
showed a significant reduction of parasite Eimeria spp. oocysts in rabbits [98].

Some types of nisin are effective against aquaculture pathogens. Araújo et al. (2015)
demonstrated that the Nisin Z (produced by L. lactis subsp. cremoris) prevents lactococcosis
in rainbow trout. Pediococcus acidilactici L-14 produces Pediocin PA-1 bacteriocin, which
was shown to have antimicrobial activity against fish pathogens, such as Lactococcus
garvieae, Streptococcus iniae, Carnobacterium maltaromaticum, and Aeromonas salmonicida [99].
Treatment with enterocin AS-48 in trout infected by L. garvieae, led to an outcome of
a survival rate of 60%, compared to untreated fish that did not survive [100]. Other
studies suggest that Lactobacillus pentosus HC-2 and E. faecium NRW-2 could be used
in the shrimp diet, as they have antibacterial activity against Vibrio harveyi and Vibrio
parahaemolyticus (ATCC 17802) [101]. The combination of bacteriocins from LAB and
eukaryotic antimicrobial peptides (AMP) showed a synergistic activity and broadened
the spectrum range. It has been shown that pediocin PA1, sakacin P, and curvasin A
increased the bactericidal activity of pleurocidin and AMP of fish against E. coli. These
bacteriocins also have high antimicrobial activity against Listeria ivanovii [102]. The use
of nisin and OaBac5mini (ovine cathelicidin) increased the bactericidal activity against
methicillin-resistant S. aureus 1056 [103].

The lantibiotic lacticin produced by L. lactis subsp. lactis DPC3147 (GRAS) is ac-
tive against potential pathogens of veterinary importance, including methicillin-resistant
S. aureus, Streptococcus dysgalactiae, Streptococcus uberis, vancomycin-resistant E. faecalis,
Clostridium difficile, Mycobacterium avium subsp. paratuberculosis, L. monocytogenes, and
others [104–110]. Some of the most promising research for the use of this lantibiotic
is for the treatment of mastitis. Currently, the treatment of choice for bovine mastitis
involves the use of commercial therapeutic antibiotic formulations. However, a recent
study shows that L. lactis DPC3147 (which produces lacticin 3147) used to treat cows with
clinical/subclinical mastitis showed efficacy comparable to that of antibiotic treatment
(kanamycin and cephalexin) [109]. Due to the excellent antimicrobial activity exhibited by
lacticin 3147, the application of a teat seal that contains a combination of bacteriocin and
bismuth to prevent S. dysgalactiae infection in dry cows and S. aureus infection in lactating
cows has been proposed [110,111]. The lacticin NK34 is a variant that adds to mastitis con-
trol by bacteriocins. It has shown in vitro high antimicrobial activity against S. aureus and
coagulase-negative Staphylococcus strains isolated from bovine mastitis. In an experimental
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infection in mice with S. aureus, antimicrobial activity of lacticin NK34 ensures survival
above 80% [112].

The antimicrobial property of bacteriocins has been exploited to control the pathogenic
microbiota in poultry. Plantaricin (isolated from Lactobacillus plantarum F1) was proposed
as a viable alternative to replacing the use of antibiotics against colibacillosis in broiler
chickens [113]. Plantaricin CLP29 and enterocin CLE34, partially purified, have wide
antibacterial activity against Salmonella pullorum and E. coli [114]. The discovery of new
bacteriocins for application in poultry has been made in the microbiota of the domes-
tic broiler chicken’s gastrointestinal tract. The bacterium Paenibacillus polymyxa NRRL
B-30509 was isolated from domestic Russian broiler chickens, producing the bacteriocin
paenicidin A, which has activity against Campylobacter jejuni [115]. Another bacteriocin
with potential use in poultry is pediocin A (isolated from Pediococcus pentaceus FBB61) [116].
The antimicrobial activity has been reported against Gram-positive bacteria, such as L.
monocytogenes and Clostridium perfringens type A [117]. In broilers infected by C. perfringens
type A (producer of NetB toxin) involved in necrotic enteritis, Pediocin A was administered
in food. The treatment improved the growth performance of the chickens. However, it did
not decrease the bacterial load [118]. Microencapsulation of bacteriocin could prevent the
inactivation of bacteriocin, due to digestive processes in broilers [119]. The combination of
bacteriocins divercin AS7 and nisin as an additive in the diet of broilers has been shown to
improve body weight gain [120,121]. Divercin AS7 and nisin showed bactericidal activity
similar to salinomycin (ionophore coccidiostat) [121]. Nisin has antimicrobial action on
microbiota related to the detriment of productivity in broiler chickens, similar to monensin
ionophore. Nisin supplementation positively affected the gut microbiota by reducing
potentially pathogenic bacterial populations in the jejunum and ceca, such as Enterobacte-
riaceae, C. perfringens, Clostridium coccoides–Eubacterium rectale cluster, Bacteroides–Prevotella
cluster, Lactobacillus sp./Enterococcus sp., and the Clostridium leptum subgroup [122]. The
diminished load of bacteria associated with low productivity in the gastrointestinal tract
decreases the competition of nutrients and improves energy use in chickens [123]. These
findings highlight the role of bacteriocins as an excellent antibacterial alternative against
potentially pathogenic agents for animals and improved growth performance.

Table 2. Bacteriocins produced by lactic acid bacteria inhibit bacteria of interest in veterinary medicine.

Bacteriocin LAB Producer of Bacteriocin Susceptible Bacteria Reference

Enterocin AS-48 Enterococcus faecalis UGRA10 Lactococcus garvieae [100]

Enterocin M Enterococcus faecium AL41 Campylobacter spp.
Clostridium spp. [96]

Enterocin CLE34 Enterococcus faecium CLE34 Salmonella pullorum [114]

Enterocin E-760
Enterococcus durans
Enterococcus faecium

Enterococcus hirae

Salmonella enterica serovar Enteritidis
S. enterica serovar Choleraesuis
S. enterica serovar Typhimurium

S. enterica serovar Gallinarum
Escherichia coli O157:H7

Yersinia enterocolitica
Staphylococcus aureus
Campylobacter jejuni

[124]

Lacticin 3147 Lactococcus lactis DPC3147.

Streptococcus dysgalactiae,
Streptococcus agalactiae
Staphylococcus aureus
Streptococcus uberis

[110]

Mycobacterium avium subsp. paratuberculosis [108]

Macedocin ST91KM Streptococcus gallolyticus subsp.
macedonicus ST91KM

Streptococcus agalactiae
Streptococcus dysgalactiae

Streptococcus uberis
Staphylococcus aureus

[125]
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Table 2. Cont.

Bacteriocin LAB Producer of Bacteriocin Susceptible Bacteria Reference

Nisin A Lactococcus lactic subsp. lactis

Enterococcus faecalis ssp. liquefaciens
Streptococcus equinus

Staphylococcus epidermidis
Staphylococcus aureus
Streptococcus uberis

Streptococcus dysgalactiae
Streptococcus agalactiae

[77]

Streptococcus suis
Mycobacterium avium subsp. paratuberculosis

[85]
[108]

Nisin A
Nisin V

L. lactis NZ9700
L. lactis NZ9800nisA:M21V Listeria monocytogenes [87]

Nisin Z L. lactis NIZO22186 Staphylococcus aureus
Streptococcus agalactiae [78]

Pediocin A Pediococcus pentosaceus FBB61 Clostridium perfringens [119]

6. The Probiotic Activity of LAB Bacteriocins

Oral administration of purified or semipurified bacteriocins has been shown to have
limitations. Digestive enzymes can degrade bacteriocins, and bacteriocins can adhere
to food particles or diffuse through digestion, among others [126]. The protection of
bacteriocins in capsules or nanocapsules can be an alternative to prevent enzymatic degra-
dation and avoid various doses and high concentrations of bacteriocins [127]. Thus, the
most efficient method for taking advantage of bacteriocins in the digestive tract includes
bacteriocin-producing LAB as probiotics. This strategy favors the colonization of bacteria in
the gastrointestinal tract, and bacteriocins can be produced in situ [128]. There are multiple
benefits of using LAB in place of antibiotics or growth promoters. These include modu-
lation of microbiota, improving the intestinal barrier function and digestion, preventing
the colonization of enteric pathogens, and stimulating the immune system [15,129–131].
However, studies showed that E. faecium LMG 30881, a producer of enterocin B in the ca-
nine diet, caused unfavorable effects, such as runny stools, higher Gram-negative bacterial
counts, and lower hemoglobin concentrations [132,133]. The use of bacteriocin-producing
LAB probiotic in dogs requires more research, since no further work has been generated in
this regard to date. In healthy pigs, it has been shown that some LAB of the gastrointestinal
tract prevents villous atrophy of the post-weaning stage, promotes the maturation of gas-
trointestinal lymphoid tissue, and has immunomodulatory activity. Oral administration of
the probiotic Lactobacillus salivarius B1 (isolated from healthy piglets) in newborn piglets
showed that the probiotic bacteria colonized the duodenal mucosa and increased the height
of the villi, which improved absorption and promoted the integrity of the intestinal barrier.
Interestingly, L. salivarius increased the expression of porcine beta-defensin 2 (pBD-2),
an antimicrobial peptide produced by host cells. Continuous probiotic administration
caused a considerable increase in the production of pBD-2, which could even be detected
in the saliva of piglets [134]. In the duodenum and ileum, the number of intraepithelial
lymphocytes, plasma cells that produce IgA, and the synthesis of Toll-Like Receptor-2
(TLR-2) increased. In the ileum, interleukin-6 (IL-6), a cytokine that promotes the differ-
entiation and proliferation of B lymphocytes, was increased [130]. These studies suggest
that the immunomodulatory effects of L. salivarius B1 are due to bacteriocins [135]. L.
salivarius UCC118 (isolated from the human intestinal microbiota) produces the bacteriocin
Abp118. This antimicrobial peptide has been shown to have activity against L. monocyto-
genes [136,137]. L. salivarius UCC 118, as a probiotic added to the diet of pigs after weaning,
showed that LAB colonized the ileum and caused a significant decrease in spirochetes
(Treponema), considered to be opportunistic pathogens of pigs [138]. Rustic or native ani-
mals on farms can be a natural source of bacteriocins-producing probiotics. A study has
shown that miniature piglets from Congjiang (a breed of pig native to China) had higher
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resistance to stress-induced diarrhea during early weaning due to gut microbiota. In the
feces of miniature piglets, a higher population of Lactobacillus gasseri LA39 and Lactobacillus
frumenti, producers of the bacteriocin gassericin, was found. This study also demonstrated
an increase in the signaling pathway involved in protein expression (NHE3, SLC5A1,
DRA, and PAT1) associated with intestinal absorption. Gassericin decreased the expression
of proteins related to intestinal secretion (NKCC1, CFTR, CaCC1). These bacteria could
be transplanted into commercial crossbred piglets before weaning and prevent diarrhea
after weaning. This study provides a strategy for the possible prevention of diarrhea in
pigs and even other mammals [139]. There are reports of more than 30 LAB as probiotics
that inhibit the growth of pathogenic microorganisms in birds; however, their mode of
action remain poorly understood [140–142]. LAB as probiotics in poultry has been used
to control experimental coccidial infection, endemic in the commercial broiler industry.
Studies on the inclusion of multispecies probiotics (E. faecium, Bifidobacterium animalis, and
L. salivarius) in food or water have shown that the colonization of LAB in the intestine
causes a coccidiostatic effect on Eimeria spp. In addition, the probiotic prevented intestinal
damage without affecting body weight gain values. On the other hand, there were high
probiotic LAB amounts in intestinal microbiota, while coliform and C. perfringens were
lower than the control group [143]. The multispecies probiotic for commercial use can
be integrated into chicken microbiota early in ovo and for one day of hatching. These
bacteria increased protection against Eimeria spp. and commercial vaccine-administered
response, at the same time [144,145]. The species of genera Enterococcus spp., as a probiotic
for use in the poultry industry, has been shown to produce enterocin A, B, P, and L50 and
bacteriocin-like inhibitory substances that are not identified currently. These bacteriocins
have demonstrated antimicrobial activity in vitro against pathogenic bacterial C. perfringens,
S. aureus, Salmonella Heidelberg, and L. monocytogenes [146,147].

7. Bacteriocins as Immunomodulators

The immunomodulatory effect of bacteriocins has not been fully elucidated. It is
known that modulation of the immune system depends on the concentration of bacteriocin
used. These activation mechanisms of the immune response by bacteriocins add to the
bactericidal effect, thereby increasing host protection, particularly during infections. The
lantibiotic nisin is the oldest and most widely used bacteriocin in the food industry [148].
Nisin has shown that its administration in the diet for short periods increases CD4+ and
CD8+ T lymphocytes (LT) and reduces the lymphocytes B (LB) levels in the blood. Its con-
sumption in prolonged period results in return to normal LT levels, the maintained decrease
in LB, and the count increase of macrophages/monocytes [149]. The high concentration
of nisin added to porcine PBMC (Peripheral Blood Mononuclear Cells) in vitro equally
increased CD4+ and CD8+ proliferation and cytokine IL-1β and IL-6 production [150]. In
rabbit’s vaginal tissue explant culture, nisin showed high biological compatibility with
tissue and did not show any immunomodulatory effect. The lacticin did not affect the
expression of defensin, TLR3, or TLR9 receptors, nor the expression of cytokines IL-4, IL-6,
GM-CSF, IL-8, IL-6, or TNF-α [151,152]. Moreover, in neutrophils, high concentrations of
nisin activate extracellular traps (NETs) and increase intracellular superoxide levels [153].
Interestingly, although the antimicrobial activity of nisin in vitro is limited to Gram-positive
bacteria, when administered to animals infected by Gram-positive and Gram-negative
bacteria, the host’s bacterial load significantly decreases. In these cases, experiments with
human PBMC explain that the protection of nisin is due to chemokines (MCP-1, IL-8, and
Gro-α) that represses proinflammatory TNF-α production. In this experiment, nisin shows
greater potency than human antimicrobial peptide LL-37 [154]. Nisin modulates some
nonspecific immune functions in turbot. The treatment with intermediate and lower doses
of nisin in turbot head kidney macrophages increased oxygen free radical production and
phagocytic function and did not affect nitric oxide production. The lowest doses of nisin
injection in turbot augmented lysozyme concentration in serum [155].



Animals 2021, 11, 979 10 of 17

The immunomodulatory effect of nisin is expressed even in nonimmune cells. In
bovine mammary epithelial cells, nisin increases intracellular lysozyme and even releases
it to the extracellular environment [156]. Bacteriocins as immune-modulating agents have
shown anti-inflammatory properties in damaged or infected tissue. In LPS-stimulated
PBMC, nisin inhibits the synthesis of TNF-α, thereby decreasing the inflammatory re-
sponse [154]. In porcine PBMC infected by E. coli, nisin decreased the inflammatory
response, mainly the production of IL-6 [150]. This anti-inflammatory effect is reproduced
in bovine mammary gland epithelial cells by promoting a negative regulation in the pro-
duction of TNF-α, which benefits the recovery of intramammary tissue. Endometritis
represents a frequent health problem in the first three weeks postpartum. In bovines,
nisin prevents endometritis induced by experimental infection with S. aureus. Bacteriocins
in this infection promote a decrease in the proinflammatory cytokines and increase the
anti-inflammatory cytokines [157]. In tissue injuries, such as fractures, the bacteriocins
produced by Lactobacillus rhamnosus L34 and L. rhamnosus (ATCC 53103) were shown to
reduce postoperative effects, such as inflammation. Additionally, they favor the control of
experimental intra-articular infection with S. aureus [158,159]. Bacteriocins from L. rhamno-
sus caused a decrease in proinflammatory cytokines TNF-α, IL-6, and C-reactive protein in
rabbit models of mandible fracture fixation and knee re-placement surgery. In addition,
they controlled experimental S. aureus infection by minimizing biofilm formation and
promoting tissue repair [158,159]. These results suggest that bacteriocins could be potent
agents for preventing postoperative orthopedic infections. A recent study demonstrated
that the LAB Pediococcus pentosaceus (SL001) express the bacteriocin coagulin. A supple-
mented diet with P. pentosaceus enhanced the immunity of grass carp, increasing IgM and
C3 (complement 3), whereas IL-8 was downregulated. Moreover, P. pentosaceus contributed
to the elimination of pathogens and promoted grass carp growth rate [160].

Interestingly, the bacteriocins produced by pathogens do not have a bactericidal
effect. These bacteriocins seriously affect the host’s immune system, favoring disease.
Streptococcus iniae is a pathogen that affects fish and humans and produces the bacteriocin
Sil. Sil has only shown bacteriostatic activity against Bacillus subtilis and is not cytotoxic in
healthy fish tissues. However, Sil bacteriocin administration to fish before S. iniae infection
reduced respiratory burst and acid phosphatase activity in turbot head kidney monocytes.
Furthermore, the bacterial infection spread to the kidney and spleen [161].

8. Conclusions

Bacteriocins are a powerful weapon that can be exploited in veterinary medicine. The
administration of these antimicrobial peptides in domestic animals eliminates potentially
pathogenic undesirable microorganisms without causing cytotoxicity on cells or tissues.
Interestingly, it does not generate resistance to antibiotics, and resistance to bacteriocins
is minimal. Bacteriocins are analogous and synergistic when combined with antiseptics,
antibiotics, and ionophores, showing greater potency than antimicrobial peptides from
eukaryotic cells. In addition, these combinations can reduce resistance to bacteriocins.
The potential use of bacteriocins alone or along with microbicidal agents has potential
therapeutic actions in periodontal disease and mastitis in dairy cows, prevents postop-
erative infections in fractures, and coccidiostats and improves productive parameters in
substitution of antibiotics as growth promoters. In animal nutrition, bacteriocins reduce
cholesterol and triglycerides, thus improving the quality of the meat as a final product.
LAB colonize the intestinal mucosa and produce bacteriocins in situ. LAB and their bac-
teriocins promote the integrity of the intestinal barrier, eliminate bacteria that interfere
with the use of nutrients, and stimulate the expression of proteins associated with the
absorption of intestinal fluid. This finding suggests that they can be used as probiotics
in poultry and monogastric animals. Furthermore, these bioactive peptides have a role
in the immune response as immunomodulators. Bacteriocins modulate the expression of
anti-inflammatory cytokines to promote the repair of cell damage. Some of them are potent
inducers of antimicrobial peptides in eukaryotic cells, which improve the innate immune
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response against pathogens. However, the bacteriocins produced by virulent bacteria
can be a virulence factor, promoting a proinflammatory cytokine profile, which favors
infection in lymphoid cells and organs. Little is known about the immunomodulatory
effects of bacteriocins in animals. More studies are required to fully understand the role of
bacteriocins on the innate and adaptive response that could contribute to the control or
resolution of infections or diseases. LAB bacteriocins are projected as new antimicrobials
that could be targeted or stabilized by nanotechnology and prevent enzymatic digestion.
In addition, more research is required on modifications that could increase the potency
of bacteriocins. The benefits of bacteriocins shown in vitro and in vivo assays provide
support for developing and researching clinical trials in the different areas of veterinary
medical therapeutics.
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