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INTRODUCTION

Dementia is a burgeoning public health crisis, with 50 million people currently affected worldwide
(Prince et al., 2015). As the population ages, this figure is set to rise dramatically by 40% over the
next 12 years (Prince et al., 2015). Dementia is an umbrella term for several disorders which result in
the progressive loss of memory or other cognitive functions (Scott and Barrett, 2007). It remains an
incurable disease, and current therapeutics have limited efficacy at slowing disease progression for
one third of patients (Rockwood et al., 2008). Of the dementia sub-types, Alzheimer’s disease (AD)
remains the most prevalent, accounting for ∼60–70% cases (Alzheimer’s-Society, 2016). Vascular
dementia (VaD) is the second most common form and is responsible for ∼20% of cases, with a
further 10% being a combination of these two diseases (Alzheimer’s-Society, 2016). However, in
practise these distinctions are somewhat arbitrary given the significant overlap in altered vascular
structure and function in both of these major sub-types (Kalaria and Ballard, 1999). At least
30% of patients with AD have evidence of cerebrovascular disease on post-mortem examination,
and almost all have evidence of cerebral amyloid angiopathy, microvascular degeneration, and
white matter lesions (Kalaria and Ballard, 1999). Similarly, one-third of patients with VaD exhibit
pathology consistent with AD (e.g., hippocampal or temporal lobe atrophy) (Kalaria and Ballard,
1999). Longitudinal studies have demonstrated that vascular risk factors (e.g., hypertension),
significantly increase the risk of both AD and VaD (Rius-Pérez et al., 2018). In genetically at-risk
individuals positive for apolipoprotein E4 (APOE4), atherosclerosis can increase the risk of AD
by three-fold (Hoffmann et al., 2010). This article provides an opinion on the current evidence on
the role of the neurovascular unit in dementia, for further information, several recent reviews are
available on this topic (Nelson et al., 2016; Kisler et al., 2017).

AMYLOID CASCADE HYPOTHESIS

A number of mechanistic models have been proposed to understand the pathological basis
of AD. The amyloid cascade hypothesis gained increasing traction over the last few decades,
having dominated the research sphere (Morris et al., 2014). Amyloid-based biomarkers have been
incorporated into a number of diagnostic guidelines (Jack et al., 2018), and the histopathological
(gold standard) diagnosis of AD includes the presence of amyloid plaque and neurofibrillatory
tangles (Deture and Dickson, 2019). However, despite decades of research into this hypothesis,
and several large trials of amyloid based drugs, none have demonstrated efficacy warranting their
widespread use in clinical practise (Morris et al., 2014). Only tramiprosate, a selective anti-oligomer
agent, has demonstrated potential benefit for a sub-group of APOE4 positive individuals with
early AD and is currently under investigation in a phase three trial (Tolar et al., 2020). These
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findings have raised several questions around the amyloid
cascade hypothesis. Firstly, the lack of efficacy for amyloid-based
targets may suggest amyloid is a by-product rather than causative
agent of the disease process. This is supported by the finding
that amyloid deposition commonly occurs in cognitively healthy
older adults, and plaque burden does not correlate well with
the level of cognitive deficit (Morris et al., 2014). In contrast,
synaptic loss, microglial activation, neurofibrillatory tangles, and
cerebral blood flow correlate better with disease severity in AD
(Rius-Pérez et al., 2018). Secondly, the potential efficacy in a sub-
group of early AD (Tolar et al., 2020) suggests that amyloid is a
late occurrence in the disease process, at which stage irrevocable
damage and cognitive decline has ensued. Furthermore, only
patients with a strong genetic risk may benefit from these
therapies (Tolar et al., 2020), limiting the wider applicability of
these drugs. These unanswered questions have thus stimulated
the search for earlier potential therapeutic targets, particularly
those which are identifiable at earlier stages, preceding the
development of cognitive decline and amyloid deposition.

VASCULAR CASCADE HYPOTHESIS

The vascular cascade hypothesis postulates that early disruption
of vascular mechanisms as a result of sustained vascular
risk factors and poor lifestyle habits, results in a state of
chronic hypoperfusion (Rius-Pérez et al., 2018). This leads
to the development of blood brain barrier breakdown, tau
hyperphosphorylation, and amyloid deposition (Nelson et al.,
2016). The blood brain barrier is essential to maintain a tightly
controlled environment, and contributes to the clearance of
amyloid-beta (Rius-Pérez et al., 2018). BBB dysfunction has been
demonstrated to occur in the hippocampus with normal ageing
(Montagne et al., 2015), early AD (Nation et al., 2019), and
in APOE4 positive individuals (Montagne et al., 2020). As a
result, amyloid deposition damages the cerebrovasculature, both
structurally and functionally, therefore worsening hypoperfusion
in a cyclical fashion (Nelson et al., 2016). These findings led to the
development of the two-hit hypothesis, where the vascular insult
represents the first “hit” to the system, followed by the amyloid
or second “hit,” with the two processes subsequently interacting
in a dynamic manner to worsen hypoperfusion, increase tau
hyperphosphorylation, and promote amyloid deposition (Nelson
et al., 2016). Importantly, the vascular hit is thought to occur
earlier in the disease process (Hays et al., 2016). This notion
is supported by longitudinal studies of ageing demonstrating
that alterations in cerebral haemodynamics are detectable in
cognitively intact older adults, and are predictive of future
dementia risk (Wolters et al., 2017).

THE NEUROVASCULAR UNIT IN

DEMENTIA

The neurovascular unit is formed by the neurone and its
supporting cells (astrocytes, endothelial cells, pericytes, and
smooth muscle cells) (Iadecola, 2017). They are closely related
both structurally and functionally to ensure the tight coupling of

neuronal activity and cerebral blood flow, termed neurovascular
coupling (NVC) (Iadecola, 2017). This is achieved through
feedforward and feedback mechanisms as a result of the release
of active metabolites and chemical mediators (Hosford and
Gourine, 2019). De-coupling of these processes has been shown
to occur in animal models of AD (Girouard and Iadecola,
2006). Human studies have demonstrated conflicting findings of
both increased (Corriveau-Lecavalier et al., 2019), and decreased
(Beishon et al., 2018) vascular responses to cognitive stimulation.
These opposing findings may reflect compensatory mechanisms
occurring early in the disease process, vs. the failure of these
mechanisms at later stages (Merlo et al., 2019).

Therefore, deficiencies occurring in one or more components
of the NVU threaten this tightly coordinated system. Inadequate
matching of perfusion to neuronal activity will fail to clear the
active metabolites generated by a resource intensive process, the
accumulation of which can result in neurotoxicity (Girouard
and Iadecola, 2006). Furthermore, inadequate perfusion will
limit the provision of oxygen and glucose, essential for optimal
neuronal function and cell signalling, thus limiting the capacity
for cognitive function (Girouard and Iadecola, 2006).

THE NVU AS A BIOMARKER AND

THERAPEUTIC TARGET IN DEMENTIA

As a result of these findings, increasing interest in the NVU
as both a biomarker and therapeutic target has emerged. A
number of neuroimaging based methods have been used to
detect abnormalities in cerebral haemodynamics occurring in
healthy, mildly impaired, or established dementia (Hays et al.,
2016). A number of neuroimaging based biomarkers have been
investigated, and can be broadly divided into portable and
non-portable based techniques. Portable techniques have the
advantage of providing a simple, bedside measurement with
excellent temporal resolution and continuous monitoring of
haemodynamic measures (Panerai, 2009; Balardin et al., 2017).
Studies measuring metabolic changes, as a proxy for perfusion,
have demonstrated good sensitivity and specificity to differentiate
stable and progressive forms of mild cognitive impairment (MCI)
(Henderson, 2012; Marcus et al., 2014). However, many of these
techniques remain confined to the research domain, and are only
recommended where the diagnosis remains uncertain (National
Institute for Health Care Excellence, 2018).

In terms of vascular targets, the majority of research has
focussed on currently available treatments to modify vascular
risk, such as antihypertensive drugs (Bhat, 2015). Given the
extensive evidence supporting a role for vascular mechanisms
in the development of AD, modification of vascular risk is an
attractive and amenable target. However, to gain benefit, these
factors are likely to need controlling in mid-life given that
these risks translate into cognitive decline over a sustained and
longer period (Livingston et al., 2020). Furthermore, the role for
vascular risk, and particularly blood pressure reduction, remains
uncertain for people with established dementia (Harrison et al.,
2016). A recent Cochrane review found limited evidence to
support antihypertensive withdrawal in dementia, and may
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result in increased cardiovascular events (Jongstra et al., 2016).
Data from observational studies suggest cerebral autoregulation
remains intact in MCI and dementia (De Heus et al., 2018),
and a recent study demonstrated improved hippocampal CBF
in patients with dementia treated with nilvadipine (Jong et al.,
2019). The RADAR trial is currently ongoing, and will investigate
the effects of losartan in mild to moderate AD on brain
atrophy, white matter hyper intensities, and cerebral blood
flow (Kehoe et al., 2018). Recently, interest has been gaining
momentum on the effects of lifestyle interventions (exercises,
diet, cognitive intervention) on cerebrovascular function, and
whether multi-modal interventions can promote vascular brain
health. In two recent systematic reviews (Beishon et al.,
2020), cognitive training has been demonstrated to alter brain
volumes and functional connectivity in MCI and dementia,
but few studies have specifically investigated their effects on
vascularmechanisms. Finally, novel therapeutic targets have been
proposed around the various components of the NVU (Zlokovic,
2011). Vasculoprotective agents that target blood brain barrier
function (e.g., activated protein C) and promote integrity are
promising (Zlokovic, 2011). Similarly, mediators that promote
angiogenesis (vascular endothelial growth factor) or improve
amyloid-beta clearance (insulin like growth factor) may also be
beneficial (Zlokovic, 2011).

DISCUSSION

In summary, vascular mechanisms play a key role in
development and progression of cognitive dysfunction.
Importantly, disruption to vascular physiology occurs early in
the disease process, providing a potential target to prevent or
delay the onset of dementia. Despite this breadth of evidence
demonstrating both structural and functional damage to the
cerebrovascular system in early dementia, few vascular targets
have been the subject of large-scale randomised controlled trials.
Disappointingly, in a recent review, few trials employed agents
or targets of vascular dysfunction (Huang et al., 2020). This
suggests more work is needed in both animal models to identify
potential targets, and in patients to take these targets to clinical
trials. Importantly, the identification of new targets has been
hampered by a lack of translation between animal models and
clinical trials (Cavanaugh et al., 2014). Current transgenic animal
models of AD most closely represent inherited forms of AD,
which are not the dominant phenotype seen in clinical practise

(Cavanaugh et al., 2014). These models will have a bias towards
amyloid-based pathology, and may not reflect the alterations
to vascular structure and function seen in humans, particularly
with late-onset AD. Furthermore, the amyloid pathology in
animal models does not correlate well with that seen in humans,
suggesting there are key differences in the pathological basis
of AD development between species (Cavanaugh et al., 2014).
BBB dysfunction has been demonstrated in animal models
of AD (Montagne et al., 2017), but amongst genetic-based
models which may be pathologically distinct from late onset
AD seen clinically. In addition to drug-based targets, research
is urgently needed to clarify the role of lifestyle interventions
on cerebrovascular disease in dementia risk reduction and
treatment. Lifestyle interventions are resource intensive, and
can be physically and mentally demanding for people with
dementia to undertake. The Finnish Geriatric Intervention Study
to Prevent Cognitive Impairment and Disability (FINGER)
randomised at-risk older adults to an intensive programme of
diet, exercise, cognitive training, and vascular risk monitoring,
lasting 2 years (Ngandu et al., 2015). The trial found small
benefits to cognitive function in the intervention group, with
a drop-out rate of ∼12% (Ngandu et al., 2015). Given that
benefits to cognitive function tend to be small, and the long
trajectory to cognitive decline, cerebrovascular biomarkers as a
surrogate for clinical outcome measures could be beneficial in
reducing the durations required for clinical trials to demonstrate
effectiveness. However, limited information is available on the
effects of such multi-modal interventions on cerebrovascular
function, and their relationship to longer term clinical outcomes.
Future trials of lifestyle interventions would benefit from the
addition of cerebrovascular outcomes to understand the effects
on vascular structure and function, which could contribute to
the identification of novel therapeutic targets.
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