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Abstract

Pleiotropy, the phenomenon of a single genetic variant influencing multiple traits, is likely widespread in the human
genome. If pleiotropy arises because the single nucleotide polymorphism (SNP) influences one trait, which in turn influences
another (‘vertical pleiotropy’), then Mendelian randomization (MR) can be used to estimate the causal influence between the
traits. Of prime focus among the many limitations to MR is the unprovable assumption that apparent pleiotropic associations
are mediated by the exposure (i.e. reflect vertical pleiotropy), and do not arise due to SNPs influencing the two traits through
independent pathways (‘horizontal pleiotropy’). The burgeoning treasure trove of genetic associations yielded through
genome wide association studies makes for a tantalizing prospect of phenome-wide causal inference. Recent years have seen
substantial attention devoted to the problem of horizontal pleiotropy, and in this review we outline how newly developed
methods can be used together to improve the reliability of MR.

Introduction

Of fundamental importance to medical and social sciences is
being able to elucidate how one phenotype (the exposure) caus-
ally relates to another (the outcome). Mendelian randomization
(MR) is a method that strengthens causal inference by using
natural genetic variation to mimic a randomized controlled trial
(RCT) (1,2) [see Appendix 1 for a brief recap of the method and
its assumptions; for readers not familiar with Mendelian
randomization reading the current paper in conjunction with
Davey Smith and Hemani (2) is recommended]. MR unlocks the
potential to exploit the massive wealth of genetic associations
(3) accrued through over a decade of genome-wide association
studies (GWAS) (4) for causal inference, but the method is not a
panacea. As such, the four years since our earlier review in
HMG (2) has seen considerable developments of methods
aimed at improving the reliability and scope of MR, and a
concomitant explosion in the use of MR across a broad range
of disciplines (5). We have also seen the emergence of
genotyped biobank data that contribute to the ever-growing

sample sizes of GWAS (6), and herald a commitment from gov-
ernments to population scale genetic studies. Consequently, the
breadth and manner in which MR is performed has shifted quite
dramatically.

Particularly impactful has been growth in the use of GWAS
summary data (5,7) (see Box 1). Here, causal inference can be
made using data from only the summary estimates of GWAS,
leading to a number of strategic advantages (8). First, these
summary associations (which constitute ‘the data’) are non-
disclosive, and often freely and publicly available for potentially
thousands of traits. This enables high throughput automation
simply by recycling existing results. Second, the genome is used
as an anchor between traits, allowing causal inference to be
made for pairs of traits that may never have been recorded in
the same samples. This dramatically enlarges the space of pos-
sible causal inference tests. Third, statistical power issues are
ameliorated by harnessing the massive sample sizes in GWAS,
which are each individually conducted to maximize the power
for a particular trait.
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Box 1. The data required for MR analyses

summary set (72).

the SNPs tested, not just those that were significant).

for two-sample approaches (54).

In the simplest case all that is required to perform MR is knowledge of the SNP-exposure association(s) (effect size and stan-
dard error) and the SNP-outcome association(s) [effect size and standard error, with the effect size relative to the same effect
allele as the SNP-exposure association(s)]. A data frame of SNP-exposure and SNP-outcome association results is termed a

These data can be obtained simply from published summary data from genome-wide association studies, which are often
freely available and non-disclosive about study participants. Typically, the instruments for an exposure are readily
available through publications, the GWAS catalog (3), or other resources (20,67,102) in which reliable and reproducible
associations are reported. The corresponding SNP-outcome associations are harder to identify because they are unlikely to be
GWAS significant and therefore typically of less interest in the primary GWAS publication. MR-Base (8) and PhenoScanner
(101) are two resources that now provide searchable databases comprising complete GWAS summary data (i.e. results from all

MR analyses that use only summary data have been called summary MR (SMR) (30) and two-sample MR (2SMR) (7). But there
are actually more accurate ways to categorize the data contexts for MR analyses.

Individual level data—here the SNPs, exposure phenotype and outcome phenotype are all measured in the same sample.
Ideally the SNPs that are to be used as instruments have been identified from an external source. Individual level data are
valuable because it can be used to perform some sensitivity analyses that cannot be done with summary data, e.g. the use of
interactions (87,90,91), and triangulating MR estimates with alternative causal inference strategies (16,18,103). Other advan-
tages of using individual level data from the same sample are that causal estimates are robust to misspecification of the SNP-
exposure association model, and when LD patterns are needed an external reference panel can be avoided. These are not true

One-sample using summary data—here summary data are available for the relevant SNPs for the exposure and outcome
traits, however the data used to generate these two datasets came from the same samples. If the instruments are weak then
the residual variance between the exposure and outcome effect estimates will have shared correlation structures, which
means that they could be biased in the direction of the observational estimate. The same applies to individual level data.
Two-sample using summary data—here the summary data for the exposure is generated from an entirely different set
of samples from those used to obtain the outcome summary data. Because the uncertainty in the SNP-exposure and
SNP-outcome association estimates is independent, weak instrument bias will be in the direction of the null. If, however,
there is partial overlap between the exposure and outcome samples, then the bias will tend in the direction of the null or the
observational estimate depending on the proportion of overlap (7).

Table 1. Assumptions in 2SMR adapted from ref. (56) and expressions based on variable definitions in Appendix 1

Assumption

Description

General IV assumptions

w1

v2

1v3

2SMR assumptions

2SMR1

2SMR2

2SMR3

No measurement error in the exposure (NOME)

Instrument Strength Independent of Direct Effect (InSIDE)

7j > 0, the SNP predicts the exposure
ke = 0, kyy; = 0, there is no SNP-confounder association
% = 0, the SNP does not exhibit horizontal pleiotropy

The causal relationship is identical in the two samples
cou (FX] R ey]) =0
The error variances are known

var (‘XJ) ~ 0, the SNP-exposure effect is estimated with negligible error

cou(yj, ocj) =0

While MR offers an attractive solution to causal inference
using observational or non-interventional data, it essentially
replaces traditional epidemiological assumptions (9) with other
assumptions (Appendix 1 and Table 1). A number of reviews
have appeared recently that relate to the scope of MR (10,11),
emerging methods (11,12), applications to drug discovery (13-
15), and comparisons to other causal methods (16-18). The limi-
tations are numerous (for extensive discussion, see 1,8), and
much focus of methodological development in the past few
years has been on the problem of pleiotropy (Box 3). To this end,
the objective of this review is to contextualize recent methods

and to provide insight into how they can be used in conjunction
with one another to interrogate and ameliorate issues sur-
rounding pleiotropy in MR (Table 2).

The Single Instrument Case

Suppose we have a single genetic instrument for the exposure.
This is a common scenario especially for ‘omic’ variables, such
as gene expression (19), DNA methylation (20) and protein lev-
els (21) where there is typically a strong genetic association
nearby the genomic location of the variable, typically referred
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Table 2. Strategies for combining different MR methods in different contexts

Strategy Description

Limitations

A. Single-instrument MR, for a single hypothesis or hypothesis-free scan
Genetic colocalization
+Bi-directional MR

+MR Steiger test
+Mediation-based analysis

B. Single hypothesis analysis with multiple instruments

IVW random effects or MR-RAPS

+Heterogeneity tests

+MR-Egger, weighted median, weighted
mode

+Leave-one-out analysis

+Negative controls

Rucker framework

pleiotropy
Bayesian model averaging

pleiotropy
C. Hypothesis-free analysis of exposure with multiple instruments

IVW random effects or MR-RAPS Follow Use single method to identify putative associa-
tions, then follow up with a strategy from

up using section B
section B

Weighted mode estimate

Use genetic colocalization to eliminate possibil-
ity distinct causal variants (25,30,31); if
instruments are available for the outcome
then test the reverse causal effect (110); if not
use MR Steiger (43); use genetic mediation-
based analysis (40,111) to try to separate
horizontal and vertical pleiotropy

Begin with simplest model and then test for
heterogeneity; if heterogeneity is present then
perform sensitivity analyses

Average across 3 different models of horizontal

Use single method for all tests, simulations

Statistical power may be low, and MR methods
cannot separate horizontal from vertical
pleiotropy. Genetic mediation-based methods
are susceptible to measurement error and
confounding, and require individual level
data. MR-RAPS requires instrument selection,
SNP-exposure effect estimation and SNP-
outcome effect estimation from independent
samples

Power of heterogeneity test is low; this is not a
principled way to decide the reliability of the
result; use of negative control samples
requires individual level data and availability
of an appropriate GXE or GxG interaction

Use Q and Q’ heterogeneity statistics to navigate Restricted to specific models of horizontal pleiot-
between 4 different models of horizontal

ropy, and statistical power drops substantially
when pleiotropic model increases in
complexity

As above; difficult to make decision if the poste-
rior distribution is multi-modal

Highest power but likely also highest false dis-
covery rate; MR-RAPS requires that exposure
and outcome has no sample overlap which
can be difficult to prove

Bandwidth parameter cannot be estimated

suggest highest performance in terms of high
power and low FDR for a single method. Follow
up with a strategy from section B

MR-MoE

strategy from section B

Use machine learning approach to select the
estimate for each test. Follow up with a

Potentially slower to run, does not give
information regarding why a particular
method was chosen

to as a cis-effect (22). An estimate of the causal effect can be
obtained from a Wald ratio: the influence of the SNP-outcome
effect divided by the SNP-exposure effect (23) (Appendix 1).
A qualitative inference as to whether the exposure is causally
related to the outcome is most simply obtained by testing if
the instrumenting SNP associates with the outcome. This
result is only reliable, however, if the SNP-outcome associa-
tion is due to vertical pleiotropy through the exposure (see
Box 2). Alternatively, it could arise due to horizontal pleiot-
ropy, where the SNP influences the exposure and outcome
through independent pathways, or distinct causal variants (24)
where the SNP that influences the exposure is in linkage
disequilibrium (LD) with another SNP that independently
influences the outcome. Evaluating the possibility of distinct
causal variants can be achieved through the use of genetic
colocalization methods (25)—those that attempt to evaluate if
two traits share the same causal variant at a particular locus.
While not sufficient, shared causal variants between two traits
are necessary for them to be causally related. Thus, the use of
co-localization in MR can be valuable to eliminate at least
some unreliable associations.

Several colocalization methods are now widely used
(24,26-31). The R/coloc (25) package uses summary data for the
SNPs in a region and estimates the posterior probability of

shared genetic factors by evaluating the similarity of effect size
patterns across the region. The joint likelihood mapping (JLIM)
approach (31) adopts a similar tactic but also requires that the
LD pattern between the SNPs in a region for one of the two
traits is available. The heterogeneity in dependent instruments
(HEIDI) approach (30) is slightly more flexible—it is another
form of colocalization analysis using LD information but is
typically applied using an external reference panel in which
the effect sizes are estimated in different samples from the LD
patterns. S-PrediXcan (32) adopts a similar strategy of using an
LD reference panel with summary data for genetic
colocalization.

There are two important factors that can lead to inaccuracies
in these methods. First, if there are multiple conditionally indepen-
dent causal variants (33-35) in the cis region, as is often reported
(19,20,36), then this could lead to incorrectly declaring shared
causal variants. Using the methods in conjunction with condi-
tional analysis is recommended to mitigate this problem (25,30).
Second, if the exposure and outcome trait effects were
estimated in populations with different LD patterns then the
patterns of effect sizes may not correspond according to the
underlying genetic architecture. This problem is difficult to
overcome, and ideally one would demonstrate replication in
independent samples.
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Box 2. Pleiotropy in the MR context

e The human phenome can be described as all (measurable or not) characteristics of an individual (104). While inherited nat-
ural genetic variation is largely uniform across tissues and over time (barring somatic mutations, etc.), natural phenotypic
variation is massively multi-dimensional and dwarfs the genome in scale and complexity.

e Given that the majority of measurable phenotypes have a heritable component (105), pleiotropy in the most general
sense—the phenomenon of a single genetic variant influencing multiple traits—must be very common.

e From a statistical perspective, MR returns a ‘positive result’ if a SNP known to influence the hypothesized exposure also
influences the hypothesized outcome. This is the precise definition of pleiotropy. In the interests of reliable causal infer-
ence, what is of crucial importance is divining the mode of pleiotropic action: does the SNP influence the outcome because
the exposure influences the outcome? This is the mechanism assumed in MR and will be referred to as vertical pleiotropy
in this review, but it has also been termed mediated pleiotropy (106), type II pleiotropy (107), secondary pleiotropy (108),
spurious pleiotropy (109), and in some literature it is not considered to be pleiotropy at all.

e There are two alternative mechanisms by which a SNP could associate with two phenotypes. First, a SNP could influence
the outcome through a pathway other than the exposure. In this review, we will refer to such an effect as horizontal pleiot-
ropy, though it has also been called biological pleiotropy (106), Type I pleiotropy (107), developmental pleiotropy and selec-
tional pleiotropy (73). The second alternative mechanism is through distinct causal variants (24), where a SNP exhibits a
statistical association with two traits simply because it causally relates to one trait while also being in LD with a causal var-

iant for another trait.

exhibit different modes of pleiotropy (Fig. 1).

Within the context of a single MR analysis (i.e. one exposure on one outcome) a single genetic variant could simultaneously

While reliable colocalization results can eliminate distinct
causal variants as a potential explanation for a strong SNP-
outcome association, vertical pleiotropy in the single instru-
ment case is impossible to prove using summary data for two
traits alone (36). Triangulation, the practice of evaluating the
same question using different methods (16,18) that have non-
overlapping limitations, must be applied in this scenario.
Genetic mediation-based analyses (37-40) are more liable to
problems of confounding and measurement error than MR
(41-43), but could potentially separate between vertical and
horizontal pleiotropy in some scenarios. Network construction
to evaluate consistency of effects (an alternative form of media-
tion analysis using MR) can also be used (44).

Causal Inference Using Multiple Genetic
Variants

Many complex traits for which GWAS has been performed using
very large sample sizes return tens or hundreds of independent
genetic variants reaching the established genome wide
significance level (4). Independence is often ensured using LD-
based clumping and pruning (45). In these cases, extending the
analogy to RCTs, each instrumenting SNP is considered an inde-
pendent experiment (in the sense that they independently
modify the exposure), and as such the results from each
experiment can be meta-analysed to give an overall estimate
(7,46,47). Most simply, a fixed effects inverse variance
weighted (IVW) meta-analysis method is used, where the con-
tribution of each SNP to the overall estimate is the inverse of
the variance of its effect on the outcome (See Box 3).

There are two major advantages that arise when multiple
instruments are available. First, the statistical power potentially
improves, which is particularly important because each SNP-
outcome association on its own is typically small. Second, the
problem of horizontal pleiotropy can begin to be addressed.
One important extension of IVW analysis is the weighted gener-
alized linear regression method (47). Here, the SNPs used as
instruments can be correlated, as in the case of multiple condi-
tionally independent variants acting in cis on a gene expression

level. A reference LD panel is used to account for the correlation
structure thus avoiding ‘double counting’ of SNP effects.

If the exposure influences the outcome and the SNPs only di-
rectly influence the exposure, we expect that the influence of
each SNP on the outcome is proportional to the effect of the SNP
on the exposure. This proportional factor (the causal effect) will
be the same across SNPs, making their individual causal ratio
estimates homogeneous. The more SNPs that satisfy this expec-
tation, the less likely it is that the SNP-outcome associations are
arising simply because of horizontal pleiotropy (or distinct
causal variants) (48). It is important to note that the proportion-
ality of SNP-exposure and SNP-outcome effects could arise due
to perfect confounding—where all the SNP-exposure instruments
actually arise due to another trait influencing both the exposure
and the outcome.

Invariably we know we can test whether the instrumenting
SNPs associate with the outcome, but inferring why that associ-
ation is present is difficult. Much of the recent method develop-
ment in MR, which we will now go on to describe, has focused
on modelling the Wald ratios from multiple instrumenting
SNPs in an attempt to separate the vertical pleiotropic pathway
(i.e. the hypothesized causal pathway) from any other
influences.

Testing for Heterogeneity to Gauge the
Problem of Pleiotropy

Because the IVW estimate is essentially a weighted average of
the Wald ratios obtained from each SNP, if any of the SNPs ex-
hibit horizontal pleiotropy (i.e. influencing the outcome
through a pathway other than the exposure) then the causal
effect estimate is liable to be biased. Thus, in principle the IVW
estimate is said to have a 0% ‘breakdown level’ because it is
not guaranteed to tolerate any SNPs violating the third IV as-
sumption (exclusion restriction assumption). A tool used ex-
tensively in meta-analysis is to assess the heterogeneity
between studies is Cochran’s Q statistic (49), and it can also be
applied in the MR context (50,51). Here, substantial heteroge-
neity among the Wald ratios for each SNP could indicate a
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Box 3. Weights used in IVW analysis

e When multiple SNPs are available as instruments for a particular analysis, the causal estimates from each SNP can be
meta-analysed (or averaged) to yield a more precise estimate. The weights used in the standard inverse variance weighted
(IVW) meta-analysis (first-order weights), make two assumptions. Firstly, that the SNP-exposure and SNP-outcome associa-
tion estimates are uncorrelated (so that covariance terms can be ignored) and secondly that the SNP-exposure association
is measured with infinite precision [the NO Measurement Error in the exposure (NOME) assumption]. In practice the NOME
assumption is always violated because the SNP-exposure association standard errors are always non-zero, but when the
NOME assumption is strongly violated (as measured by a small average F-statistic across the SNPs), the IVW estimate will
suffer from regression dilution bias towards the null. The magnitude of this dilution is inversely proportional to F. First-
order weights are also traditionally used by Cochran’s Q statistic to test for the presence of heterogeneity, which is used to
infer the presence of horizontal pleiotropy in MR. In this case, strong NOME violation leads to Cohran’s Q detecting hetero-
geneity too often when in fact no pleiotropy is present (56) (i.e. type I error rate inflation).

So-called second-order weights, which combine the Wald ratio estimates and the standard errors for the SNP-exposure and
SNP-outcome estimates, attempt to ameliorate the problem of NOME violation but in fact produce IVW estimates that suf-
fer from even stronger regression dilution bias than first-order weights. They also dramatically reduce the power of
Cochran’s Q statistic to detect heterogeneity due to pleiotropy when it is truly present (51) (i.e. type II error rate inflation).
Incorporating Modified second-order weights into the IVW estimate and Cochran’s Q statistic has been shown to correctly
address both issues, removing the effect of regression dilution bias and furnishing Q statistics with the correct operating
characteristics (51). Modified second-order weights are also incorporated into the MR-RAPS (54) estimator. A simulation-
based heterogeneity and outlier test is proposed within MR-PRESSO (61), which performs similarly to modified second-order

weighting of Cohran’s Q statistic.

variety of potential problems, most notably that at least one
(but possibly several or even all) of the SNPs is exhibiting hori-
zontal pleiotropy.

Though not the subject of this review it is important to note
that there are many other factors that could induce heterogene-
ity among the causal ratio estimates of a set of SNPs, in the total
absence of pleiotropy. For example, heterogeneity could arise
because (but not limited to):

e The outcome of interest is a binary variable (e.g. a disease
status), and the SNP-outcome associations are measured on
the odds ratio scale. Heterogeneity in this case is due to the
non-collapsibility of the odds ratio as a summary measure,
meaning that each SNP is estimating a slightly different
causal parameter (52);

e The samples used to estimate the SNP-exposure and SNP-
outcome associations are not homogeneous e.g. a difference
in the distribution of a covariate confounding the exposure-
outcome relationship across samples could induce heteroge-
neity (54);

e The SNP-exposure and SNP-outcome relationships are not
correctly specified—i.e. in the two-sample setting the causal
relationship between the exposure and the outcome is dif-
ferent in each of the samples (53,54).

Heterogeneity is therefore a sign that either the modelling
assumptions are wrong, or the IV assumptions are violated.

Balanced horizontal pleiotropy

Suppose that all the SNPs exhibit horizontal pleiotropy, such
that each SNP influences both the exposure and also the out-
come through another pathway. In this scenario, we can model
the SNP-outcome effect as being the influence of the SNP on the
outcome through the exposure, but in addition each SNP is also
allowed a random positive or negative effect on the outcome
through some other pathway. Here, it is assumed that on an av-
erage the random effects have zero mean and are uncorrelated

with the SNP-exposure effect (55) (Appendix 1). In this instance
the overall IVW estimate is asymptotically unbiased as the
number of SNPs grows large, and the correct standard error can
be obtained from fitting a random effects IVW model (56).

While there is often concern that horizontal pleiotropy will
induce false positive causal associations, it can also reduce the
true positive rate. In the universal pleiotropy model described
earlier, the horizontal pleiotropy introduces noise to the causal
association which means that statistical power will be reduced.

Directional (unbalanced) horizontal pleiotropy

In the case of balanced horizontal pleiotropy, it is assumed that
the random effects have zero mean, which will lead to the IVW
estimate being unbiased. However, an alternative possibility is
that the random effect does not have zero mean, and that the
average random effect is directional. In this scenario, the IVW es-
timate will be biased.

A simple approach to account for this bias is to use MR-Egger
regression (55,57), which differs from the IVW estimate by
allowing a non-zero intercept. The intercept term represents an
estimate of the directional pleiotropic effect. In an analysis of
the causal influence of serum urate levels on coronary heart
disease (CHD) it was shown that a strong positive relationship
returned by the IVW estimate was almost entirely nullified
after accounting for directional pleiotropy in the MR-Egger
model (58).

There are three important factors to consider when using
standard MR-Egger regression. First, it is required that the SNP-
exposure estimates are oriented to be positive, and the SNP-
outcome effects are flipped accordingly. This is done so that the
SNP-exposure association reflects the ‘weight’ it receives in
the analysis. The need to perform re-orientation has recently
been relaxed with a modification of the original MR-Egger model
based on Radial regression (59). Second, the statistical power of
MR-Egger analysis is dramatically lower than IVW analysis, par-
ticularly when the SNP-exposure effect sizes are relatively ho-
mogeneous (56). Third, such homogeneity also means that MR-
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Egger analyses are more susceptible to regression dilution bias
(57,60). Simulation extrapolation (SIMEX) corrections can be
applied to account for regression dilution bias (57).

Finally, both the IVW and MR-Egger frameworks are depen-
dent on the so-called InSIDE assumption (Instrument Strength
Independent of Direct Effect). This justifies treating pleiotropy
as a random effect. Furthermore, the MR-Egger assumptions are
in fact a subset of the IVW assumptions, because the former
relaxes the additional assumption that the average pleiotropic
effect is zero. If the InSIDE assumption is violated and the
SNP-exposure effects are correlated with the horizontal pleio-
tropic effects, then bias will be incurred. InSIDE violation is very
likely when a sizable proportion of the horizontal pleiotropy
operates through a confounder of the exposure-outcome
relationship (56).

Outlier Removal

Random effects IVW and MR-Egger analyses relax the exclusion
restriction assumption, specifically in the special cases de-
scribed above where all the SNPs are allowed to exhibit a ran-
dom horizontal pleiotropic effect and thus the methods have a
maximum breakdown level of 100% (i.e. remains asymptotically
unbiased even when all SNPs exhibit horizontal pleiotropy.
However, these methods are liable to bias under many other
patterns of horizontal pleiotropy.

Several methods now exist that operate on the model that
only some proportion of the SNPs will have a horizontal
pleiotropic effect. They attempt to reduce heterogeneity by
removing SNPs that contribute to the heterogeneity dispro-
portionately more than expected given the standard errors of
the Wald ratios. Such outlier removal strategies are present in
the MR-PRESSO (61), and generalized summary MR (GSMR)
approaches (62). Cochran’s Q statistic has also been extended
to enable more reliable outlier detection, especially with weak
and pleiotropic genetic instruments (51). The detection of out-
liers is also automated in the Radial MR framework (59).

Down-weighting outliers

While IVW and MR-Egger use a mean-based approach to obtain
an overall estimate, one way to avoid the contribution of some
invalid instruments is to instead base the overall estimate on
the median of the instruments (63,64). Here, it is assumed that
at least 50% of the instruments are valid. This can be extended
to a more efficient weighted analysis, which then requires that
the set of instruments accounting for 50% or more of the total
weight is valid (64).

A further variation is to employ the zero modal pleiotropy
assumption (ZEMPA) and calculate the weighted mode of the
Wald ratio estimates (65). The majority of the SNPs could be in-
valid (and hence the median unreliable), but providing the set of
SNPs which form the largest homogeneous cluster are valid, the
modal Wald ratio will be asymptotically unbiased. Some deci-
sion-making is required of the user in this scenario, because in
order to obtain the clustering of effects it is necessary to choose
a bandwidth. It is prudent to perform sensitivity analyses that
evaluate the consistency of the overall estimate using different
bandwidths.

Reasons to be wary of outlier adjustment

Median and mode-based estimators can be viewed as implicit
outlier removal approaches, since they only allow the SNPs in

the majority to contribute to the overall estimate. Using a
weighting approach may help to mitigate some of the issues
that arise from explicit outlier removal, e.g. in the ‘omic setting
described earlier, a single cis-acting variant might account for
>50% of the weight even when there are many SNP effects from
elsewhere in the genome (trans-effects) (20,66,67).

One issue with outlier removal (or down-weighting) is that
it is at some level a form of cherry picking—generally the stan-
dard error of the causal effect estimate will be reduced after re-
moving those SNPs that appear to deviate from the majority.
There are also good examples where the SNP that might appear
to be the outlier is in fact the most biologically reliable. For ex-
ample, for ‘omic variables where there are potentially many
trans-effects but only one cis-effect, the cis-effect is likely closer
to the biology of the molecular trait due to its genomic proxim-
ity. By contrast in order for the trans SNP to exert an influence
on the molecular trait it is presumed that it must go
through several pathways, opening the possibility that those
pathways influence the outcome independently of the original
exposure.

C-reactive protein (CRP) levels may fall into this category.
Many of the SNPs that could be used to instrument CRP are
from upstream inflammatory pathways, while the variant in
the promotor region of the CRP gene is likely to have a more
direct effect on CRP levels themselves (68). If inflammation in
general has an influence on the outcome then the CRP variant
will appear to be an outlier. Estimating the causal influence of
CRP on CHD (69,70) is likely to be quite susceptible to this
problem, using all 20 variants from Dehghan et al. (68) in an
IVW estimate suggests a fairly strong protective effect —0.13
(S.E.=0.064), but the CRP variant rs2794520 alone gives a much
flatter result of 0.009 (S.E.=0.061), consistent with previous
analyses (see Appendix 2 for R code on how to obtain these
results in MR-Base) (8). By contrast, the (protective) apparent
causal influence of CRP on schizophrenia is much more con-
sistent between the CRP variant and all other instruments
(71), indicating that whether a SNP exhibits horizontal pleiot-
ropy is dependent on the causal question being asked (72,73)
(Fig. 1).

Two other outlier removal methods have been used in MR.
First, Cook’s distance was used to identify SNPs that exerted a
disproportionately large influence on the causal effect in an
analysis of body mass index on type 2 diabetes (74).

Second, in Steiger filtering (72), outliers were detected based
on the likelihood that they were reverse-causal. Suppose that
an analysis is being performed where the hypothesized expo-
sure is actually caused by the hypothesized outcome (i.e. there
is a reverse causal relationship). As GWA studies improve in
power, the chances of the instruments for the exposure includ-
ing SNPs that primarily associate with the outcome, and the
outcome (or processes leading to the outcome) influencing
the apparent exposure, increases. Including those SNPs in the
analysis will potentially lead to erroneous inference of causality
in the wrong direction. To mitigate this problem Steiger filtering
removes those SNPs that explain more of the variance in
the outcome than in the exposure. This method could deliver
erroneous results under some levels of confounding or reverse
causation (42), but it is unlikely to lead to the same problems as
the heterogeneity-based outlier removal methods.

Polygenic Risk Scores

It has been shown consistently that relaxing the significance
threshold for GWAS, yielding more associations, can lead to
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Figure 1. (A) The same SNP can associate with multiple traits due to vertical pleiotropy, horizontal pleiotropy and linkage disequilibrium with distinct causal variants
depending on the analytical context. To estimate the causal influence of gene expression level (Gene) 1 on Trait 1, SNP 1 is a valid instrument that acts in a vertical
pleiotropic manner. But SNP 1 has a horizontal pleiotropic effect when using it to estimate the causal influence of Gene 1 on Trait 2. If SNP 1 was used to instrument
Gene 1 to test its effect on Trait 3, it would exhibit a pleiotropic association through linkage disequilibrium with SNP 2. (B) A directed acyclic graph (DAG) in which four
SNPs instrument an exposure. The fourth SNP has a horizontal pleiotropic effect of magnitude o. The impact of the horizontal pleiotropic effect is shown in the scatter
plot in (C), where the grey slope represents the true causal effect obtained from the three valid instruments, and the red slope represents the IVW estimate when all

SNPs are used as instruments.

constructed polygenic scores exhibiting better prediction accu-
racy (75,76). Hence, it is tempting to use a similar strategy in MR
because better prediction accuracy of the exposure will improve
statistical power (77). There are two potential issues that have
received recent attention regarding this approach.

First, as the threshold is relaxed the likelihood of false posi-
tive SNP-exposure associations being introduced will increase,
which violates the first assumption of MR. A mixture of true and
false positive SNPs used as instruments will lead to heterogene-
ity in the MR analysis. Second, the inclusion of SNPs with
smaller genetic effects for the exposure increases the influence
of weak instrument bias (69). This is particularly problematic
when combined with selection bias (78), where the discovery
GWAS is used to estimate the SNP-exposure effects also
(i.e. lacking an independent replication). The Mendelian ran-
domization robust adjusted profile score (MR-RAPS) method (55)
extends the basic IVW random effects approach by making the
weight each variant receives in the analysis a function of the
causal effect and the precision of the SNP-exposure association.
Under the assumption that pleiotropy is approximately balanced
(i.e. it satisfies the InSIDE condition with zero mean, except for a
small number of outliers) MR-RAPS enables large numbers of
weak instruments well below the conventional GWAS threshold
to be included. The new form of weighting utilized by MR-RAPS
has also been used to improve the reliability of Cochran’s Q-sta-
tistic when testing for heterogeneity due to pleiotropy (51), in
particular its false positive (or type I error) rate.

An important question follows from considering the use of
many weak instruments, which is a variation of the InSIDE as-
sumption: are the pleiotropic effect distributions monotonic across
the range of SNP-exposure effect sizes? The ‘omnigenic’ model of
complex traits (69) proposes that almost every gene is related to
every phenotype (though whether this is through horizontal or
vertical pleiotropy is not clear). Potentially, the SNPs with the
smallest effect sizes are those that are most likely to have back-
ground effects on all traits. Such a model invites the question of
whether improving GWAS sample sizes for SNP discovery, or relax-
ing the significance threshold, will result in better clarity in MR
analyses. An alternative model, and one that is more worrying for
MR, is that SNPs with larger effects are the ones more liable to ex-
hibit horizontal pleiotropy, arising because a single variant’s influ-
ence on the trait occurs through multiple independent pathways.

Multivariable Analysis of Several Exposures

In the methods described so far the horizontal pleiotropic
effects are detected and adjusted using ‘classical’ univariate sta-
tistical techniques (i.e. they may use multiple SNPs but we are
modelling a single exposure variable’s effect on the outcome).
These methods attempt to arrive at unbiased estimates without
incorporating additional knowledge of the potential alternative
pathways in which SNPs might be operating. But often one can
hypothesize what those pathways might be and include them
explicitly in the analysis.
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Multivariable MR (79-81) attempts to estimate the influence
of an exposure on the outcome, conditioning the SNP-exposure
effects on their corresponding effects on other putative
exposure traits. For example, there is genetic overlap between
HDL cholesterol (HDL) and LDL cholesterol (LDL) (82,83). In
estimating the influence of LDL on CHD, is it clear that any puta-
tive causal effect is not due to the SNPs in fact acting through
HDL? If the SNP-CHD effects are proportional to the SNP-LDL
effects even after they have been adjusted for the SNP-HDL
associations, then this would support the conclusion that LDL
has an influence on CHD.

Negative Controls

An intuitive test of violations of assumptions in MR is to per-
form the analysis in a context where it is expected that any as-
sociation under the tested hypothesis is impossible (84-86).
This can be performed in different ways. One approach (negative
control outcomes) is to test if the exposure associates with out-
comes that should be impossible, by conducting MR with the
instruments that will be used in the focal analysis. If an associa-
tion is obtained this would indicate that the instruments were
in some way invalid (86).

Another approach to negative controls is to test for associa-
tions in specific samples where there should be none (negative
control samples). For example, suppose we want to estimate the
influence of alcohol intake on blood pressure. If the instrument
for alcohol intake is valid, there should be a SNP-outcome
association only among individuals who drink alcohol.
However, if there is found to be an association from a sample of
individuals who do not drink alcohol then the SNP-outcome as-
sociation must be arising through a pathway other than
the hypothesized exposure, thus proving a violation in at
least one of the assumptions (87). Generally, we can view this as
a gene-gene (GxG) or gene-environment (GxE) interaction,
where the covariate level in which there is no genetic effect is
termed the no relevance point. It is important to note that group-
ing by an exogenous variable like sex (88) is safer than poten-
tially endogenous covariates because it avoids the possibility of
collider bias (89).

A method termed pleiotropy-robust MR (PRMR) (90) was de-
veloped to utilize the no-relevance point to obtain more reliable
causal effect estimates. Here, it is assumed that the influence of
the SNP on the outcome at the no-relevance point represents
the horizontal pleiotropic effect for the rest of the population.
The effect estimate from the rest of the population is then ad-
justed for this pleiotropic effect. This relies on the assumption
that the pleiotropic effect is constant across subgroups of the
environmental covariate.

In practice there are very few epidemiological examples,
including the alcohol example, with a perfect no-relevance
point (87,91). MRGXE builds on this approach, by relaxing the re-
quirement that a no-relevance point has to be observed: its
value can instead be estimated as long as there is variation in
the strength of the SNP-exposure association across subgroups
of the environmental covariate (91). While the dependence on
GXE or GxG interactions implies that individual level data are re-
quired, MRGXE can be performed using summary data if esti-
mates for the SNP-exposure and SNP-outcome associations at
different levels of the environmental variable are available. The
technique is then analogous to performing MR-Egger regression
on the set of covariante stratum-specific SNP-outcome and
SNP-exposure association estimates.

Synthesizing Evidence from Several Models

Interrogating results by analysing how sensitive they are
under different assumptions is essential for reliable causal
inference. In a hypothesis-driven analysis (i.e. a particular expo-
sure is being tested against a particular outcome) a common
strategy (92) is to begin with the simplest model, the fixed
effects IVW, which has the highest statistical power when all
assumptions are met. Sensitivity analyses are then performed
that test whether the estimated effect remains consistent
using methods that allow different patterns of assumption
violations, most notably MR-Egger regression and the median-
and mode-based estimators (8). It is also common to see leave-
one-out analyses where the causal effect is re-estimated but se-
quentially omitting a particular instrument each time, to evalu-
ate if any one variant is driving the analysis (8). Extension to
systematically leaving out combinations of SNPs is possible also
(93).

Sometimes it is the case that it is useful to have a single
‘most likely’ causal effect estimate to select from among the
many analyses that have been performed (94). Frameworks for
selecting models have been developed recently that attempt to
do this.

Rucker framework

Adapting methodology developed for meta-analysis to the MR
context, the Rucker framework (56,95) uses heterogeneity statis-
tics to navigate between different models in a principled man-
ner. One begins by estimating the fixed effects IVW analysis and
then calculating Cochran’s Q statistic for heterogeneity. This
will indicate whether the SNP-outcome associations are exhibit-
ing inconsistencies which could lead to bias in the fixed effects
IVW estimate. If there is substantial heterogeneity then we de-
part from the fixed effects IVW estimate, moving to a random
effect IVW that allows all SNPs to exhibit balanced horizontal
pleiotropy.

Next we test for directional pleiotropy—re-estimating
the heterogeneity after allowing for a non-zero intercept (using
Rucker’s Q' statistic 96) through a fixed effect MR-Egger analysis.
If Q-Q is large then this indicates directional horizontal
pleiotropy suggesting it more appropriate to use the MR-Egger
framework. Finally, if even after accounting for directional plei-
otropy Q' indicates that heterogeneity remains, then ultimately
random effects MR-Egger model is selected.

Model averaging

An alternative to trying to navigate between methods discretely
is to average across multiple different models. Thompson et al.
(2017) (97) applied this idea to MR, using a Bayesian approach to
average across three nested models—no pleiotropy (IVW fixed
effects), balanced random pleiotropy (IVW random effects) and
directional plus random pleiotropy (MR-Egger random effects).
Schmidt and Dudbrudge (98) put forward a similar idea in the
Bayesian MR-Egger estimator (BMRE), in which prior beliefs
about the extent of directional pleiotropy can be used to average
between IVW and MR-Egger estimates.

Mixture of experts

The mixture of experts (MoE) is a machine learning framework
in which data can be fed to several different methods (‘experts’),
and then the most reliable among them is selected (99). The



MR-MoE approach achieves this through meta learning (72). First,
data simulated under different models of pleiotropy are generated
and summary sets (Box 1) are produced. Each expert is used to ana-
lyse the simulated summary sets. At the same time, characteris-
tics (meta data) about the simulated summary data are generated,
e.g. the number of SNPs, sample sizes, heterogeneity, numbers of
outliers. Next, a model is fitted that estimates how accurate that
expert is for a given summary set based on the summary set’s
meta data. Following on, for any given summary set generated
from real data, a performance estimate from each expert is made,
and the expert predicted to perform the best is selected.

Towards Coherent Frameworks

A rich and diverse statistical toolkit is emerging that attempts
to distil horizontal pleiotropic effects from vertical pleiotropic
effects, in order to improve the reliability of causal inference. In
Table 2, we outline how the different methods described above
can be used in conjunction or in sequence with one another un-
der a range of different scenarios.

Alongside method development, it is now crucial that
codebases are maintained in which statistical methods can be
deposited and easily applied to arbitrary data. The MR-Base plat-
form integrates an R package with a database, enabling auto-
mated causal inference through summary data across a wide
range of methods (8). Other software packages are available such
as MendelianRandomization (96) and gsmr (62) and in Stata, mrro-
bust (100). The MR-Base and PhenoScanner (101) databases col-
late thousands of complete GWAS summary datasets, and
coverage of human traits with well powered GWAS summary
data will continue to grow. For most of the methods described in
this review, the horizontal pleiotropic effects are modelled using
knowledge only of the SNP effects on the exposure and the out-
come. But when massive amounts of data are available, we are
now presented with opportunities to attempt to model the pleio-
tropic relationships explicitly. The MR-EVE graph database (MR
of ‘Everything versus Everything’) goes one step towards this
goal (72). The next major transformation in MR is likely to in-
volve the improvement of causal inference by incorporating in-
formation from beyond the SNP-exposure and SNP-outcome
effects, in the spirit of triangulation of evidence (16,18).
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Appendix 1. The MR framework and its
assumptions

Mendelian randomization (MR) is a special case of instrumental
variable (IV) analysis in which genetic factors are used to proxy
the exposure variable, because unlike the exposure variable the
genetic factor is less liable to reverse causation or confounding.
Suppose that a SNP is known to influence the exposure of inter-
est (IV assumption 1). Whether an individual inherits the
exposure-increasing or -decreasing allele is a random process,
analogous to lifetime random assignment to a treatment or
control group in an RCT. Unlike in a perfectly conducted RCT, in
which assignment to treatment group perfectly predicts
whether the treatment is taken or not (Appendix figure 1), a ge-
netic factor usually exerts only a very small effect on the expo-
sure. Many other variables will influence the value of the
exposure, and if they also influence the outcome, they would
‘confound’ the exposure-outcome relationship (as represented
by the variable U in Appendix figure 1). As long as the SNP is a
valid IV, MR can return unbiased estimates for the causal effect
of the exposure on the outcome in the presence of such con-
founding. MR can therefore be viewed as an RCT with non-
compliance, as illustrated in Appendix figure 1.
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are obtained from a published GWAS, and the corresponding
SNP-outcome effect, I and variance var(ey;) is obtained from
another sample. A simple formulation of the factors that influ-
ence the SNP effect estimates for the exposure and the outcome
are as follows:

;Y) =%+ kxl/lj &

T = o+ Ry + B + Ret) + ¢y

where f is the causal effect of x on y, and o; represents the jth
SNP’s horizontal pleiotropic effect (Box 3). A confounder
influencing x and y with effects x, and «y, respectively, could
also have effects on the SNP with effect ;. When o; = 0 and the
SNP does not associate with confounders the Wald ratio, f;
= i"]-/?j is a causal effect estimate based on the jth SNP. When
there are multiple SNPs available as instruments the Wald ra-
tios from each SNP are meta-analysed to give an overall esti-
mate. Using this framework, Bowden et al. (59) outlined the key
set of assumptions for the 2SMR case (Table 1) that relate to the
parameters in the above equations.

U

/\

R—T7T—Y

Appendix figure 1. (A) Unobserved confounding (U) makes it impossible to be fully confident that an association between risk factor X and outcome Y represents a mea-
sure of causal effect of X on Y. (B) In a perfect RCT, randomization to treatment (T) removes the possibility of confounding, enabling the causal effect of T onY to be esti-
mated. (C) MR uses genetic variants (G) that explain some variation in the exposure X to estimate the causal effect of X on Y. G must satisfy the instrumental variable

assumptions, encoded by the solid arrows (and the strict absence of the dotted arrows) in

(C). (D) Instrumental variable methods can also be used in clinical trials when

randomization is imperfect because some patients do not receive the treatment they were originally assigned. This is referred to as'non-compliance’. An MR analysis is
conceptually and mathematically equivalent to the analysis of RCT data in the presence of non-compliance, where the SNP (G) and exposure (X) proxy for randomization

(R) and treatment (T), respectively.

If the SNP associates with the outcome then one can qualita-
tively conclude that the exposure causes the outcome, in the
same way that the analysis of trial data according to the inten-
tion to treat (ITT) principle also provides a valid test for a non-
zero treatment effect. An MR analysis goes further by providing a
quantitative estimate of the causal effect. The validity of both of
these conclusions depend on two further core assumptions—that
the SNP does not associate with confounders (IV assumption 2),
and does not influence the outcome through some pathway
other than the exposure (IV assumption 3). Assumption 1 is easy
to prove through performing genome wide association studies
and replicating strong signals in independent studies, but
assumptions 2 and 3 are impossible to prove.

The most popular method over the last few years to perform
MR is the two-sample summary data case (2SMR), where the
jth SNP-exposure effect estimate §; and its variance var(ey)

Appendix 2

R code to produce MR estimates of CRP on coronary heart dis-
ease and schizophrenia

library (TwoSampleMR)

library (MRInstruments)

library (dplyr)

data (gwas_catalog)

# Get the instruments for CRP

crp <- subset (gwas_catalog, grepl (“C-reactive protein”,
Author)) %>% format_data

# PerformMR of CRP on coronary heart disease

chd <- extract_ outcome data (crp$SNP, 7)

d<- harmonise_data (crp, chd)

mr (d)

# Performusing only the CRP variant

Phenotype) & grepl (“*Dehghan”,
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mr (subset (d, SNP == subset (crp,
gene.exposure=="CRP”) $SNP) )

# PerformMR of CRP on schizophrenia

scz <- extract_outcome_data (crp$SNP, 22)

d<- harmonise_data (crp, scz)

mr (d)

# Performusing only the CRP variant
mr (subset (d, SNP == subset (crp,
gene.exposure=="CRP"”) SSNP) )
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