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Non-invasive brain stimulation has been increasingly investigated, mainly in adults, with 
the aims of influencing motor recovery after stroke. However, a consensus on safety 
and optimal study design has not been established in pediatrics. The low incidence 
of reported major adverse events in adults with and without clinical conditions has 
expedited the exploration of NIBS in children with paralleled purposes to influence 
motor skill development after neurological injury. Considering developmental variability 
in children, with or without a neurologic diagnosis, adult dosing and protocols may not 
be appropriate. The purpose of this paper is to present recommendations and tools 
for the prevention and mitigation of adverse events (AEs) during NIBS in children with 
unilateral cerebral palsy (UCP). Our recommendations provide a framework for pediatric 
NIBS study design. The key components of this report on NIBS AEs are (a) a summary 
of related literature to provide the background evidence and (b) tools for anticipating and 
managing AEs from four international pediatric laboratories. These recommendations 
provide a preliminary guide for the assessment of safety and risk mitigation of NIBS in 
children with UCP. Consistent reporting of safety, feasibility, and tolerability will refine 
NIBS practice guidelines contributing to future clinical translations of NIBS.

Keywords: cerebral palsy, non-invasive brain stimulation, transcranial magnetic stimulation, transcranial direct 
current stimulation, repetitive transcranial magnetic stimulation, safety, risk, children

BAcKGrOUND

Neuromodulatory interventions using non-invasive brain stimulation (NIBS) have been increas-
ingly investigated aiming to influence cortical excitability non-surgically in myriad pediatric 
neurologic conditions including stroke, epilepsy, and unilateral cerebral palsy (UCP) (1). Two forms 
of NIBS include: (1) electromagnetic induction using transcranial magnetic stimulation (TMS) as 
an assessment or test of cortical excitability or, when applied repetitively, repetitive transcranial 
magnetic stimulation (rTMS) as an intervention and (2) electrical current using transcranial direct 
current stimulation (tDCS) as an intervention. In typically developing children, NIBS has also been 
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investigated as a means to enhance neural plasticity and improve 
learning (2, 3). As an adjuvant technology, NIBS holds potential 
to enhance existing pediatric rehabilitation interventions more 
rapidly and cost-effectively than current practice. However,  
a consensus surrounding safety, applications, and ethics in the 
incorporation of NIBS in these conditions has not been estab-
lished, and guidelines for optimal study design construct are 
limited. Across four international laboratories, incorporating 
studies of over 225 children and hundreds of NIBS sessions, we 
share and integrate current and related pediatric NIBS literature 
with our protocols in UCP as a means to consider individual 
variation to mitigate risk and manage adverse events (AEs) in 
this specific population.

Transcranial magnetic stimulation and rTMS utilize the 
prin ciples of electromagnetic induction through the use of a coil 
on the participant’s head over the underlying region of interest.  
For example, stimulating by placing the TMS coil overlying the 
area of the primary motor cortex may elicit a motor-evoked 
potential response in a corresponding hand muscle. If the intent 
is to test or assess cortical excitability, TMS can be employed 
in protocols incorporating single or paired pulses (4). This 
allows for non-surgical assessment of current neurophysiologic 
status and can be integrated into assessments surrounding 
neuromodulatory and behavioral interventions. If the intent 
is to neuromodulate through an intervention, rTMS provides 
repeated TMS pulses with the aim of inducing a change in 
cor tical excitability: facilitation or inhibition. rTMS, from a 
neurophysiologic perspective, therefore acts as an intervention 
to induce action potentials to influence cortical excitability.

Transcranial direct current stimulation applies weak electrical 
pulses through surface scalp electrodes, at least one anode and 
cathode, with different montages and dosages (5). Although not 
strong enough to produce a motor-evoked potential, the cur-
rent can alter the resting membrane potential, influencing the 
excitability in endogenous firing rate (6). tDCS may therefore 
bias cortical activation toward depolarization or hyperpolariza-
tion and act as a catalyst to prime the brain for activation and 
rehabilitation.

Within the context of the developing brain with neurologic 
injury and underlying neurophysiology, NIBS has been found 
to influence cortical and behavioral responses. In the case of a 
unilateral brain injury (e.g., perinatal stroke with resultant UCP) 
wherein an imbalance between the developing hemispheres 
may occur, such neuromodulatory interventions may provide a 
stimulus for integration of dormant yet viable penumbral-region 
neuronal activity. Added contributions from these ipsilesional 
neurons may, in turn, allow further development of motor func-
tion. In UCP, the application can then either facilitate excitability 
of one hemisphere (e.g., the lesioned hemisphere) or reduce exag-
gerated inhibitory effects from an area such as the non-lesioned 
hemisphere.

In other disorders of cortical excitability, e.g., epilepsy, the 
target may indeed be the region of the seizure with a stimulation 
protocol intended to inhibit seizure activity.

Dosing for the forms of interventional NIBS aforementioned 
varies based on the aims of the protocol and the intent to inhibit 
or excite by neuromodulation. Dosing has been described in 

detail in the pediatric population (7). In brief, investigating rTMS 
in pediatric populations, intensity ranges have been reported to 
vary between sham settings (0 Hz) and 6 Hz. For tDCS, intensity 
ranges from sham (0.0 mA) to 2.0 mA settings. For both rTMS 
and tDCS, the duration of a single session has been reported up 
to 20 min, with a maximum of 10 daily serial sessions.

Recent computational modeling, investigating dosing and 
the cortical field induced by NIBS, has guided research proto-
cols with the goal of assessing the safety, feasibility, and efficacy 
of such interventions in adults and children (8, 9). NIBS can be 
paired with adjuvant interventions such as upper- and lower-
extremity intensive therapies, developing a synergistic applica-
tion which may advance improvements in the function of the 
more affected extremities (10). As NIBS mechanisms differ, 
allowing targeting for specific applications such as priming the 
nervous system for optimization of therapy (11) or enhancing 
motor learning (12).

As a means to further explore individual pediatric participant 
considerations to optimize study design, we investigated the 
reporting of NIBS-related serious adverse events (SAEs) and 
minor adverse events (MAEs) in the current pediatric literature, 
specifically in children with cerebral palsy (CP) inclusive of all 
subtypes. Table  1 provides a summary of pediatric neuromo-
dulation studies and the reporting of adverse events.

existing safety Guidelines and Protocols
Although summaries and systematic reviews of NIBS studies in 
both adult and child populations have been published, a consen-
sus as to safe NIBS application in children with UCP, considering 
brain reorganization, development, and the potential for result-
ant seizure, has not yet been established (1, 4, 5, 68–73). While 
the NIBS protocols we have generated feature diagnosis and 
lesion-specific study designs for children with UCP, we suggest 
that these recommendations may be applicable as well to NIBS 
protocols in children with other clinical presentations of CP, such 
as tetraparesis or diparesis. The indications for such a guide arise 
from questions as to how NIBS might be applied differently to 
individuals with UCP based on their lesions or spared neuronal 
circuitry, as well as from the issue of dosing based on head size 
and effective current. Additionally, this guide, created from our 
combined pediatric research, may help to establish optimal 
practice guidelines and future comprehensive protocols for studies 
incorporating par ticipants with congenital UCP and postnatally 
acquired conditions with a clinical presentation of UCP.

Serious adverse events reported as related to NIBS are mainly sei-
zure and syncope. TMS-related seizures have been reported directly 
during or after intervention in children with depression, however, 
specific to the small samples in pediatric UCP, there have been no 
reported seizures with either TMS testing or rTMS interventions 
(1, 70). From the few reports of adults experiencing seizure during 
single-pulse TMS session applications, many had a pre-existing 
brain lesion and a diagnosis of intractable epilepsy (68).

Distinct from seizures induced by other forms of NIBS, such as 
direct electrical cortical stimulation (70), tDCS applications are 
often employed with the intent to improve seizure control in both 
children and adults (74), and typically no SAEs (seizure or syn-
cope) have been reported with tDCS interventions (5). However, 
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tABle 1 | Summary of pediatric neuromodulation studies and reported adverse 
events.

reference Ae 
addressed

sample size Withdraws

tMs

Brouwer and Ashby (13) No 4 children (10 total 
with CP, 22  

additional controls)

0

Farmer et al. (14) No 2 (of 4 children) 0
Carr et al. (15) No 33 (ages 2–26, not 

defined)
0

Maegaki et al. (16) Yes 8 children  
(12 additional either 
adults or later-onset 

lesions)

0

Heinen et al. (17) No 6 children (4 other 
controls)

0

Maegaki et al. (18) Yes 17 0
Nezu et al. (19) No 9 0
Yasuhara et al. (20) Yes 9 0
Thickbroom et al. (21) No 7 0
Staudt et al. (22) No 12 2
Eyre et al. (23) No 39 0
Berweck et al. (24) Yes 7 children (10 total 

with congenital 
hemiparesis, 8 

additional controls)

0

Kuhnke et al. (25) Yes 9 0
Redman et al. (26) Yes 22 2
Staudt et al. (27) No 1 child (8 total) 0
Vry et al. (28) Yes 15 1
Pilato et al. (29) No 1 0
Walther et al. (30) No 7 0
Wilke et al. (31) No 14 0
Wittenberg (32) No 10 0
Holmström et al. (33) Yes 17 0
Kesar et al. (34) No 13 0
van der Aa et al. (35) No 37 0
Yang et al. (36) Yes 5 1
Flamand and Schenider (37) No 1 0
Islam et al. (38) No 13 of 16 3
Mackey et al. (39) No 12 0
Pihko et al. (40) No 10 children (of a total 

of 12 children with 
CP and 12 TDC)

Not stated

Bleyenheuft et al. (10, 41) Yes 2 0
Narayana et al. (42) Yes 2 0
Baranello et al. (43) No 17 0
Friel et al. (44) Yes 20 0
Kuo et al. (45) No 20 0

rtMs

Valle et al. (46) Yes 17 0
Kirton et al. (47, 48) Yes 10 0
Gillick et al. (8, 49) Yes 19 0
Kirton et al. (50) Yes 45 0
Guo et al. (51) No 1 0
Gupta et al. (52) Yes 20 0

tDcs

Young et al. (53) Yes 11 1
Aree-uea et al. (54) Yes 46 1
Duarte et al. (55) Yes 24 0
Ferreira et al. (56) No 12 0
Grecco et al. (57–59) Yes 24 0

(Continued )

reference Ae 
addressed

sample size Withdraws

Grecco et al. (57–59) Yes 20 0
Grecco et al. (57–59) Yes 1 0
Young et al. (60) Yes 14 0
Bhanpuri et al. (61) Yes 6 (of 9 total) 0
Ekici (62) Yes 1 1
Gillick et al. (63) Yes 13 1
Grecco et al. (64) Yes 20 1
Lazzari et al. (65) No 20 0
Carvalho Lima et al. (66) Yes 1 0
Grecco et al. (67) Yes 6 0

AE, adverse events; CP, cerebral palsy; N/A, not applicable; rTMS, repetitive 
transcranial magnetic stimulation; tDCS, transcranial direct current stimulation; TDC, 
typically developing children; TMS, transcranial magnetic stimulation.

tABle 1 | Continued
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a recent report revealed a seizure after a third consecutive session 
in a daily tDCS protocol in a 4-year-old child with spastic tetra-
paresis (62). The child, who had a history of seizures and was in 
the process of adjusting valproate and tapering of topiramate, had 
been seizure-free for the previous year and reportedly remained 
seizure-free after the cessation of the tDCS and involvement in the 
protocol. The direct correlation between tDCS and the incidence 
of a seizure in this single-case example is difficult to determine.

Two neurocardiogenic syncopal episodes, during initial TMS 
testing sessions, have been reported in children with UCP (47).  
In both cases, a history of fainting or previous syncope was 
reported after the event.

sAes Mitigation recommendations
Seizure management is complex where consensus on one uni-
fied approach for selecting and identifying a plan for rescue 
medications does not exist. Administration of rescue medica-
tions requires medically trained caregivers and/or investiga-
tors. The selection of rescue medications is typically guided by 
a pediatric neurologist based on the duration, type, and history 
of seizures. Several options exist for emergency rescue medica-
tion protocols. One option may be emergency administration 
of rescue medications (e.g., rectal Diastat with a verified appro-
priate dose based on the child’s weight). Another option is for 
an alternate rescue medication, such as intranasal Midazolam, 
which is less intrusive than rectal Diastat (Diazepam) and 
potentially indicated for children with seizures of a very short 
duration. A third option is to utilize emergency medical ser-
vices, allowing for assessment in an emergency room with a 
physician on staff. Site-specific selection of the seizure action 
plan depends on (1) recommendations from medical monitor, 
medical director, and ongoing treating neurologist, (2) train-
ing of investigators, and (3) institutional review board (IRB) 
requirements.

Both seizure management plans and observation records 
should be established (Appendices A and B in Supplementary 
Material). If a seizure does occur during study participation, we 
recommend added documentation for the family and child to 
represent the isolated seizure as most likely a study-related event. 
For example, a letter from the study physician (medical direc-
tor) explaining the NIBS intervention and clarifying the details 
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of the seizure event, may guide follow-up medical management 
(Appendix C in Supplementary Material).

To minimize risk of syncope, Kirton et al. specifically recom-
mended the following: (1) screening for previous episodes of 
syncope, fainting history, and evaluation of why the episodes 
occurred, (2) adequate food/water intake prior to participation in 
an NIBS study, and (3) monitoring during the study for dizziness 
and nausea (47).

Minor adverse events commonly reported in adults and chil-
dren during NIBS include headache, dizziness, neck pain, and 
scalp irritation (1).

testing: tMs MAes
To examine MAE in studies involving children, a literature search 
yielded 33 studies incorporating TMS in 401 children with CP 
(13–21, 23–25, 27–36, 38–40, 42–45, 75). Twelve of those stud-
ies (36%) addressed or mentioned AEs (Table 1). Four studies 
(12%) reported a total of nine MAEs, which included discomfort, 
headache, and decreased tolerance-related directly to the TMS 
testing (Table 1).

intervention: rtMs MAes
Six rTMS studies have been published using rTMS as an interven-
tion in 112 total children with CP (46, 48, 49, 50–52). Of those six 
studies, five addressed or mentioned AEs (83%) (Table 1). Four 
studies (67%) formally reported a total of 57 complaints of MAEs, 
which included worsening of sleep, social function, mobility, veg-
etative symptoms, headache, anxiety, dizziness, tingling, mood 
changes, concentration changes, abnormal muscle contractions, 
nausea, stomachache, fatigue, and tingling (Table  1). There is 
wide variability in the reporting of AEs in both real and control 
groups. It is important to note the percentages of children in the 
control groups and including assessment of their tolerance of the 
intervention is central to enrollment and retention of pediatric 
participants.

intervention: tDcs MAes
Specific to tDCS in children with CP, MAEs commonly include 
headache, dizziness, and scalp-related complaints (e.g., burning, 
abrasion, tingling, and itching) (1). Fifteen studies, of a total of 
219 children with CP, incorporated tDCS (63, 53–62, 64–67). 
Thirteen (87%) addressed or mentioned AEs (Table 1). Eleven 
(73%) reported a total of 48 MAEs, which included complaints 
of discomfort, rash, burn, itching, sleepiness, tingling, redness, 
and pain (Table 1).

MAes Mitigation
Risk mitigation plans are essential for use by the investigators 
for preparation and response if an AE, on any level, does occur 
(Appendices D–F in Supplementary Material). Proper screening 
and assessment of the potential for MAEs are imperative as these 
events give clues as to the tolerance a child may have for NIBS. 
Mitigation begins at enrollment; specific pediatric-based consid-
erations regarding the developmental and clinical status of the 
child involved in an NIBS protocol include the size and location of 
the lesion or region of interest, the natural history of the disorder, 
selection of assessment tools [such as neurologist assessment, 

e.g., modified Pediatric Stroke Outcome Measure (76)], and an 
outcome tool [motor function/activity measures, e.g., Assisting 
Hand Assessment (77)]. Age appropriate questionnaires assess-
ing symptoms can be completed in 5–10 min with children and 
caregivers. Additionally, we recommend offering breaks/snacks/
non-caffeinated beverages, and assessment of nonverbal cues of 
discomfort (e.g., wincing). Incorporating routine stops during 
NIBS allows further assessment to further establish if the child feels 
nauseated, dizzy, or uncomfortable. Careful assessment of AEs, 
both serious and minor, allows for appropriate management and 
also for evaluation in the design of potential future interventions.

Aes reporting recommendations
The potential for AEs should be conveyed not only in writing, 
both on the consent (caregiver) and assent (child) forms, but also 
verbally. Age-specific and cognitive level appropriate language 
should be used in AE discussion and interpretation of the sci-
entific literature surrounding NIBS interventions. Integrating 
feedback from well-informed caregivers before, during, and after 
the study can be essential to ensure accuracy and completeness 
of reporting. Inclusion of a quality-of-life measure, depression 
inventory, or a neuropsychological assessment tool, e.g., Weinberg 
Depression Scale (78), may be indicated to establish a baseline 
understanding of the child’s status and potential changes when 
working with NIBS.

A lack of reporting AEs related to NIBS studies is not necessar-
ily a statement that they did not occur, rather that they may not 
have been addressed or reported. The comprehensive reporting 
of such details surrounding an intervention allows not only for 
potential replication or building upon study findings but also for 
the opportunity to safely and reliably implement interventions 
with the intent to benefit patient outcomes (79).

stUDY DesiGN cONsiDerAtiONs

An understanding of NIBS safety and limitations guides the 
researcher when constructing optimal pediatric study designs 
and developing protocols for such analyses. However, studies-
to-date vary, without consensus, in establishing participation 
criteria, monitoring methods, and providing optimal environ-
ments. As research progresses toward consensus, we recommend 
consideration of, at minimum, the following components: criteria 
for participant safety, safety review committees, control groups, 
environmental acclimation, and follow-up assessments.

study criteria for Participant safety
We propose practical consideration, from the outset, of the 
general study criteria when developing the study design. First, an 
understanding of the safety contraindications for NIBS is impera-
tive for appropriate participant selection. Contraindications start 
with identifying indwelling metal and/or medical devices. Case by 
case review of implanted ferromagnetic and/or medical devices 
is indicated. We therefore currently devise our safety protocols 
based upon adult NIBS outcomes and upon an understanding 
of the effect of NIBS on the underlying cortex. We propose a 
thorough screening of the child’s medical history, with specific 
emphasis on diagnosis, history of seizure, syncope, headache, as 
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tABle 2 | Study criteria for NIBS study eligibility for children with CP.

inclusion criteria exclusion criteria

•	 Congenital unilateral cerebral palsy 
secondary to periventricular leukomalacia 
or perinatal stroke confirmed by most 
recent MRI or CT radiologic report with 
resultant congenital hemiparesis

•	 Receptive language function to follow  
two-step commands

•	 A determination by the investigators 
and institutions, as to the time since last 
seizure or age since seizure-free, with 
documentation of all current medications  
to include anti-epileptic medications

•	 Presence of a motor-evoked potential  
from at least the contralesional hemisphere 
(if not both hemispheres) for measurement 
of baseline cortical excitability and as a 
guide for site of stimulation

•	 Able to give informed assent along with  
the informed consent of a legal guardian

•	 Children who have surgeries, which may 
influence motor function (e.g., tendon 
transfers). Surgical history should be 
documented

•	 Metabolic disorders
•	 Neoplasm
•	 Acquired traumatic brain injury
•	 Pregnancy
•	 Indwelling metal or incompatible 

medical devices
•	 Evidence of skin disease or skin 

abnormalities
•	 Spasticity injections such as 

Botulinum Toxin or Phenol Block 
within the previous 6 months so 
as not to potentially influence 
outcomes related to NIBS 
intervention

MRI, magnetic resonance imaging, CT, computerized tomography.
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well as cognitive deficits and behavioral disorders, prior to inclu-
sion in any NIBS study. We have found variability in working 
with our respective IRBs in terms of study criteria boundaries, but 
fundamental safety concerns apply when considering candidates 
for NIBS, whether TMS, rTMS, or tDCS. Table  2 displays the 
study criteria similarities among our IRB-approved laboratory 
protocols (Table 2 study criteria).

Many of the current guidelines for NIBS in children are derived 
from the adult stroke literature. However, complete adoption 
of adult protocols may be inappropriate (e.g., inclusion/exclu-
sion criterion). For example, specific to epilepsy screening and 
variation between ages, the incidence of epilepsy in adults with 
stroke is 2.5% (80) whereas in children with UCP, the incidence 
of epilepsy has been reported at 26% (81). Additionally, based 
on available data, a child’s risk of seizure recurrence with focal 
epilepsy has largely stabilized at 2 years of age (82).

Inclusion guidelines for pediatric NIBS participants with a 
history of epilepsy are not well established in the literature nor 
does a uniform criterion between pediatric studies exist. The 
strength of the limited, yet available evidence in establishing 
guidelines is variable. However, the safety profile for pediatric 
TMS has recently been reported to be a risk of seizure 0.14% 
per session (4). Policies established at individual institutions and 
regulatory oversight mechanisms may reflect different protocols. 
Indeed, between our own laboratories at different sites, we have 
discovered variations in the existing study criteria (49, 63, 83). 
One approach is to include children of any age who have been 
seizure-free for 2  years. This is based on clinical discussion of 
medication withdrawal, as well as mechanism of injury, and 
ongoing EEG positivity (82, 84). Based on the risk-recurrence 
data available for the child with epilepsy, another approach is to 
exclude children with any history of seizures after 2 years of age 

(41, 44, 85). This approach includes children who may have only 
presented with a seizure at the time of brain insult, but who have 
had no further seizures beyond age 2 years. The approach is also 
based on the fact that seizure incidence is highest in the first year 
of life and many children will only have one seizure which occurs 
at the time of birth (86).

safety review committee
A designated medical monitor who is not an investigator 
on the study but who has experience in review of symptoms  
(e.g., neurologist, pediatric rehabilitation medicine physician) 
may be included. This monitor could review child status before 
the study, at a defined interim and after the study is completed. 
Additionally, the medical monitor can be contacted to review 
case by case when an AE occurs. A Data Safety Monitoring Board 
(DSMB) could also be employed with a group of non-study-
related professionals whose members (i.e., physicians, statisti-
cians, academicians, and pediatric researchers) are familiar with 
NIBS and potential AEs, the study design, or congenital UCP. 
This board can provide interim feedback as to study continua-
tion or cessation and review participant status. Presentation to 
the DSMB can occur in a blinded manner, with all investigators 
present, and in an additional unblinded session wherein the 
unblinded investigators can discuss with the board potential 
differences between individuals and groups.

control Group
The inclusion of a control group of children with and without 
UCP can allow for group-based comparisons. IRB approval 
for including children with typical development may depend 
on the potential to demonstrate direct benefit. Developing an 
institutional summary of the evidence of NIBS trials in children 
with typical development displaying the low rate of AEs may aid 
in gaining IRB approval. Within-participant comparison could 
occur with crossover designs but may be prohibitive from a feasi-
bility and time-commitment standpoint for families. It has been 
found, in both adults and children, that participants are unaware 
of which form of stimulation was received (49, 87). Additionally, 
if a child with a unilateral brain lesion (e.g., perinatal stroke) is 
involved in an NIBS intervention targeting one hemisphere or 
both, the non-lesioned hemisphere and less-affected extremities 
should be monitored either as a control or a comparison for 
potential changes in function and safety.

Acclimation to the NiBs environment
Through focus polls and feedback from families and children 
with UCP, our labs have learned that interactions, from the 
moment the family becomes aware of the study/research, have a 
strong influence on participation or non-participation decisions. 
Children and their caregivers need the opportunity to understand 
the study, directions, and the demands of the protocol. To allow 
families to acclimate to study-related information, eligibility sur-
veys and follow-up discussions may be conducted over the phone. 
Allocation of adequate time for consent and assent procedures 
builds in time for questions and establishes an environment that 
allows for additional discussion and questions. Children and 
families considering participation can be connected with past 
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participants of an NIBS study, pending agreement from both 
families. Additionally, the study environment can be adapted, by 
pediatric appropriate seating and decoration, to be esthetically 
pleasing and less anxiety-producing to the child, whenever this 
opportunity is available.

Pediatric size earplugs provide protection for hearing from 
the frequency of the TMS (68). Hearing loss was reported in one 
participant when using an H-coil (88). Due to paucity of research 
investigating the impact of TMS on pediatric auditory function, 
we continue to employ and recommend appropriate hearing 
protection based on the recommendations from Rossi et al. (68), 
given the developing auditory system as well as the smaller size 
of the pediatric head resulting in the coil being closer to the ear.

In order for a child to acclimate to tDCS, ramp-up and ramp-
down features, as well as a pre-stimulation pulse, can be used. If 
stimulation thresholds or excitability data are being used as an 
outcome, ensure that there are no systematic differences in pretest 
and posttest environments.

Follow-Up Assessment
Although a child may not have reported or experienced AEs 
throughout the study, additional feedback from the child/
caregiver can improve future study design. A satisfaction survey, 
such as that adapted from Garvey et  al. (89, 90), can assist in 
analysis of participant satisfaction in the study. A confidential 
family feedback form, filled out anonymously by the child and 
caregiver together, can provide helpful information (Appendix 
G in Supplementary Material). Additionally, formal follow-up at 
established time points after the study allows long-term assess-
ment of participant status and interpretation of the potential 
longitudinal effects that NIBS may have (91).

cONclUsiON

As evident from the above discussion and AEs, the study design 
and protocol are crucial elements in guiding NIBS assessments 
and interventions. Adaptation of supporting equipment and 
environment may improve the comfort of the child. A thorough 
medical history, as well as assessment of the caregiver’s and child’s 
understanding of the protocol, can guide discussions and inter-
pretation of the long-term impact of these interventions. Finally, 
allowing ample time and opportunity for a child to experience 
NIBS and give feedback is integral to successful participant 
enrollment and retention.

NIBS and applications in both typically developing children 
and those with neurologic diagnoses provide a unique means to 
establish a “window into the brain,” assessing cortical excitability, 
mapping, and reorganization. Interventions which incorporate 
energy transfer to the developing brain, with or without neurologic 
lesion, must exercise extreme caution not only for the individuals 
involved but also for advancement of the field. Further considera-
tions include recognition of the anatomic and physiologic differ-
ences between an adult brain and a child brain underscoring the 
need for rigorous investigation before implementation. We present 
here a comprehensive account of what we have learned to date 
through previous published research and through collaboration 
in the work of our laboratories and we offer recommendations 

for uniformity in reporting of research studies. Key elements 
include a precise understanding of the organization of the deve-
loping brain with a congenital lesion, integration of optimal 
indications for study participation, incorporation of AEs profile 
and mitigation, as well as multi-dimensional, longitudinal, study 
design. Combining our experiences has allowed us to improve our 
own protocols, with the immediate goal of child safety and the 
overarching goal to establish a consensus that helps to define best 
NIBS practice and practice guidelines. Examining both the safety 
and the feasibility of NIBS studies offers the optimal manner in 
which to investigate the effectiveness of our interventions.
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