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Abstract 

Due to their super-Mendelian inheritance, gene drive systems have the potential to provide 
revolutionary solutions to critical public health and environmental problems. For suppression 
drives, however, spatial structure can cause “chasing” population dynamics that may postpone 
target population elimination or even cause the drive to fail. In chasing, wild-type individuals 
elude the drive and recolonize previously suppressed areas. The drive can re-enter these 
recolonized areas, but often is not able to catch up to wild-type and finally eliminate it. Previous 
methods for chasing detection are only suitable to limited parameter ranges. In this study with 
expanded parameter ranges, we found that the shift from chasing dynamics to static equilibrium 
outcomes is continuous as drive performance is reduced. To quantify this, we defined a 
Weighted Average Nearest Neighbor statistic to assess the clustering degree during chasing, 
while also characterizing chasing by the per-generation chance of population elimination and 
drive loss. To detect chasing dynamics in local areas and to detect the start of chasing, we 
implemented Density-Based Spatial Clustering of Applications with Noise. Using these 
techniques, we determined the effect of arena size, resistance allele formation rate in both the 
germline and in the early embryo from maternally deposited Cas9, life history and reproduction 
strategies, and density-dependent growth curve shape on chasing outcomes. We found that 
larger real-world areas will be much more vulnerable to chasing and that species with 
overlapping generations, fecundity-based density dependence, and concave density-dependent 
growth curves have smaller and more clustered local chasing with a greater chance of eventual 
population elimination. We also found that embryo resistance and germline resistance hinder 
drive performance in different ways. These considerations will be important for determining 
the necessary drive performance parameters needed for success in different species, and 
whether future drives could potentially be considered as release candidates.  
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1 Introduction 

Gene drive systems have been rapidly developed due to their enormous potential for 
dealing with issues from disease vectors and other pests (Gould 2008; Champer et al. 2016). 
Gene drive systems use synthetic genetic elements designed to increase in frequency over time 
in a population, spreading a desired allele via non-Mendelian inheritance (DiCarlo et al. 2015). 
CRISPR gene editing technology has greatly facilitated development of engineered gene drive 
(Bier 2021). For example, a modification drive could be designed to spread a gene through a 
mosquito population that prevents disease transmission (Carballar-Lejarazú & James 2017) . A 
powerful suppression drive can potentially eliminate entire populations of disease vectors, pest 
species, and invasive species (Godwin et al. 2019; Champer et al. 2021a; Ferreira-Martins et 
al. 2021). A homing suppression drive targeting an essential female fertility gene has 
successfully eliminated cage populations of Anopheles gambiae mosquitoes (Kyrou et al. 
2018). However, the ethically-responsible development and deployment of gene drives limits 
field experiments (Kc et al. 2020; Kormos et al. 2022), making computational models an 
important approach to anticipate their performance in a natural environment. 

Spatial population structure has been shown to have a major impact on the outcome of 
suppression drive in several models (North et al. 2019; Champer et al. 2021a; Girardin & 
Débarre 2021; Paril & Phillips 2022). Drive systems that are capable of eliminating a panmictic 
population can fail due to spatial structure (Paril & Phillips 2022). Specifically, partial 
population suppression can lead to an unstable coexistence of drive and wild-type alleles due 
to the limited dispersal distance (Champer et al. 2021a; Birand et al. 2022). Because dispersal 
is constrained by geography and the movement of individuals, the spread of drive alleles is also 
constrained, allowing wild-type individuals to escape into empty areas that have previously 
been suppressed by the drive. The drive then has to “chase” the wild-type allele over the 
landscape. When analyzing the dynamics of failed suppression drives, chasing dynamics 
appeared to be a major cause of failure for efficient drives in spatial models (Bull et al. 2019; 
Champer et al. 2021a; Olejarz & Nowak 2024). 

To construct successful suppression drives for practical applications, it is important to 
have a better understanding of chasing dynamics and what factors influence them. Chasing is 
generally considered different from a static equilibrium by its large variance in population 
density over time and space (Champer et al. 2021a; Kim et al. 2023). An equilibrium outcome 
involves reduced population, but no local elimination except potentially from stochastic and 
short-term effects. A previous study of suppression drive in continuous space developed an ad-
hoc procedure to detect if and when chasing occurred using Green’s coefficient as a measure 
of population clustering and wild-type population size (Champer et al. 2021a). However, it was 
specific to the parameter space in the study and not tested over the full range of possible 
outcomes and models. 

Other studies have covered the importance of ecological factors and resistance in 
suppression drive performance, such as density-dependent factors and the specific negative 
effects of density, species interactions, spatial structure within and between populations, and 
mating behavior (Godfray et al. 2017; Dhole et al. 2020). However, these ecological factors 
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have not been studied in the context of chasing dynamics. Density dependence is an important 
factor for regulating populations and is particularly important in suppression drives where the 
density can rapidly change. For example, the Allee effect reduces population growth rate at 
very low population density (Stephens et al. 1999; Barton & Turelli 2011). In spatial models, 
drive loss is more likely to occur when Allee effects are strong due to lack of ability to find 
mates (North et al. 2019; Champer et al. 2021a; Birand et al. 2022). The suppression 
performance of a similar drive on two populations with different density-dependent curves may 
have considerable differences (Dhole et al. 2020). The lifecycle phase where density-
dependence acts can also matter. Some species may decrease their number of offspring to 
continue effectively reproducing when adults experience high competition. Others can produce 
many offspring, yet only a small portion of them typically survive at high density due to direct 
resource competition between juveniles (Roff 1993).  

Furthermore, there are other aspects of drive performance and ecology that have not been 
thoroughly investigated because of computational resource limits (Champer et al. 2022). 
Larger spatial areas, for example, may greatly facilitate chasing. Nonfunctional resistance 
alleles caused by end-joining repair in the germline or in embryos from maternally deposited 
Cas9 could also impede the spread of the drive (Beaghton et al. 2019; Champer et al. 2021a) 
and have been experimentally found over a fairly wide range (Champer et al. 2019; Hammond 
et al. 2021; Du et al. 2024). 

In this study, we sought to better characterize chasing and spatial suppression drive 
outcomes in general. We defined a continuous variable using the definition of average nearest 
neighbor ratio to quantify chasing dynamics (Chester 1987), which describes the clustering 
degree of the population distribution. We found that the change from chasing dynamics to 
widespread equilibrium outcome from less efficient drives is continuous, with slightly subpar 
drives (that lack the ability to eliminate panmictic populations) often having continuous local 
extinction/recolonization cycles from stochastic effects. We also developed a general method 
to detect whether a given local area is experiencing chasing. This method can allow for a more 
sophisticated understanding of both the general and the local distribution of the chasing 
dynamics. Using these assessment and detection methods, we investigate how chasing 
dynamics are impacted by ecology, density-dependence, and previously unconsidered drive 
performance parameters. We specifically examine arena size, resistance allele formation rate, 
life history, reproduction strategies, and density-dependent growth curve shape. We devote 
particular attention to explaining why a previous mosquito-specific model showed higher rates 
of chasing than a discrete-generation model (Champer et al. 2022). 

2 Methods 

2.1 Population model 

In this study, we use an individual-based population model simulating a sexually 
reproducing diploid population. The model is general and can potentially be applied to a variety 
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of species. Time steps could represent discrete units of time with overlapping generations, or 
they could represent discrete generations, with only newly produced offspring surviving to the 
next time step. Competition in the model affects either fecundity or offspring viability to 
simulate different reproduction strategies. We use a two-dimensional continuous space model 
where every individual’s position is recorded. Initially, wild-type individuals are randomly 
distributed in the square landscape of length 1. Females choose their mates randomly within a 
radius specified by the mating distance, which is equal to the average dispersal distance 
parameter and is set to 0.05. If females cannot find a mate, they will not reproduce in this time 
step. The number of offspring is dependent on the reproduction strategy (see below). The 
positions of offspring are offset from their mother with a distance drawn from a normal 
distribution with an average equal to the dispersion distance in each dimension. Surviving 
adults migrate the same way in each time step. If any individual is placed outside the area, its 
position is redrawn until it falls within the arena. 

In the fecundity model, total carrying capacity K is set to 20,000. Females generate a 
number of offspring based on their fitness and local competition. In our spatial model, the 
competition is limited in radius specified by the interaction distance parameter, which is set to 
0.01. The local density of each position 𝜌  is defined as the density of individuals within a 
circle of radius equal to interaction distance around it. The expected average density of 
individuals at normal equilibrium is 𝜌 = 𝐾/𝑎𝑟𝑒𝑎. The relative reproduction of the female is 
then calculated by: 

𝜔
′

=  𝜔 ∗ 
𝛽

(𝛽 − 1) ∗
𝜌
𝜌

+ 1
 

where 𝛽 represents the low-density growth rate of the population (normally set to 6). The 
actual number of offspring is drawn from a binomial distribution with a number of draws equal 

to 𝛽   . The chance of each draw producing an offspring is 𝑝 =
′

 , where 𝛽  

represents the maximum number of offspring (set to 25 by default), 𝜔   represents the 
genotype fitness of female. This ensures that every female produces an average of two offspring 
per generation under normal conditions (no fitness costs, population density equal to the 
carrying density). 

In contrast, individuals produce many offspring in the viability model. The number of 
offspring is drawn from a Poisson distribution with and average 𝜆 = 2 ∗ 𝛽 ∗ 𝜔  . After 
reproduction, offspring compete to survive, and the survival rate is: 

𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒 =  
𝛽

(𝛽 − 1) ∗
𝜌
𝜌

+ 𝛽
 

where 𝜌   is defined as the density of newborn offspring within a circle of radius equal to 
interaction distance around it. Offspring become adults starting at the next time step. 

In the discrete-generation model, the generations are non-overlapping. Every individual 
can only survive and reproduce in one time, and the offspring become the reproducing adults 
in the next time step. However, many species continuously reproduce and have overlapping 
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generations. To create an overlapping-generations model, the survival rates of individuals are 
age-based, the survival rates at each age are given as follows: 

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒 ∶  1 
3

4
 
2

3
 
1

2
 0  

This results in a linear decrease through time in the number of individuals in a single age class. 
Individuals can mate and reproduce in every time step, except for the time step in which they 
are born. In the fecundity model, the number of eggs during reproduction is drawn from a 
binomial distribution with a number of draws equal to 𝛽 /𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒. The chance 

of each draw producing an offspring is 𝑝 = ∗
′

∗ 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒 in the overlapping-

generations fecundity model. In viability model, the number of offspring is drawn from a 

Poisson distribution with an average of 𝜆 = 2 ∗
 

∗ 𝜔 , and the survival rate of 

offspring in the overlapping-generations viability model is equal to   multiplied by the 

offspring survival rate in the discrete-generation viability model.  represents the proportion 

of adults that are age 1 out of all adults when the population is at equilibrium. Individuals 

migrate with average dispersal distance 0.05/ 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒, which produced the same 

average per-generation dispersal as the discrete generation model. The generation time of this 
overlapping model is two time steps. We run the overlapping-generation model for 750 time 
steps, and we run the discrete generation model for 375 generations. Simulation can end early 
if the population is eliminated, or if the drive is lost. We recorded frequencies of different alleles, 
population size, the number of fertile females, and the average nearest neighbor ratio for each 
time step. See Table S1 for a list of default parameters 

2.2 Density-dependent growth curves 

The density-dependent growth curve describes the relationship between population size 
and population growth rate. Higher growth at lower population density can contribute to 
chasing. Population growth rate is defined as 𝑁 /𝑁 , where 𝑁  represents the population 
size of generation t. We investigated the influence of three density-dependent growth curves of 
different shapes to the outcomes of suppression drive in the discrete-generation fecundity 
model. Our default Beverton-Holt growth curve is denoted above (Beverton & Holt 1957). A 

general 𝜃 −logistic model is written as 𝑑𝑁 𝑑𝑡 = 𝑟𝑁(1 − (𝑁 𝐾⁄ ) )⁄ , where r is the growth 
rate, K is the carrying capacity, and 𝜃 is a parameter that determines the growth curve (Gilpin 
& Ayala 1973). When 𝜃 = 1, the growth rate linearly declines as the population size increases 
(Cook 1965). Connecting Ricker’s model (Ricker 1954; Cook 1965) and studies of laboratory 
Drosophila populations (Gilpin & Ayala 1973), the 𝜃-Ricker model (Thomas et al. 1980) was 
put forward as: 
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𝑁 =  𝑁 𝑒
( , )

 

The parameter 𝜃 determines the shape of the density-dependent growth curve, reflecting the 
degree of influence to population size as abundance interacts with resource availability 
(Freckleton et al. 2003) and type of competition within species (Johst et al. 2008). When 𝜃 <

1, the growth rate declines sharply when the population size is low, which makes it harder to 
recover from low population density. Some laboratory populations show concave density-
dependent growth curves (Hassell et al. 1976), similar to our Beverton-Holt growth curve . 
When 𝜃 > 1, the growth rate remains at a high level for longer when the population size is 
low, which can make the population harder to eliminate. The density-dependent growth curves 
of some large mammalian herbivores are convex (Owen-Smith 2006). 

Here, we changed the reproductive rate of females to represent different density-

dependent growth curves. The default 𝜔
′

  indicated above results in a concave density-

dependent growth curve. The linear and convex density-dependent growth curves are set as: 

𝑙𝑖𝑛𝑒𝑎𝑟 ∶  𝜔
′

=  𝜔 ∗ (𝛽 + (1 − 𝛽) ∗
𝜌

𝜌
)  

𝑐𝑜𝑛𝑣𝑒𝑥 ∶  𝜔
′

=  𝜔 ∗ 𝛽
( )

 

2.3 Suppression drive strategies 

Female fertility homing drive can decrease the number of offspring by making females 
sterile. It is also the best studied drive from an experimental perspective (Kyrou et al. 2018; 
Yang et al. 2022). In a previous modeling study, such a drive performed well, but was still not 
powerful enough to eliminate the population for much of the parameter space (Champer et al. 
2021a; Champer et al. 2022). 

This CRISPR/Cas9 homing drive targets a haplosufficient but essential female fertility 
gene. Females are sterile if they lack at least one wild-type or functional resistance allele. In 
drive heterozygotes, cleavage and homology-directed repair happen in the germline, which will 
convert wild-type alleles into drive alleles. If homology-directed repair fails, end-joining will 
cause the guide RNA (gRNA) site to be mutated and create resistance alleles that cannot be 
cleaved. Resistance alleles mostly are nonfunctional, called “r2” resistance alleles. Some 
resistance alleles called “r1” can maintain target gene function. “r1” resistance alleles play a 
decisive role in preventing population suppression. If they form at even a low probability, the 
population is likely to recover (Birand et al. 2022). In our simulations, we neglect r1 alleles 
because they can be avoided in homing suppression drives by using multiplexed gRNAs 
(Prowse et al. 2017; Bishop et al. 2022; Yang et al. 2022) and conserved target sites (Kyrou et 
al. 2018). 

In our model, wild-type alleles have a probability equal to the drive conversion parameter 
to be converted into a drive allele in heterozygotes. Half of the remaining wild-type alleles are 
converted to r2 resistance alleles by default (Hammond et al. 2021). However, this can also be 
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a variable parameter, and the germline resistance rate is the percentage of wild-type alleles 
converted into r2 resistance alleles. Together, the drive conversion and germline resistance 
rates cannot exceed 1. If the mother has a drive allele, offspring may have deposited Cas9 and 
gRNA, which converts wild-type alleles to r2 resistance alleles at a probability equal to the 
embryo resistance allele formation rate. Because somatic or other undesired Cas9 cleavage can 
reduce the reproduction rate of drive females, we set a variable drive female heterozygote 
fitness to be less than 1 (which is wild-type fitness) when modeling this phenomenon. 

The initial release number of female fertility homing drive does not influence the final 
suppression level and outcome in most situations (North et al. 2020). We thus use a simple 
release of drive heterozygotes at a frequency of 10 percent of the carrying capacity, all within 
a central circle of radius 0.01. 

2.4 Local chasing detection 

To determine where and when chasing occurs, we divided the space into squares with 
lengths equal to the 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 . Together with the density interaction 
distance, this sets the scale for the simulation and is specifically the smallest distance that 
should have a significant effect on movement of individuals. A key feature of chasing is that 
wild-type individuals escape from drive-populated areas into empty areas previously cleared 
by the drive (Champer et al. 2021a). Thus, we define chasing as occurring in a cell if it is first 
eliminated (the number of individuals in this cell is zero) and then recolonized such that the 
number of non-drive individuals is larger than the average number of non-drive individuals 
across all cells. In other words, we define chasing to be when wild-type individuals reoccupy 
one cell and reach a higher density of non-drive individuals than the average level of the whole 
space. However, we also need to ensure that we don’t flag short-term dynamics when the 
chasing equilibrium may still be developing as chasing (in this situation, the population may 
still be rapidly eliminated before a chasing equilibrium is established across the whole arena). 
Thus, we also require that the number of wild-type individuals is larger than 10 percent of the 
population size. We further require that at least 4 cells are flagged as chasing to consider the 
whole system in a state of chasing.  

The positions of detected chasing cells can show the directions of wild-type escape from 
the center of the wild-type clusters to the positions of the chasing cells (Figure 1A). 

2.5 Drive spread speed measurements 

To evaluate the wave speed that wild-type individuals spread into the empty space, we 
divided a one-dimensional space into slices with equal length and then released wild-type 
individuals evenly in the leftmost slices. We used the number of generations that wild-type 
individuals take to reach the rightmost slice of the area to evaluate the wave spread speed. 

Chasing dynamics not only includes the process in which wild-type individuals spread 
into empty areas but also includes the process in which the drive spreads into areas with wild-
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type individuals. To evaluate the change of drive alleles and nonfunctional resistance alleles in 
the two-dimensional population model, the relative increase rate of allele frequency of each 
generation is defined as (𝐷 − 𝐷 )/𝐷 , where 𝐷  represents the specific allele frequency 
of generation t. In both the panmictic model and spatial models, we found that the relative 
increase rate of drive allele frequency linearly declines with increasing drive allele frequency, 
and r2 resistance alleles also follow this rule (Figure S2). Thus, we used a linear fit of the data 
when the drive allele frequency was between 0.05 and 0.9 using Huber loss function and 
Nelder-Mead simplex algorithm (Wright 1996) to optimize it. 

ℎ𝑢𝑏𝑒𝑟 𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  

⎩
⎪
⎨

⎪
⎧

(𝑦 − (𝑘𝑥 + 𝑏))

2
                     ,              𝑦 − 𝑘𝑥 + 𝑏 < 𝑑𝑒𝑙𝑡𝑎

𝑑𝑒𝑙𝑡𝑎 ∗ 𝑦 − 𝑘𝑥 + 𝑏 −
𝑑𝑒𝑙𝑡𝑎

2
,   𝑦 − 𝑘𝑥 + 𝑏 ≥ 𝑑𝑒𝑙𝑡𝑎

 

where delta is 0.005. In the initial generations after the release, because most individuals with 
drive alleles are heterozygous, the drive allele spreads at a higher rate than in other situations 
where the population reaches a balance that includes drive homozygotes and resistance alleles. 
Additionally, when the frequency of the drive allele is high, there are more data points, which 
is likely to influence the fitting results. To address this, we separated all data into 8 even ranges 
based on the drive allele frequency and sampled the same number within each range, except 
for the first and last range (representing drives that were artificially in a heterozygote-only 
starting situation and an equilibrium near the end with small sample sizes). Finally, we recorded 
the zero-frequency relative increase rate (vertical intercept of the linear relationship) and 
maximum drive frequency (horizontal intercept of the linear relationship). The zero-frequency 
relative increase rate represents the drive spread speed when the drive frequency is low. The 
maximum drive frequency represents the drive frequency when the population reaches 
equilibrium (assuming that the population persists and is not eliminated), and it is somewhat 
representative of the long-term power of the drive to eliminate a population. If more than 70% 
of generations have a drive allele frequency of less than 0.1 (which did not occur in the 
parameter range studied in this manuscript), the relative increase rate of the drive allele appears 
to be distributed randomly when the drive frequency is low. In this case, we increased the 
release frequency from 10% to 50% and discarded the first two drive frequency intervals 
(instead of just the first) to determine their zero-frequency relative increase rate and maximum 
drive frequency. We used a linear fit for the data where r2 resistance allele frequency was 
between 0 and 0.5 with the same procedure. 

2.6 Evaluation of chasing 

We divided the simulation outcomes into three initial categories—population suppression 
without chasing, long-term persistence, and drive loss without chasing. After chasing starts, the 
population may finally be suppressed, or all drive alleles could be lost. However, it is also 
possible that drive, wild-type, and resistance alleles coexist for an extended period of time 
(until the end of the simulation). We hypothesized that in each chasing generation there is the 
same probability to eliminate the population or lose all drive alleles under a certain parameter 
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set, which means that the time of chasing before suppression or drive loss would comply with 
a negative binomial distribution.  

Because chasing is characterized by strong regional clustering of individuals, we used the 
average nearest neighbor ratio (Chester 1987) to quantify the degree of clustering during 

chasing. For each time step 𝑗 , its average nearest neighbor distance (𝐷  ) is defined as the 
average distances between each individual and its nearest neighbor, expressed as 𝐷 =
∑ 𝑑 𝑛⁄ , where 𝑑  represents the distances between individual i and its nearest neighbor. The 

expected average nearest neighbor distance of time step 𝑗  is the average nearest neighbor 

distance when individuals are randomly distributed and is calculated as 𝐷 = 0.5 𝑛 /𝑎𝑟𝑒𝑎⁄ , 

where 𝑛  is the number of individuals. The average nearest neighbor ratio of time step 𝑗 is 
given as 𝐴𝑁𝑁 = 𝐷 𝐷⁄   (Figure 1B). According to this definition, the average nearest 

neighbor ratio is smaller if individuals are more clustered. 
Due to individuals tending to spread out slightly nonrandomly to avoid competition, a 

natural population is shifted toward a uniform distribution with equal spacing between 
individuals before any gene drive activity, so the average nearest neighbor ratio is a little higher 
than 1. The minimum value for ANN is 0, indicating that all individuals are at a single position. 
We found that the distribution of individuals and the value of average nearest neighbor ratio 
fluctuate nonrandomly around the average in chasing dynamics, with only small changes 
between time steps (Figure 1C). 

If the average nearest neighbor ratio of a chasing generation is higher, it has more 
equilibrium character, which means that the local population density is approximately uniform 
across overall space. To provide a single value to characterize chasing across many generations 
for a specific simulation, we used a weighted ANN to moderate the influence of extreme values 
caused by time steps with few individuals. We defined this as 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑁𝑁 =

∑ 𝐴𝑁𝑁 ∗ 𝑛  , including all time steps after chasing started. Note that this weighted 

average nearest neighbor ratio is more precise when the simulation is ended with long-term 
chasing, because short-term chasing dynamics include fewer time steps, and most of them 
contain fewer individuals, which increases the error of the 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑁𝑁  of these 
simulations.  
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Figure 1. The average nearest neighbor ratio and the chasing clustering method. (A) An example of chasing. 

The left graph shows the distribution of all individuals across the whole area. Blue dots represent wild-type 

individuals, red dots represent drive carriers, and yellow dots represent individuals with r2 alleles. Green arrows 

show the escape directions of the wild-type individuals. The right graph shows chasing cells across the area 

detected by the local chasing detection algorithm in. Different colors represent different local chasing clusters. (B) 

The calculation of average nearest neighbor ratio. The blue dots represent the five individuals, and the red arrows 

point to their nearest neighbors. (C) The average nearest neighbor ratio during chasing and several corresponding 

snapshots of the population at peaks and troughs of the ANN ratio. 
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Chasing dynamics can also be characterized by the number of local chasing clusters. There 
is usually more than one group of wild-type individuals involved in chasing in a simulation at 
any time point (Figure 1A). The spatial distribution of these detected chasing cells (see above) 
contains information on the number of local chasing clusters. We used a clustering method 
based on a Density Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm 
to cluster detected chasing cells and estimate the number of local chasing clusters. DBSCAN 
is effective in discovering clusters of arbitrary shape and does not need to predetermine the 
number of clusters (Ester et al. 1996). 

DBSCAN determines clusters by finding “core points” that have at least a minimum 
number (MinPts) of neighbors within a given radius (Eps). The Eps-neighborhood of a point 
𝑝 is {𝑞 ∈ 𝑅|𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝐸𝑝𝑠}, where 𝑑𝑖𝑠𝑡(𝑝, 𝑞) is the Euclidean distance between points 
𝑝  and 𝑞 . For a core point 𝑞 , if 𝑝  is within the Eps-neighborhood of 𝑞 , 𝑝  is density-
reachable from 𝑞, or if there is a chain of points 𝑝 , … , 𝑝 , 𝑝 = 𝑝, 𝑝 = 𝑞, in which 𝑝  
is density-reachable from 𝑝  for every two adjacent points, then 𝑝 is also density-reachable 
from 𝑞. With these definitions, the algorithm starts with an arbitrary cell 𝑝 and labels it as a 
“core point” or “noise point.” It then retrieves all points that are density-reachable from core 
point 𝑝 to get cluster C and labels them as a “cluster point”. This process is repeated until all 
of the detected chasing cells have been processed. Finally, all remaining “noise points” are 

ignored. In this study, we set the Eps as √5 and MinPts as 4, which means a local chasing 
cluster must have at least 4 chasing cells. However, because the local chasing detection method 
only detects expanding cells, this method loses efficiency when the population spreads to the 
boundary of the space. To address this, we set the Eps to 4 if two local chasing clusters have 
points on the same boundary. 

2.7 Data generation 

All simulations were implemented in the SLiM forward-in-time population genetic 
simulation framework, version 4.0.1 (Haller & Messer 2023). Data processing and analytics 
were performed in Python. All code and data are available on GitHub 
(https://github.com/xinga1516/chasing). 

3 Results 

3.1 Weighted ANN 

We first sought to better quantitatively characterize chasing after the release of a homing 
suppression gene drive. The average population size or number of fertile females is an 
important measure, but it does not itself have information about the distribution of individuals. 
We therefore utilized the average nearest neighbor (ANN) distance to quantify this distribution. 
It has been shown that both the drive conversion and female heterozygote fitness, which is 
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often reduced by somatic expression of Cas9, have a significant influence on the exact level of 
suppression from the female fertility drive system (North et al. 2020; Champer et al. 2021a; 
Champer et al. 2022; Liu & Champer 2022). Here, we used these two parameters to test the 
performance of our chasing assessment method (Figure 2). Though population elimination 
without chasing could occur for highly efficient drive (Figure 2A) it would often be 
accompanied by chasing dynamics (Figure 2B). Over a large region of parameter space, the 
drive would persist, but fail to eliminate the population (Figure 2C). We recorded the 
suppression rate per generation during chasing (Figure 2D), as well as the average population 
size during long-term persistence of both drive and wildtype alleles(Figure 2E). 

The weighted ANN presented the differentiation of all these chasing dynamics under 
different parameter combinations (Figure 2E). The weighted ANN is lower when the drive is 
more powerful, with a higher drive conversion rate and female heterozygote fitness, which 
corresponds to a higher suppression with chasing rate and a higher suppression rate per chasing 
generation. This is consistent with the fact that a powerful drive can make the population 
clustered enough to completely eliminate it. When the drive conversion is 0.7 and the female 
heterozygote fitness is 0.6, representing a less powerful drive system, the value of the weighted 
ANN is close to 1, which means that the population is in an approximately random distribution. 
This is regarded as an equilibrium scenario in former studies (Champer et al. 2021a). 

If the parameters are insufficient to eliminate the population in a panmictic model (the 
black lines in Figure 2), then population suppression will always fail in the spatial model. This 
is consistent with former models (Eckhoff et al. 2017; North et al. 2020; Champer et al. 2021b; 
Birand et al. 2022). In addition, population size during chasing is correlated with the weighted 
ANN, and the points of the genetic load threshold line (showing where the drive has enough 
suppressive power to eliminate a similar panmictic population) almost fall on a narrow range 
of weighted ANN. Because all these threshold points have the same genetic load, it is potentially 
reasonable to extrapolate that the weighted ANN represents the drive power under certain 
ecological parameters, and it can give an effective assessment of the drive performance under 
different scenarios to some extent. The continuous nature of the weighted ANN also shows that 
there is not a clear boundary between chasing and equilibrium outcomes. When the genetic 
load is greater than the threshold, the outcome can certainly be considered to be chasing if rapid 
population elimination fails. Below this threshold, the outcome in panmictic populations is 
equilibrium, but because spatial models have greater local fluctuations, local suppression will 
still often occur, followed by recolonization. Slightly below the threshold line, these dynamics 
are essentially the same as slightly above the line, being recognizable as “chasing.” Eventually 
though, as the weighted ANN approaches 1, the outcome smoothly transitions into something 
more easily recognizable as equilibrium, with little to no local stochastic elimination. 
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Figure 2 Characterizing of chasing outcomes. Simulations use the discrete-generation fecundity model with 20 

simulations for each combination of varying drive conversion and female heterozygote fitness. Other parameters 

are at their default values. Heatmaps show rates of (A) population elimination without chasing, (B) population 

elimination after chasing, and (C) long-term persistence of both drive and wild-type alleles. Also displayed are 

(D) probability each generation during chasing that the population is eliminated and (E) the average long-term 

population size, and (F) the average weighted ANN during long-term persistence. The black lines in the heatmaps 

show the threshold values that produce a sufficient genetic load to eliminate a panmictic population. 

3.2 Chance per generation of population elimination  

If chasing represents a dynamic equilibrium state, then after this equilibrium is reached, 
we hypothesized that in each chasing generation, there is the same probability to eliminate the 
population (or lose all drive alleles) over a sufficiently large time interval, which means that 
the time of chasing before suppression or drive loss would comply with a negative binomial 
distribution. To test this, we ran 100 simulations using the discrete-generation fecundity model 
and collected outcomes and the time that chasing was initiated. We conducted a goodness of fit 
test to check if the time that chasing ends complies with a negative binomial distribution. The 
p-value of the Pearson Chi-square test was 0.778, meaning that the negative binomial 
distribution can moderately well represent the distribution of the duration of chasing. Thus, if 
we can run sufficient simulations with outcomes ending in successful population elimination 
or drive loss, we can estimate their probability per chasing generation by maximum likelihood 
estimation. Though the suppression rate of a certain generation is dependent on the population 
size and spatial distribution, the chance of population elimination per time step is still a good 
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way to assess suppression outcomes during chasing. 

3.3 Effect of arena size 

In most models of chasing in continuous space, the arena size represents only a small 
fraction of the landscape in many relevant real-world scenarios. This is by necessity due to 
computational resource limitations. However, large arenas can potentially drastically change 
the outcomes. Here, we analyzed chasing dynamics in spaces with different arena sizes using 
the same population density. Figure 3 shows that the arena size has a great influence on chasing 
dynamics with the same drive system. As the arena size increased, the probability of chasing 
also increased (Figure 3A). After chasing started, suppression and drive loss rates per 
generation exponentially declined with a linear increase in arena size (Figure 3B). To explain 
this result, we computed the weighted ANN and clustered local chasing cells in each time step. 
We found that the 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑁𝑁 gradually leveled off at 0.67 with increasing arena size 
(Figure 3C), and the average number of local chasing clusters and the average population size 
are both almost directly proportional to arena size, resulting in the average population size of 
each chasing cluster gradually leveling off at 4,740 (Figure 3D). 

Based on the number of local chasing clusters (𝑛) and the population size per local chasing 
cluster (𝑠), the probability of suppressing a local chasing cluster should be a function of 𝑠 and 
the aggregation degree of individuals—𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑁𝑁 . Lower 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑁𝑁  should 
result in more clustered local chasing with a higher probability of population elimination. 
Smaller chasing clusters should be easier to eliminate. Thus, the elimination rate per chasing 
generation can be expressed as [𝑓(𝑠, 𝐴𝑁𝑁)] . Because 𝑛 increases linearly with the size of 
the arena for sufficiently large arena size, the suppression rate per chasing generation should 
exponentially decline with increasing arena size, which is consistent with our observations. 
The same conclusion applies to an assessment of drive loss rates. 

When the arena is smaller, 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑁𝑁  is higher, which means that chasing 
dynamics tend to be less extreme in terms of the uneven distribution of individuals. This may 
be due to edge effects on moving chasing clusters, which will be far more impactful in a small 
arenas. When the arena is large enough for the population size per chasing cluster and weighted 
ANN to level off, the number of chasing clusters would proportionally grow with the arena size, 
but the global distribution would no longer change significantly.  

Hence, as arena size increases, 𝑓(𝑠, 𝐴𝑁𝑁) levels off, so the suppression rate per chasing 
generation will rapidly decrease to 0. In other words, if the area is large enough, once chasing 
dynamics starts across the entire arena, there is little chance for it to stop. If any local clusters 
are eliminated, the system will quickly recover because many other clusters will still be present. 
The only way to successfully eliminate the population under these circumstances in the model 
would be to prevent chasing from starting in the first place. 
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Figure 3 Effects of the arena size on suppression outcomes and chasing dynamics. Using the discrete-

generation fecundity model, we set the drive conversion to 0.94 and the population density to 10,000, with other 

parameters at default values. (A) The fraction of three possible drive outcomes with at least 40 simulations for 

different arena area. (B) The rate of population elimination or drive loss per generation once chasing starts. The 

error bars are 95% confidence intervals of the estimated success probability from the Bernoulli distribution. Data 

is fit with the exponential function. (C) The weighted ANN as a function of area with 40 simulations that avoided 

population elimination or drive loss per parameter set. Error bars are 95% confidence intervals, and the data is fit 

with an exponential function. (D) The population size and number and size of chasing clusters. The population 

size per chasing cluster is based on the linear regression lines for number of clusters and total population size. 

3.4 Resistance allele formation 

Resistance alleles have been generally regarded as an important factor that can lead to the 
failure of suppression drive, especially when the drive has a high fitness cost (Price et al. 2020; 
Hammond et al. 2021). While functional r1 resistance alleles will cause rapid drive failure, 
nonfunctional r2 resistance alleles can also slow the drive (though they will have only a modest 
effect on genetic load if other drive performance parameters are good). Yet these have not been 
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assessed for chasing situations. There are two ways to generate r2 resistance alleles in CRISPR 
gene drive systems. One of them involves end-joining repair after cleavage in the germline as 
an alternative to homology-directed repair. We varied the germline resistance rate and found 
that the probability of chasing increases with the germline resistance rate (Figure 4A). Further, 
the suppression rate of each generation during chasing exponentially declines with increasing 
germline resistance rate (Figure 4B). 

To learn about the mechanism of how nonfunctional resistance affects chasing, we 
examined how they hinder the spread of drive. We determined the drive and r2 allele relative 
increase rate (Figure S3) and their maximum frequency (Figure 4C). The zero-frequency 
relative increase rate of drive alleles represents the drive’s relative rate of growth when drive 
frequency is very low (for example, an ideal homing drive will have a relative growth rate of 
2, because the whole population will be drive/wild-type heterozygotes that double the drive 
frequency in the next generation). This measure has little change with increasing germline 
resistance rate, while the relative increase rate of r2 alleles grows. With the same zero-
frequency relative increase rate of drive alleles, the lower maximum drive frequency means a 
more dramatic decline of the relative increase rate, manifesting the lack of power to increase 
when frequency is high. This alone has little effect on genetic load because the increased 
number of nonfunctional resistance alleles at equilibrium allow for nearly the same total 
number of recessive sterile alleles (Figure S4). However, the ability of the drive to migrate 
from high frequency to low frequency is hindered, which may be important when considering 
spatial spread during chasing. Because the number of local chasing clusters shows little 
difference (Figure 4D), this appears to manifest as higher weighted ANN (Figure 4C) and 
higher population size per chasing cluster (Figure 4D), reducing the probability for a local 
chasing cluster to be eliminated.  
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Figure 4. Effects of germline resistance rate on suppression outcomes and chasing dynamics. Using the 

discrete-generation fecundity model, we set the drive conversion to 0.82, and other parameters were at default 

values. (A) The fraction of three possible drive outcomes with at least 50 simulations for each different germline 

resistance rates. (B) The rate of population elimination or drive loss per generation once chasing starts. The error 

bars are the 95% confidence intervals of estimated suppression rate per chasing generation of a Bernoulli 

distribution. Data is fit with the exponential function. (C) The weighted ANN as a function of germline resistance 

rate (error bars are 95% confidence intervals), as well as the maximum drive and drive frequency at equilibrium. 

(D) The population size per chasing cluster and number of chasing clusters. Error bars show standard deviation. 

 
Another way for resistance alleles to be formed is when wild-type alleles in early embryos 

are cut by maternally deposited Cas9 and gRNA. Unlike germline resistance allele formation, 
embryo resistance can only be generated by females, but on the other hand its rate can vary 
widely without being constrained by the drive conversion rate (the drive conversion and 
germline resistance rates can together add up to no more than one). We performed a similar 
analysis of the effect of embryo resistance alleles on chasing and found that over the full 
parameter range, it could have an even larger effect reducing successful suppression and 
increasing chasing (Figure 5A-B). Because the initial rate of decrease in the suppression rate 
is slower, a Gaussian function curve better fits the suppression and drive loss rate per chasing 
generation, which still rapidly declined with increasing embryo resistance. The weighted ANN 
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and population size per chasing cluster similarly increases to a greater degree (Figure 5C-D), 
which can explain why the chance per generation of population elimination dramatically 
decreased. 

One additional explanation for this greater effect could be that unlike germline resistance, 
increasing embryo resistance rate can slow down the initial drive spread speed (Figure 5C, 
Figure S4). This can be understood when considering that at low drive frequencies mating of 
drive heterozygote females will usually be to wild-type males. Germline alleles formed during 
this process will not affect the drive, but embryo resistance alleles that form in progeny with a 
drive allele will result in sterile females, removing the drive allele from the population. At drive 
higher frequencies, any resistance allele (such as one formed in the germline) is more likely to 
eventually meet a drive allele and be removed from the population. Thus, embryo r2 resistance 
alleles can directly slow the increase speed of drive alleles, which will slow the drive wave 
advance speed. This will leave more time for wild-type individuals to escape and recover, 
perpetuating chasing cycles and explaining the larger population size during chasing with high 
embryo resistance (Figure 5D). When embryo resistance is over approximately 0.5, the relative 
drive increase rate at low frequency continues to decline linearly, but the relative r2 increase 
rate also starts to decline (Figure 5C), reducing the suppressive effect on the population. 
Because the r2 resistance alleles are nonfunctional, they tend to be eliminated in female 
progeny together with drive alleles, eventually reducing the rate that both increase and 
accounting for the reduced rate of drive increase. 
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Figure 5. Effects of embryo resistance rate on suppression outcomes and chasing dynamics. Using the 

discrete-generation fecundity model, we set the drive conversion to 0.88, and other parameters were at default 

values. (A) The fraction of three possible drive outcomes with at least 60 simulations for each different embryo 

resistance rates. (B) The rate of population elimination or drive loss per generation once chasing starts. The error 

bars are the 95% confidence intervals from a Bernoulli distribution. Data is fit with the exponential function. (C) 

The weighted ANN as a function of embryo resistance rate (error bars are 95% confidence intervals), as well as 

the maximum drive and drive frequency at equilibrium in a panmictic population. (D) The population size per 

chasing cluster and number of chasing clusters. Error bars show standard deviation. 

3.5 Effect of life history traits on chasing dynamics 

Previous studies indicated that chasing was a substantially larger problem for gene drives 
in a mosquito-specific model with overlapping generations than a simpler discrete-generation 
model (Champer et al. 2022). The mosquito model allowed a small fraction of females to 
remate in each time step, but in the discrete-generation model, a female would only have one 
mate when producing all offspring. These models also differed in the way in which population 
size was regulated. In the mosquito model, there was density-dependent competition between 
juveniles, affecting larval viability, while in the discrete-generation model adult density-
dependent competition affected female fecundity. To investigate how such life history details 
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of a species can influence chasing dynamics, we implemented both kinds of reproduction 
strategies (viability and fecundity) in both a discrete-generation model and an overlapping-
generations model. 

The drive performance in species with overlapping generations and discrete generations 
was substantially different when females were allowed to remate in each time step. We found 
that the overlapping-generations model produced fewer chasing outcomes and slightly fewer 
drive loss without chasing outcomes (Figure 6A). During chasing, the suppression rate per 
generation was also higher for overlapping generations (Figure 6B). This is because when 
chasing starts, the overlapping generations model has smaller and more clustered local chasing 
clusters than the discrete-generation model (Figure 6C-D). 

In terms of outcomes without chasing, there was no difference between the viability and 
fecundity models (Figure 6A). However, viability-based models consistently had lower 
suppression rates per chasing generation, as well as less clustering and larger population sizes 
per chasing cluster (Figure 6B-D). Due to greater stochasticity, drive loss was also higher in 
fecundity models (Figure S5). Because the influence of overlapping generations and viability 
competition was in opposite directions, the difference of the mosquito model remained 
unexplained by these factors alone. 
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Figure 6. The differences of chasing dynamics between model types. We compared discrete-generation and 

overlapping-generations models, and also fecundity and viability models. (A) The drive conversion is 0.92, and 

other parameters are default value. The fraction of outcomes with 100 simulations is shown. (B-D) The drive 

conversion is 0.86, and the female heterozygote fitness is 0.8. Other parameters are at default values. (B) The 

suppression rate per generation during chasing. The error bars are 95% confidence intervals from a Bernoulli 

distribution. (C) The weighted ANN from each model (error bars are 95% confidence intervals). (D) The median 

population size per chasing cluster (error bars show interquartile range). Statistical comparisons are the Chi-square 

test for A-B and unpaired t-test for C-D. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 

 
To further investigate different life histories, we made an overlapping-generations model 

in which females that had successfully mated would store sperm of the first mate and reproduce 
at each time step, but not mate again. This was closer to the mosquito model, in which females 
only had a 5% chance to remate in each weekly time step, in line with field data (Champer et 
al. 2022). We found that the suppression rate per chasing generation reached the same level as 
in the discrete-generation model when we prevented remating (Figure 7A). In addition, the 
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weighted ANN was even lower, and the population size during chasing grew to a higher level 
than in the discrete-generation model (Figure 7B-C). Therefore, remating is an important 
reason why the suppression rate per chasing generation rose in the overlapping-generations 
model. Effects on drive loss were minor (Figure S6). 

However, remating is not the only factor that caused the differences between the discrete-
generation model and overlapping-generations model. The generation time (calculating the 
average reproduction age of all fertile females weighted by their offspring numbers) in the 
overlapping generations model without remating is usually two time steps with low variation 
(Figure 7D). During chasing, though, it fluctuates, largely based on drive frequency. The 
generation time grows during the suppression process but shortens during the recovering 
process for wild-type individuals (Figure 7D), thus promoting chasing and reducing the chance 
of suppression. Younger females produce more offspring when competition is low, such as at 
the edges of a chasing cluster, and lower generation time allows faster recovery of escaped 
wild-type individuals. These also influence chasing dynamics and can partly explain why the 
average population size during chasing is higher and the clustered degree is lower in the 
overlapping-generations model without remating than in the discrete-generation model (Figure 
7B-C). This property causes the wild-type wave advance speed to become faster than in the 
discrete-generation model, which may further explain why chasing is more clustered in the 
overlapping-generations model with higher cluster sizes. What’s more, we found the wild-type 
wave advance speed into empty space of the viability model is higher than the fecundity model 
(Figure 7E). This is because in the viability model, the survival rate of offspring at the edges 
of the population clusters is higher than the offspring in the middle, which helps the spread of 
wild-type individuals into empty space. In contrast, the positions of offspring are set when they 
are born in fecundity model, where even females closer to the edge have more competition than 
widely dispersing offspring. 

All these factors can explain the difference in chasing dynamics between the different 
models. Overall, overlapping generations would hypothetically allow for less chasing in the 
mosquito model (Champer et al. 2022), but this is counteracted by lack of remating. Then, the 
viability verses fecundity density-dependent competition type difference can explain why 
chasing is a more common outcome in the mosquito model. 
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Figure 7 The influence of remating on chasing dynamics. In the fecundity model, the drive conversion is 0.86, 

and the female heterozygote fitness is 0.8. Other parameters are at their default values. (A) The suppression rate 

per generation during chasing (error bars are the 95% confidence intervals from a Bernoulli distribution). (B) The 

weighted ANN during chasing (error bars are 95% confidence intervals). (C) The median total population size 

during chasing (error bars show the interquartile range). (D) The change of drive frequency and time steps per 

generation in one simulation of the overlapping-generations model without remating. The generation time in 

theory is two time steps. (E) The drive wave speeds in the fecundity model and viability model. The mean and 

standard deviation are shown from 20 replicates. Statistical comparisons use the Chi-square test for suppression 

rate per chasing generation, and unpaired t-test for weighted ANN and population size per chasing cluster. ns: not 

significant, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 

3.6 Density growth curve shape 

With this study on different life history models and a previous study on competing species 
(Liu et al. 2023) showing the importance of ecology on chasing dynamics, we were interested 
in investigating the influence of different density-dependent growth curves (Figure 8A).  

Convex, and to a lesser extent linear, density curves will tend to produce more robust 
populations. However, this would generally only delay and not prevent population elimination 
in panmictic populations, which is determined by whether the genetic load of the drive can 
overcome the low-density growth rate (though increased stochasticity could also slightly ease 
the requirement for elimination in concave curves for smaller population sizes). The magnitude 
of the density curve shape effect on chasing is unclear. In general, concave density growth 
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curves resulted in less chasing dynamics than linear and convex curves (Figure 8B). However, 
the suppression rate per chasing generation (Figure 8C) was more strongly affected, with 
concave curves producing significantly higher population elimination rates than linear curves, 
and convex curves producing significantly lower elimination rates. 

The weighted ANN (Figure 8D) was similarly affected, with more population clustering 
with a concave density curve, and fewer in convex. The concave density-dependent growth 
curve results in more chasing clusters with smaller population size (Figure 8E,F). In the 
convex and to a lesser extent, linear curves, when the population size starts to decline from 
equilibrium, the growth rate increases more quickly than concave, allowing faster recovery. In 
a panmictic setting, the drive will maintain pressure on the population, preventing recovery. A 
different growth curve can change the time to population elimination, but it won’t change the 
ultimate outcome, except indirectly via stochastic effects. However, chasing in a spatial model 
will have wild-type individuals that can take advantage of the faster recovery from linear and 
convex curves. When wild-type individuals escape from drive individuals and reach the empty 
space, populations with convex density-dependent growth curves will have higher growth 
before drive individuals reach them. This may explain why convex density-dependent growth 
curves had greater population size per chasing cluster and weighted ANN. 

 

Figure 8 Effects of the density growth curve shape on suppression outcomes and chasing dynamics. (A) The 

three different density growth curves used in this study are displayed with a low-density growth rate of 6. In the 

overlapping-generations fecundity spatial model, (B) the fraction of chasing and suppression without chasing 

outcomes are shown for different density growth curves when the female heterozygote fitness is 0.8, and other 

parameters are at their default value. There are 200 simulations for each parameter set. (C-F) In the overlapping-

generations fecundity spatial model, drive conversion is 0.84, female heterozygote fitness is 0.8, and other 
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parameters are at their default value. (C) The suppression rate per generation is shown with different density curve 

shapes (error bars are the 95% confidence intervals of the estimated success probability with a Bernoulli 

distribution). (D) The weighted ANN from each density curve shape (error bars are 95% confidence intervals). (E) 

The chasing cluster number from each density curve shape (error bars are standard deviations). (F) A violin plot 

of population size of each chasing cluster. The red lines represent the median value of the data, and the blue lines 

are quartiles. Statistical comparisons are the Chi-square test for B-C and unpaired t-test for D-F. ns: not significant, 

* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 

 
We also tested the effects of density-dependent growth curves on a larger range of 

parameters, including variation in the low-density growth rate with three different density-
dependent growth curves using the overlapping-generations fecundity model. Drive conversion 
was also co-varied with low density growth rate in each case. Examining rates of long-term 
chasing, we found that concave density-dependent growth curves cause less chasing across the 
full parameter space (Figure 9A). The frequency of long-term chasing increases with the low-
density growth rate, which is consistent with previous results (Champer et al. 2021a). Higher 
low-density growth rate allows more rapid wild-type propagation, which makes it easier to 
escape from the drive and recover. Species with linear or convex density-dependent growth 
curves were more prone to long term chasing, requiring more powerful suppression drives to 
successfully eliminate the population (Figure 9B-C). There was little change between linear 
and convex. Examining the duration of all chasing outcomes, linear and especially convex 
density-dependent growth curves had longer times when the low-density growth rate was 
sufficiently high (Figure S7). 

 

Figure 9 Long-term chasing rates with different drive performance and density growth curves. In the 

overlapping-generations fecundity model with a population density of 50,000 and other parameters with their 

default values, long-term chasing outcomes are show for varied drive conversion and low-density growth. 

Displayed are (A) concave, (B) linear, and (C) convex density growth curves. Each parameter set has 20 replicates. 

The black line shows the threshold above which the genetic load is sufficient to eliminate the population in a 

panmictic model. 
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4 Discussion 

In this study, we examined the chasing phenomenon whereby suppression drive can fail 
to eliminate target populations with spatial structure. Because previous definitions of chasing 
were qualitative in nature or suitable for only a limited parameter set (Bull et al. 2019; Champer 
et al. 2021a) we developed new methods to classify and characterize chasing. We found that 
there is no clear line between chasing and static equilibrium dynamics in spatial models. We 
thus defined weighted ANN to quantify spatial distribution of individuals, which provides a 
clear measure to characterize chasing and the final expected performance of the drive, together 
with population sizes. 

In panmictic populations, a suppression drive will be able to reliably eliminate the 
population if its genetic load is sufficiently high. Otherwise, the outcome will be an equilibrium 
state, where the average population is usually reduced from its initial level. However, in spatial 
models, chasing can prevent population elimination even when the genetic load would be 
sufficient in a panmictic population. Classifying chasing is somewhat difficult, though, because 
there does not seem to be a distinct point to differentiate chasing and equilibrium outcomes in 
spatial models. Chasing is characterized by a large variance of population density across time 
and space. Because the variance is a continuum, if we set a threshold, it must be based on an 
objective criterion. While models that fail when the genetic load is above its panmictic 
threshold can certainly be classified as chasing, we could not determine a way to distinguish 
chasing from equilibrium when the genetic load is below this value. Furthermore, it may not 
even be possible to distinguish these outcomes based on simulations if the expected panmictic 
outcome is not known. This reinforces the need to characterize chasing and equilibrium 
outcomes by quantitative measurements such as the weighted ANN. 

Considering that wild-type recolonization is an independent event from each local area, 
our local chasing detection and clustering method based on a grid defined by average dispersal 
provides a direct and intuitive measure of chasing in a local area. The clustering method based 
on DBSCAN resolves noise and allows characterization of the number of chasing clusters. The 
size of the detection cell determines the resolution of local dynamics that can be detected, and 
we chose the average dispersal as a universal measure representing an important small-scale 
distance. Competition distance could also have been a reasonable choice. 

Using these methods, this study also provides a guide to experiments. We showed that for 
large regions (arena size), if chasing is possible, it is very unlikely to end. Thus, drive 
performance must be sufficiently high to avoid chasing if population elimination is required. 
Ecological factors such as competing species could somewhat ease this requirement (Liu et al. 
2023), but our study also showed that even nonfunctional resistance alleles can be highly 
problematic for chasing and should be minimized. Alternatively, if some remaining population 
can be tolerated, then the functional resistance allele formation rate must be substantially lower 
than what would be predicted in a panmictic population because chasing substantially increases 
the chances that they could form (Champer et al. 2021a; Liu & Champer 2022). 

Due to the low probability of drive loss, our conclusions for this outcome are less robust 
than for population suppression. However, it likely that the drive loss rates per chasing 
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generation in the fecundity and viability models have a significant difference (Figure S5). 
More clustered and smaller scale local chasing not only increases the chance of successful 
population elimination, but also increases the chance of drive loss. This is another example 
where the chance of drive loss cannot be avoided if successful target elimination is also a 
possibility, similar to the effect of a competing species (Liu et al. 2023). The mean of drive loss 
rate per chasing generation is larger than 0, and there is almost no difference when embryo 
resistance is between 0 and 0.1 (Figure 5B), but there is a substantial decrease when the embryo 
resistance is larger than 0.1. This shows that limiting the number of r2 resistance alleles does 
not reduce the drive loss rate when chasing, but this could still be an important way to reduce 
the chance of chasing in the first place. 
 We examined the effect of model type, including those based on offspring viability versus 
adult fecundity, discrete generations versus overlapping generations, the effect of multiple 
mating, and the effect of different density-dependent growth curves. Our conclusions allowed 
us to determine why population elimination may be more difficult in spatial mosquito-specific 
models (Champer et al. 2022) than for more commonly used discrete-generation models. These 
variants could be more or less applicable to particular species, underscoring the critical 
importance of considering ecology for population suppression systems of gene drives. For our 
fecundity models, females in favorable low-density positions at the edge of a chasing cluster 
will disperse offspring equally into all directions, including back in the chasing cluster. In the 
viability model, offspring will be similarly dispersed, but those further away will have greater 
survival, thus allow wild-type to advance more quickly into empty areas while preventing the 
drive from similarly advancing quickly into wild-type. This promotes chasing. Overlapping 
generations with remating increases effective dispersal of individual alleles due to remating, 
and previous studies have shown that higher dispersal reduces chasing (Champer et al. 2021a). 
When remating is removed, models with overlapping generations had the same suppression 
rate as discrete generation models during chasing, though population sizes still tended to be a 
little higher. 
 While our model provides a basic understanding of chasing and how various factors can 
affect it dynamics, real-world populations may have additional factors that we did not consider 
that can substantially change these dynamics. For example, non-random migration may greatly 
influence dynamics in chasing situations where organisms are actively responding to spatial 
variation in population density. Our analysis also used simplified models that had qualitative 
differences in life history traits, but did not directly represent any particular species such as 
mosquitoes, nor did we consider spatial variation in movement or carrying capacity (both 
common in real-world locations). Finally, we did not comprehensively analyze all drive 
performance parameters, and other types of suppression drives were not considered, which can 
have large performance differences (Champer et al. 2021a; Faber et al. 2021; Liu & Champer 
2022; Faber et al. 2023). 

In summary, this study provides a method to quantify chasing population dynamics and 
explore the effect of drive performance, density dependence, and life history traits. Here, we 
used a female fertility homing drive to research chasing dynamics, but our detection and 
evaluation system can apply to many other population suppression gene drive systems that have 
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different mechanisms. This study further expands our knowledge on the relationship between 
spatial population dynamics and gene drive performance, which could be incorporated into 
more detailed economic or disease models. These considerations will be important for 
determining the necessary drive performance for success in different species, and whether any 
future suppression gene drives could potentially be considered as release candidates. 
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Supplemental Information 

Table S1 Default parameter values for simulations 

Parameter Value 

Drive conversion 0.9 

Germline resistance 0.5*(1-drive conversion) 

Embryo resistance 0.1 

Female heterozygote fitness 0.9 

Population density 20,000 

Area 1 

Density-dependent growth curve concave 

Average dispersal distance 0.05 

Low-density growth rate 6 

Competition distance 0.01 

 

 
Figure S1 Drive loss rates. Simulations use the discrete-generation fecundity model with 20 
simulations for each combination of varying drive conversion and female heterozygote fitness. 
Other parameters are at their default values. Heatmaps show rates of (A) drive loss without 
chasing and (B) drive loss during chasing. 
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Figure S2 Sample data for drive performance evaluation regression. We released drive 
into a discrete-generation fecundity population model with a drive conversion of 0.88, 
embryo resistance of 0.8, and other parameters at default. In a panmictic model, the 
relationship between (A) drive or (B) r2 frequency and their relative increase rate is shown. 
In a spatial model with a central release, the relationship between (C) drive or (D) r2 
frequency and their relative increase rate is shown. Red dots represent chosen samples for 
linear regression. 
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Figure S3 The zero-frequency relative increase rate of drive alleles and resistance alleles. 
The drive conversion is 0.82, and other parameters are at their default values. The graph shows 
the relative increase rate when the drive and resistance alleles are at very low frequencies, based 
on trendlines of drive performance data (see Figure S2). 

 
Figure S4 Suppression drive characteristics. With a germline resistance of 0.0 and embryo 
resistance of 0.4 in the discrete-generation panmictic model, heatmaps show (A) the genetic 
load, (B) the zero-frequency relative increase rate of the drive, and (C) maximum drive 
frequency at equilibrium for varying drive conversion and female heterozygote fitness. With a 
drive conversion of 0.65 and female heterozygote fitness of 0.95, heatmaps show (D) the 
genetic load, (E) the zero-frequency relative increase rate of the drive, and (F) the maximum 
drive frequency at equilibrium with varying germline resistance and embryo resistance. 
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Figure S5 Drive loss rates and number of chasing clusters in different models. With a drive 
conversion of 0.86, female heterozygote fitness of 0.8, and other parameters at default values, 
the (A) drive loss rates per generation of chasing and the (B) average number of chasing clusters 
are displayed. Error bars in (A) are 95% confidence intervals of the estimated success 
probability from the Bernoulli distribution. Error bars in (B) represent the standard deviation. 
Chi-squared test indicates are ns: not significant, * p < 0.05, ** p < 0.01, *** p < 0.001. 

 

Figure S6 The influence of remating on the drive loss rate during chasing and number of 
chasing clusters. With a drive conversion of 0.86, female heterozygote fitness of 0.8, and other 
parameters at their default values, the (A) drive loss rates per generation of chasing and the (B) 
average number of chasing clusters are displayed. Error bars in (A) are 95% confidence 
intervals of the estimated success probability from the Bernoulli distribution. Error bars in (B) 
represent the standard deviation. Fisher’s exact test indicates ns: not significant, * p < 0.05. 
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Figure S7 Duration of chasing with varying density growth curve. With a population 
density of 50,000 and other parameters at their default values, the graph shows the average 
duration of chasing with variable low-density growth rate and different density-dependent 
growth curve. Each point is the average of 200 simulations. 
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