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ABSTRACT Variovorax paradoxus VAI-C was isolated due to its ability to utilize acyl-
homoserine lactones (AHLs) as the sole source of carbon, energy, and nitrogen. Here, we
present a hybrid assembly of the V. paradoxus VAI-C genome sequence, consisting of a
primary chromosome, a secondary chromid, and a plasmid.

V ariovorax paradoxus VAI-C was previously isolated (1) from soil adjacent to the Bowen
Science Building at the University of Iowa, based on its ability to utilize the quorum-

sensing signal molecule N-(3-oxohexanoyl)-L-homoserine lactone (3OC6-HSL; “Vibrio fischeri
autoinducer-1”) as the sole source of carbon and energy. That study was also the first dem-
onstration of quorum quenching (acyl-homoserine lactone [AHL] signal inactivation) by the
acylase mechanism (1, 2). Other V. paradoxus strains also utilize AHLs (3), but not as rapidly
as strain VAI-C does. Other species of bacteria also grow utilizing AHL substrates, albeit more
slowly, via the same AHL acylase mechanism (4–6).

A pure culture of V. paradoxus VAI-C from a frozen stock was streaked onto a yeast extract
(YE) agar plate (5 g/liter YE; Fisher Scientific). A culture derived from a single colony from this
streak plate was grown at room temperature overnight in YE broth, and DNA was purified
using the high-molecular-weight DNA protocol outlined for Escherichia coli (https://www
.protocols.io/view/ultra-long-read-sequencing-protocol-for-rad004-mrxc57n) (7). The genomic
DNA quantity and quality were assessed spectrophotometrically using the NanoDrop 1
(Thermo Fisher). Moderate shearing of the DNA was performed using a sterile 26-gauge nee-
dle (Thermo Fisher); libraries were prepared using the rapid barcoding kit (catalog number
SQK-RBK004) and sequenced using an MIN-106 flow cell (R9.4.1) in an Oxford Nanopore
MinION instrument. Four sequencing runs were performed on barcoded libraries derived
from the same genomic sample in separate flow cells. These data were combined for assem-
bly after demultiplexing and base calling. For all subsequent data-processing steps, default
parameters were used unless otherwise noted. MinION reads were base called in Guppy
v2.3.1 using the Flipflop v1.1.0 (currently referred to as Flappie or high-accuracy base calling
[HAC]) model and demultiplexed in Deepbinner v0.2.0 (8). Barcodes and adapters were
removed using Porechop v0.2.4 (8). A total of 194,423 Nanopore reads were obtained for
V. paradoxus VAI-C (average read length, 4,557.576 5,302.50; coverage, 93.88�).

The same DNA sample with additional needle shearing was used to generate a 250- to
300-bp library with the Nextera DNA Flex library preparation kit (LPK), which was sequenced
on the Illumina iSeq platform (2� 150bp). A total of 4,818,968 Illumina reads were obtained
for V. paradoxus VAI-C (average read length, 132.206 30.34; coverage, 67.49�) FastQC
v0.11.8 was used for quality assessment of these data (9), and trimming was performed in
Trimmomatic v0.38.0 (10). Assemblies of V. paradoxus VAI-C were created using a hybrid
approach in Unicycler v0.4.8.0 (11) on the North America Galaxy hub (http://usegalaxy.org)
(12). The final circularization of the genomes was completed using Unicycler.

The V. paradoxus strain VAI-C genomic DNA was assembled into three circular con-
tigs, a 6,666,455-bp primary chromosome, a 2,479,635-bp chromid, and a 292,938-bp
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plasmid. The Prokaryotic Genome Annotation Pipeline (PGAP) by NCBI (13) identified
8,575 protein-coding open reading frames across the three contigs, along with 61 pre-
dicted RNA genes. Replication and partition machinery (ParAB or RepAB) was identified
in all three contigs, and putative conjugal transfer machinery was identified near the
replication locus on the chromid. The three contigs have the following G1C contents:
69.57% for the chromosome, 68.56% for the chromid, and 60.6% for the plasmid. The
average G1C content for the overall genome is 69.0%. Three incomplete prophage
elements and one questionable prophage-like element were identified using PHASTER
(https://phaster.ca/) (14). Eight loci were annotated as encoding penicillin acylases with
homology to previously identified AHL acylase proteins from Pseudomonas aeruginosa
(PA0305, HacB; PA1032, QuiP; and PA2385, PvdQ). The availability of this genome
sequence will permit further investigation of the variation in quorum-quenching activ-
ity among Variovorax isolates.

There is substantial diversity in genome structure in the genus Variovorax (3, 15). The
reported strain VAI-C genome assembly is the largest finished Variovorax paradoxus genome
sequence and is the only assembly that contains a putative chromid and plasmid.

Data availability. The assemblies and sequence data have been uploaded to the
NCBI database. Variovorax paradoxus VAI-C can be found under BioProject number
PRJNA667957, BioSample number SAMN16392950, and assembly numbers CP063166
through CP063168. The read data can be found under SRA accession numbers
SRX9260397 and SRX9260396, including demultiplexed fastQ files with the barcodes
removed for the MinION runs and paired fastQ files for the Illumina iSeq.
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