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Dendritic cells (DCs) are “frontline” immune cells dedicated to antigen

presentation. They serve as an important bridge connecting innate and

adaptive immunity, and express various receptors for antigen capture. DCs

are divided into various subclasses according to their di�erential expression

of cell surface receptors and di�erent subclasses of DCs exhibit specific

immunological characteristics. Exploring the common features of each sub-

category has became the focus of many studies. There are certain amounts

of DCs expressing langerin in airways and peripheral lungs while the precise

mechanism by which langerin+ DCs drive pulmonary disease is unclear.

Langerin-expressing DCs can be further subdivided into numerous subtypes

based on the co-expressed receptors, but here, we identify commonalities

across these subtypes that point to the major role of langerin. Better

understanding is required to clarify key disease pathways and determine

potential new therapeutic approaches.
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Introduction

Langerin, a C-type lectin receptor (CLR) also known as CD207, was originally

found to be highly expressed on Langerhans cells (LCs) that reside in the epidermis

of the human skin (1). Later, the existence of langerin+ dermal DCs was clarified as

well (2, 3). The disease with a relatively high association with langerin is Langerhans

cell histiocytosis (LCH). LCH is a rare disease characterized by heterogeneous lesions,

e.g., granulomatous lesions and histiocytosis X lesions, and the pathological features of

affected tissues usually manifests as positive staining of CD1a and langerin (4, 5).

Langerin+ DCs were also found in tissues apart from skin including the lung, liver,

kidney, and lymphoid tissue (6). To date, there is no comprehensive understanding of the

specific function of these langerin+ DCs although LCs have some similar characteristics

to other langerin-expressing DCs (7). However, these are not completely equivalent

(7), e.g., murine epidermal LCs and dermal langerin-expressing DCs exhibit distinct

repopulation kinetics and migratory characteristics in vitro and in vivo, and play distinct

roles in humoral and cellular responses generated by gene gun immunization (7, 8).
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There are recent papers declaring that langerin-expressing DCs

play a role in pulmonary immune-related disease settings. This

article summarizes the immune and pathological relationship

between langerin-expressing DCs and pulmonary immune-

related diseases whose understanding will provide potential new

therapeutic directions.

The expression and characteristics
of langerin in MNPs

Langerin was first recognized as an epitope specific to

LCs by monoclonal antibody (mAb) DCGM4 staining (1, 9).

LangerinmRNA is abundant in freshly isolated LCs while resting

DCs generated from CD34+ progenitors treated with GM-CSF

and TNFα are identified lower levels of langerin expression

(1). LCs were traditionally regarded as a subset of immature

DCs residing in epidermis and other mucosal epithelia due

to their comparable function and dendritic processes (10, 11).

Even though LCs are currently best classified as a type of

mononuclear phagocytes (MNPs) distinct from DCs for that

LCs are derived similarly to macrophages from the yolk sac

during embryogenesis differently from DCs (12). According

to the recent literature, we summarize the expression and

distribution of langerin in the MNPs in tissue and blood of

human and mouse. In human tissue, langerin is expressed

by certain conventional DC2 (cDC2) cells from the dermis,

lung, tonsil, and liver apart from epidermal LCs under healthy

conditions, and it is rapidly induced in blood cDC2 upon

tumor growth factor (TGF)-β stimulation (6, 13, 14). With the

development of immunological knowledge of DC classification,

human inflammatory blood DC3 were identified to express the

langerin gene (15). It differs in murine normal tissue for that

the expression of langerin was described in mouse cDC1 in

view that the co-expressing CD103 (also named αE integrin)

is a marker of cDC1 in mouse peripheral tissues (16, 17).

Specifically, langerin was reported expressed by 15% of cDC1s

in the murine lung (18).

The expression of langerin is regulated by various factors.

Mononuclear cells can be induced to form LCs or LC-like DCs

using factors such as GM-CSF and IL-4. Bone marrow-derived

monocytes enter the peripheral blood and constitute 5% of

circulating white blood cells. In response to appropriate stimuli,

they migrate from the bloodstream into various peripheral

tissues. A study has compared the responses to different

maturation signals and antigen-presenting functions between

LCs induced by GM-CSF and by M-CSF and demonstrated

that GM-CSF can be replaced by M-CSF to some extent

(19). Furthermore, TNF-α markedly increased the induction of

langerin+ CD83− LCs from both CD14-negative and CD14-

positive precursors (20) whilst TGF-β1 can also affect the

development of langerin+ epidermal LCs (21). In addition

to some inflammatory factors that promote the increase of

langerin, estrogen promotes the formation of a DC population

with the unique features of epidermal LCs. The data suggest

that differentiation of LCs in vivo will be dependent upon the

local estrogen levels and estrogen receptor-mediated signaling

events in the skin (22). Langerin+ cDCs and LCs are profoundly

regulated by the retinoic acid (RA)-RA receptor (RARα) axis

in a concentration-dependent manner (23). In addition to

cytokines and growth factors such as GM-CSF and TGF-

β1, the Notch receptor ligand Delta-1 is a regulator of the

induction of human LC development from blood monocytes

(24). Moreover, signaling by another Notch ligand JAG2 induces

differentiation of CD14+ monocytes into LCH-like cells (25).

In addition, inhibition of TNFAIP3, the negative regulator of

NF-κB signaling affects Th cell differentiation in the presence of

pulmonary langerin+ DCs (18).

Birbeck et al. elucidated the ultrastructure of LCs using

electron microscopy (26). LCs have a lobular nucleus

surrounded by a clear cytoplasm devoid of tonofilaments,

desmosomes, or melanosomes. However, they possess an

unique intracytoplasmic organelle which is their characteristic

ultrastructural feature: the Birbeck granule (BG) (26, 27).

Langerin is involved in the rapid internalization of BGs after

mannose-binding via endocytosis. Intracellular tracing using an

anti-langerin antibody demonstrated that following mannose-

binding, langerin was internalized from the cell membrane into

the BG (1). Indeed, the distribution and transport of langerin

in immature LCs is mainly through the endosomal recycling

of BGs. After internalization, langerin relocates back to the

cell surface as part of a cell membrane-pericentriolar BG-cell

membrane loop (28). Langerin appears to be a key structural

element in BG formation due to langerin aggregation (1, 28),

and presumably facilitates the uptake of mannans present on the

cell surface of bacteria (9). BGs are characterized by the unusual

cytoplasmic rod-like or tennis-racket-shaped structures, which

can be visualized by electron microscopy as two apposed

membranes separated by a striated zipper-like lamella (29).

Langerin-deficient mice lack BG and the introduction of the

langerin gene into embryonic fibroblasts induces the formation

of BG (20). Oda et al. rebuilt the 3D structure of isolated BGs

using cryo-electron tomography and identified a flexible loop

region within langerin trimers that is crucial for BG formation

and viral internalization (30).

Langerin polymorphisms affect both stability and sugar-

binding activity. As such, langerin haplotypes may differ in

their binding to pathogens and thus might be associated

with susceptibility to infection. For example, the W264R

form of langerin exhibits large changes in the structure of

the CRD that alter its sugar-binding activity. In addition to

structural factors, sugar-binding activity is also affected by

other physical factors such as pH, temperature, and protein

concentrations (31). Other mutations can result in thickened

membrane structures compared with the typical cytomembrane

sandwiching structures (CMS) of BG. In addition to BG
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structures, the affinity for high mannose glycoconjugates is to

some extend affected (32).

Immunological functions of langerin
in MNPs

Advances in structural biology have provided evidence

for the functional role of langerin. Langerin is a type II

transmembrane cell surface receptor belonging to the Ca2+-

dependent CLR family (33, 34). The extracellular domain (ECD)

of langerin consists of a neck region containing a series of heptad

repeats and a C-terminal C-type carbohydrate-recognition

domain (CRD) featuring a glutamate-proline-asparagine (EPN)

motif (position 285–287) (22, 35, 36). The extracellular region

of langerin exists as a stable trimer kept together by a coiled

coil of α-helices formed by the neck region. The CRD exhibits

selectivity for mannose, N-Acetylglucosamine (GlcNAc), and

fucose (37), but only the trimeric ECD fragment binds to

glycoprotein ligands. The ECD binds human high-mannose

oligosaccharides as well as yeast invertase mannose-containing

structures but not complex glycan structures (36). After antigen

capture, langerin internalizes the antigen, e.g., Candida albicans

(38), Mycobacterium leprae (39), or HIV-1 (40) via the BG.

Considering that the expression levels of langerin was markedly

reduced along with LCs maturation, Valladeau et al. further

confirmed that Langerin is restricted to immature DC (41).

While Stoitzner et al. demonstrated that certain expression of

langerin on the surface of matured and emigrated DCs were

retained in a time-course-dependent manner which suggested

that LCs or other langerin+ DCs can be traced to the draining

lymph nodes by their langerin expression (42). In recent

research, langerin were used as one of the markers for immature

monocyte-derived DCs (moDCs) (43).

As a sugar-binding protein expressed on the surface of DCs,

langerin has a key role in antigen-uptaking when DCs serve as

professional antigen-presenting cells to exert immune function.

In leprosy, for example, LC-like DCs and freshly isolated

epidermal LCs present non-peptide antigens of Mycobacterium

leprae to T cell clones derived from a leprosy patient in

a CD1a-restricted and langerin-dependent manner (39). In

addition, GM-CSF-dependent langerin+ CD103+ dermal DCs

promote CD4+ effector Th cell differentiation and play a

role in autoimmune pathogenesis (44). Human primary LCs

capture the measles virus (MV) through langerin, which then

presents MV-derived antigens in the context of HLA class II

to MV-specific CD4+ T cells independent of CD8+ T cells

(45). However, the evidence for a critical role of langerin+

DCs in CD8+ T cell activation do exist after gene gun DNA

vaccination as well (46). LCs and cDC1s can mediate different

humoral immune response through Langerin which may give us

inspiration in development of vaccine effectiveness (47).

Langerin has been proposed as a frontline sentinel in

the immunization process, e.g., HIV transmission (48) and

Inflammatory Bowel Disease (49). As such, LC-DC clustering

via langerin leads to DC maturation and facilitates antigen

transfer of HIV-1 to DCs, which subsequently induces activation

of CD8+ T cells (50). In contrast, it has been proposed that

HIV-1 captured by langerin is internalized into BGs and then

degraded. This would suggest that langerin does not enhance

HIV-1 infection of T cells but rather prevents T-cell infection by

viral clearance (51). Yet some research has conclusively shown

that HIV was effectively transmitted to the primary target CD4+

T cells (52–54). The demonstration was confirmed in subsequent

studies by Bertram groups (55, 56). Furthermore, langerin

was revealed to induce HIV-1 specific humoral immunity in

addition to cellular immunity (57). Further research is required

in the area to define whether langerin promotes or inhibits

immunity and under which specific conditions and if these

specific conditions can be artificially controlled. This may open

up new avenues for clinical prevention and treatment.

Langerin-expressing DCs in
pulmonary immune-related diseases

Within the human lung, langerin is mainly expressed on

the lung mucosa and the vascular wall (16). More specifically,

staining is seen within the airway epithelium, lung parenchyma,

visceral pleura (58), and lung draining LN (DLN) (6), and

similar results are obtained in the mouse (33). Despite the link

between skin and lung disease through the atopic march (59),

research into the function of langerin in the lung and airway

immune-related disease has not been studied in depth with

much relating to the analysis of relative expression profiles in

disease. Nevertheless, we can still speculate on the possible role

of langerin based on the available evidence as shown in Table 1

to inspire more further research.

Lung carcinoma

Early studies examined langerin expression in bronchial

biopsies of primary lung carcinomas from 12 patients and found

infiltration of DCs within tumor tissues including LCs and

CD1a+/langerin+ cells interspersed among tumor cells (60).

More recent research using high-throughput sequencing has

provided a more complete picture of langerin expression in

lung cancer. The depletion of langerin+ DCs before and after

vaccination with VLP-gp33r (a lymphocytic choriomeningitis

virus–derived peptide antigen) inhibits the growth of Lewis’

lung carcinoma tumors expressing gp33 (LL-LCMV), leading

to reduced cytotoxic CD8+ T cell activity. This highlights

the importance of langerin in antigen cross-presentation of

tumor peptides (61). In general, langerin plays a positive role
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TABLE 1 Potential functions of langerin in pulmonary diseases.

Pulmonary

diseases

Langerin potential

functions

Immune trend

Lung carcinoma Tumor peptides

cross-presentation

CD8+ T cell activation

(61)

Asthma Induce and maintain Th2

response

CD4+ T cell activation

(68)

Pulmonary fibrosis

and PLCH

Pathogenic mutations MAPK signaling

alterations (86)

COPD Induce Th1 response reacting

to CS

CD4+ T cell activation

(89)

Microbial

infection

Pathogen scouting Neutrophil and

macrophage

recruitment (100)

CS, Cigarette smoking; MAPK, Mitogen-activated protein kinase.

in promoting the immune response during tumor immunity,

which has been seen in other tumors such as oral cavity primary

squamous cell carcinoma (62). In breast cancer tissues, CD1a

and langerin staining was found in one-third of primary tumors

but this did not correlate with clinicopathological data (63). This

was divergent from previous findings from the same group that

most LCs were resident within all tumor samples (64). However,

with the update of cognition of immunological markers,

CD1a and langerin expression may not discriminate LCs from

langerin+ cDC2 or CD11c+ epidermal DCs (48, 55). It may lead

to completely different conclusions in subsequent research.

In addition, tumor cells were found to promote langerin

expression. Some, but not all, lung carcinomas produced GM-

CSF and a good correlation exists between GM-CSF production

and the number of CD1a+ LCs infiltrating these tumors

(65). Breast cancer cells can chemoattract CD34+ progenitor

cells through CCL20/MIP3α and promote the differentiation

of progenitor cells into langerin+ DCs depending upon the

level of TGF-β present. These langerin+ DCs differentiate into

two types: CD1a+ langerin+ CD86+ and CD1ahigh langerin−

CD86− cells (66).

Using The Cancer Genome Atlas (TCGA) we analyzed

the expression of langerin in Lung Squamous Cell Carcinoma

(LUSC) (Figure 1A) and Lung Adenocarcinoma (LUAD)

(Figure 1C) to identify any differential expression and the

pathways associated with langerin up-regulation. Using this

large database, we found significant up-regulation of langerin

in both LUSC and LUAD which was associated with distinct

gene ontology (GO) molecular pathways only some of which

overlapped. The analysis showed that langerin in the two types of

lung tumor was both positively correlated with immunity related

signaling pathways, e.g., antigen processing and presentation,

and endogenous lipid antigen via MHC class Ib (Figures 1B,D).

These data provide a basis for further research on the role of

langerin in tumor pathogenesis.

Asthma

In asthma, DCs are important not only for inducing T helper

(Th) 2-cell sensitization but also for maintaining effector Th2-

cell responses during ongoing allergic disease (67). In a mouse

model of house dust mite-induced allergic asthma, subsequent

LPS exposure resulted in enhanced migration of langerin+ DCs

from the lung to the draining lymph node and LPS-exposed

langerin+ DCs instructed CD4+ T cells toward a Th2 response.

Selective depletion of langerin+ DCs prevented LPS-induced

eosinophil recruitment and T-cell activation (68). In addition,

langerin expression was up-regulated in induced sputum from

asthmatic subjects and correlated with airway coagulation factor

XIII (FXIII) and airflow limitation (69). Moreover, asthmatic

human respiratory-tract DCs (hRTDC) expressed significantly

higher levels of langerin than equivalent cells from control

subjects. In addition, langerin+ cells from sputum co-cultured

with naive T cells increased T cell proliferation 2.5-fold

(70). These results suggest potential langerin-specific novel

therapeutic approaches for the treatment of severe asthma with

irreversible airflow obstruction.

The largest lung DC population are the integrin αEβ7

positive and I-Ahigh CD11chigh-DC population which express

high levels of langerin and act to enable efficient antigen

uptake and presentation (16). However, in an analysis of

large airways and bronchopulmonary LNs in fatal asthma

(FA), there were no statistical differences in the expression of

langerin+ DCs between the FA patients and control subjects

(71). These differences in the expression of langerin+ DCs in

different studies may be due to analysis of different asthma

immunophenotypes and/ or an effect of therapy. In addition,

different sampling locations such as sputum, BALF, large

airways, and bronchopulmonary LNs may contain different

numbers of langerin+ DCs. Therefore, further research is

needed to elucidate the role of langerin in the pathogenesis

and progression of asthma taking disease severity and

subphenotypes into account.

Pulmonary fibrosis and pulmonary LCH

Pulmonary fibrosis is an umbrella term that covers

idiopathic pulmonary fibrosis (IPF) and non-specific interstitial

pneumonia, importantly the characteristics of the immature

DCs that infiltrate during fibrosis and epithelial hyperplasia

in these diseases are similar (72). Intraepithelial infiltrating

CD1a+/langerin+ DCs committed to mucosal immunologic

surveillance (73). High levels of langerin staining are also seen

in sites of fibrosis in PLCH, which may indicate an important
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FIGURE 1

Expression and functional annotation of langerin in LUSC and LUAD in the TCGA RNA-seq datasets. (A,C) Boxplots visualizing significantly

di�erent expressions of langerin between normal and LUSC (and LUAD) tissues in TCGA database. (B,D) Bar plot showing the top 20 terms

derived from the gene set enrichment of the di�erentially expressed genes in TCGA-LUSC (and LUAD) samples. The x-axis represents statistical

significance.

connection between langerin expression and the pathological

changes of fibrosis (74).

In adults, pulmonary LCH (PLCH) occurs predominantly

in young smokers or ex-smokers (>90% of cases) with a

peak incidence between the ages of 20 and 40 (75, 76).

Patients with PLCH develop shortness of breath, pleuritic

pain, or spontaneous pneumothoraces. There is evidence of

obstruction, air trapping, and decreased carbon monoxide

diffusing capacity (DLCO) which may help to identify patients

with a poor prognosis (77). High-Resolution Computed

Tomographic (HRCT) imaging of the chest is critical in the

diagnosis of suspected PLCH and typically shows a combination

of nodules, cavitated nodules, thick- and thin-walled cysts (78–

80). Transbronchial lung biopsy is diagnostic in about 30% of

cases and is valuable in excluding other diagnoses that mimic

PLCH (81). PLCH presents as accumulation of LCs and other

langerin-expressing DCs in the lungs (82). A comparison of BAL

samples of patients with PLCH, sarcoidosis or IPF, found that

patients suffering from PLCH had a significantly higher number

of CD1a+ and langerin+ cells than the subjects with sarcoidosis

and IPF (74).

A similar comparison was made between LCH and other

interstitial, inflammatory, and infectious diseases as well.

Counting the number of cells staining per high power field

(400 x) in areas of highest density indicates that the number

of CD1a+ and langerin+ cells in LCH lesions is more than

two-fold that in interstitial pneumonia (83). Additional research

has reported that Langerhans-like CD1a+ cells are present

with NRAS and BRAF mutations in patients (84), providing

new insights into the pathogenesis of the disease. To date,

langerin has been used as a diagnostic index of PLCH (85),

but its true role in the pathophysiology or the intrapulmonary

mechanism of the disease requires elucidation. A recently

published report presents consensus recommendations that

resulted from the discussions at the annual Histiocyte Society

meeting in 2019 (5) which propose that the single-system

PLCH may indeed be a clonal process for that recurrent

Mitogen-activated protein kinase (MAPK) pathway alterations

and BRAF-V600E mutations have been identified in lesions

(86, 87). All questions are urgent for answers.

Chronic obstructive pulmonary disease

There is a significantly higher expression of langerin mRNA

in human COPD lung tissue compared with those from

healthy control subjects (88). The primary cause of COPD

for most subjects is tobacco smoking, with other causes being

air pollution and genetics. Interestingly, immunohistochemical

staining of langerin expression in the small airways revealed

more LC-type DCs (identified by langerin and the presence

of BG) in current smokers without COPD and in COPD

patients, vs. never smokers and ex-smokers without COPD (89).

PLCH, which occurs predominantly in young smokers or ex-

smokers, has high langerin positivity as a diagnostic indicator

and shows the pathological manifestations in end-stage disease

Frontiers inMedicine 05 frontiersin.org

https://doi.org/10.3389/fmed.2022.909057
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Xuan et al. 10.3389/fmed.2022.909057

(dense fibrosis, cystic changes, and honeycomb lungs) that are

similar to that of emphysema. This suggests that langerin is

involved in the pathophysiology of COPD particularly with

lung destruction and airway remodeling. Taniguchi et al.

firstly generate a glycosyltransferase, α1,6-fucosyltransferase

(Fut8) knockout mice to discover COPD-like phenotypes in

mouse model (90–93). To develop an effective clinical therapy

application, candidate glycan keratan sulfate (KS) and the di-

sulfated KS disaccharide L4, which were identified as specific

glycan ligands to Langerin (94). It was supposed that KS-based

glycomimetics may protect hijacking by viruses or bacteria in a

langerin-dependent manner (95).

Microbial infection

Mediastinal lymph nodes contain increased numbers of

cells co-expressing langerin and CD103 when the lung is

infected with the virus, and depletion of lung langerin+ DCs

in langerin-DTR mice aggravates the severity of infection

(96). Study of viral infection reveals that CD103+ langerin+

double-positive dermal DCs and langerin+ epidermal LCs

firstly upregulate innate immune response in the draining

lymph node (97). CD103 binds integrin β7-ITGB7 to form

the complete heterodimeric integrin molecule αEβ7 that the

chief ligand is epithelial cellular adhesion molecule E-cadherin.

Some CD103-expressing immune cells primarily reside on the

epithelium in order to rapidly respond to both viral and bacterial

infection (98). The considerable co-expression of langerin and

CD103 inspire that whether there is related regulation of

their, respectively, expression and whether αEβ7/E-cadherin-

interaction enhance the receptor function of langerin.

As mentioned above, langerin is able to capture virus

particles including HIV although the precise mechanism

involved is unclear. Studies are underway in procaine models

of infection to elucidate the key pathways by which langerin

impacts lung viral infection (99). Furthermore, there is evidence

that langerin plays a role in pathogen sensing, neutrophil and

macrophage recruitment, and the downstream inflammatory

processes. This is an exciting area for future research that may

provide novel non-macrolide work therapeutic targets for acute

exacerbations of lung diseases (100).

Conclusion

The current understanding of the role of langerin-expressing

DCs in pulmonary diseases is lacking details although the

evidence suggests that langerin plays a role in both the immuno-

inflammatory aspects of the disease as well as on structural

remodeling and exacerbations. DCs are key cells in initiating

adaptive immunity and langerin acts as its surface receptor to

sense external stimuli. However, it is clear that langerin possesses

additional functions that make it an interesting target for future

research. Considering the important role played by DCs in the

pathogenesis of immune disorder of the lungs and airways, a

deeper insight into langerin mechanisms may provide novel

therapeutic modalities for immune and structural aspects of

pulmonary immune-related diseases.
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