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Introduction

It is just alarming and ever surprising how rapidly a com-
municable novel coronavius (2019-nCoV), cause of novel 
coronavirus disease 2019 (COVID-19), has been spreading 
in the world in the twenty-first century [1–3]. 2019-nCoV 
is also known as severe acute respiratory syndrome (SARS) 
coronavirus 2 (SARS-CoV-2). World Health Organization 
(WHO) characterized COVID-19 as world pandemic [4]. So 
far, more than million deaths have been reported from 216 
countries and territories [5]. Every death makes us painfully 
aware that our swords are blunt till date in the battle against 
this hazardous COVID-19.

Researchers around the world have been trying differ-
ent options to restrict the virus replications [6–15]. How-
ever, there is still no effective drug/vaccine against this 
virus. In this situation, emphasis should also be given to 
the systematic rational drug discovery against different tar-
gets of the virus. Among the different targets, two proteases 
namely papain-like protease (PLpro) and a 3C-like protease 

(3CLpro) are very crucial for virus replication and are con-
sidered as important druggable targets [3, 6, 7, 16–22]. The 
PLpro enzyme also shows deubiquitinating (DUB) and deIS-
Gylating activities [9, 16]. As a result, it is also responsible 
for host cell immune suppression due to the inactivation of 
NF-κB pathway (Fig. 1). In addition, the structures of differ-
ent PLpro enzymes are very similar in different coronavirus, 
and therefore, it is considered as a target for broad-spectrum 
inhibitor development.

Naphthalene is the most straightforward member of the 
class of PLpro inhibitors [23–26], in which a couple of 
benzene rings are fused in the ortho positions. Numerous 
naphthalene-containing molecules have also been reported 
to boast significant antimicrobial property. A commonly 
used dye, β-naphthol, exhibits antimicrobial activity [27]. 
In addition, naphthyl-based drugs including naftifine, terbi-
nafine, nafacillin, tolnaftate, etc., are found to possess anti-
microbial property [27–29]. Ratia and collaborators first 
introduced naphthyl derivatives those were likely to act as 
non-covalent competitive inhibitors of PLpro [23]. Naphthyl 
derivative binds within the S4-S3 subsites of the enzyme, 
thereby inducing a loop closure which ultimately results 
in conformational change and manifests the PLpro active 
site as non-functional. Several other naphthyl derivatives 
were further reported as PLpro inhibitors [23–26]. In recent 
times, the interest on naphthyl derivatives is tremendously 
increased as these derivatives have shown potential SARS-
CoV-2 PLpro inhibition [30].

Thus, in this work, we have focused our attention on 
naphthyl derivatives as SARS-CoV-2 PLpro inhibitors. 
Multiple modelling strategies were applied with these mot-
tos: (a) identification of important fingerprints that mod-
ulate the SARS-CoV PLpro inhibition and (b) scope of 
naphthyl derivatives to target SARS-CoV-2 PLpro though 
ligand–receptor interaction analysis. The current study, 
a part of our rational antiviral drug design and discovery 

Sk. Abdul Amin and Kalyan Ghosh have equal contribution.

 *	 Tarun Jha 
	 tjupharm@yahoo.com

 *	 Shovanlal Gayen 
	 shovanlal.gayen@gmail.com

1	 Natural Science Laboratory, Division of Medicinal 
and Pharmaceutical Chemistry, Department 
of Pharmaceutical Technology, Jadavpur University, P. O. 
Box 17020, Kolkata, India

2	 Laboratory of Drug Design and Discovery, Department 
of Pharmaceutical Sciences, Dr. Harisingh Gour University, 
Sagar, Madhya Pradesh, India

3	 Department of Biotechnology and Bioinformatics, School 
of Life Sciences, University of Hyderabad, Hyderabad, 
Telangana, India

http://orcid.org/0000-0002-9996-738X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11030-021-10198-3&domain=pdf


216	 Molecular Diversity (2022) 26:215–228

1 3

programme [31–34], may offer an initiative to explore the 
possibility of broad spectrum inhibitors against the PLpro 
enzyme in case of both SARS-CoV and SARS-CoV-2.

Methods and materials

Dataset

In order to accelerate the drug discovery effort against coro-
navirus, a set of diverse naphthyl derivatives belonging to 
a collection of SARS-CoV PLpro inhibitors were collected 
with inhibitory activities (IC50) [23–26]. The naphthyl deriv-
atives with no activity and without definite activity were 
eliminated initially and followed by removal of duplicates 
from the study. Thus, remaining fifty-six molecules were 
considered for the further study (Table 1).

Classification‑based QSAR study

The classification modelling assists to classify the active and 
inactive molecules in terms of their biological data. Here, we 
have employed structural and physico-chemical interpretation 
(SPCI) [35, 36] and Monte Carlo-based coral QSAR [37–41] 
studies.

For these studies, the SARS-CoV PLpro pIC50 value, 5.3, 
was considered as the threshold value. Compounds having the 
SARS-CoV PLpro pIC50 value of 5.3 or more were classified 
as higher PLpro inhibitors or actives and those with less PLpro 
pIC50 than threshold value were distinguished as inactives.

Structural and physico‑chemical interpretation (SPCI) 
analysis

Structural and physico-chemical interpretation (SPCI) study 
[35, 36] was solicited to identify and estimate contributions 
of scaffolds and/or linkers and/or single substituent to these 
naphthyl-based SARS-CoV PLpro inhibitors. At first, descrip-
tors were calculated by the aid of SiRMS tool followed by 
model development and validation. Four different classifica-
tion QSAR models were undertaken by using machine learn-
ing approaches including gradient boosting classification 
(GBC), random forest (RF), support vector machine (SVM), 
and k-nearest neighbour (kNN). The developed models were 
evaluated by statistical parameters such as balanced accuracy, 
sensitivity, and specificity [36]. Furthermore, molecular frag-
mentation of the dataset was done to estimate the contribu-
tion from the developed models. Fragments consist of at most 
three attachment points were preferred, and subsequently, 
preferred fragments were counted by RDKit in combination 
with SMARTS pattern [! #1]! @! = ! # [! #1]. Lastly, the over-
all contribution of the different fragments and their median 
fragment contribution graphs were generated by using rspciR 
software package [42].

Monte Carlo optimization‑based QSAR study

Monte Carlo optimization method was used to identify the 
important structural fingerprints that are exclusively respon-
sible for promoting or hindering of activity [37–41]. Here, 
the molecular structures of the different inhibitors were rep-
resented by SMILES (Simplified Molecular Input Line Sys-
tem) format. These symbolic notations were used to represent 
structural attributes such as atoms, bonds, etc., and to calculate 

Fig. 1   Schematic plot for SARS-CoV-2 genome (PLpro enzyme is highlighted in red color)
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Table 1   List of molecules considered for the modelling study\

R1 N

R3 R4
O

R5
R2

Entry Comp No IC50 (µM) R1 R2 R3 R4 R5

1 3 8.7 2-naphthyl 2-CH3 (R)-CH3 H H
2 4 14.5 2-naphthyl 2-Cl (R)-CH3 H H
3 6 2.3 1-naphthyl 2-CH3 (R)-CH3 H H
4 7 2.6 1-naphthyl 2-CH3, 5-AcNH (R)-CH3 H H
5 8 7.3 1-naphthyl 2-CH3, 5-NO2 (R)-CH3 H H
6 9 0.6 1-naphthyl 2-CH3, 5-NH2 (R)-CH3 H H
7 59 14.8 2-naphthyl 3-CH3 (R)-CH3 H H
8 60 29.1 2-naphthyl 4-CH3 (R)-CH3 H H
9 61 90 2-naphthyl 2-OCH3 (R)-CH3 H H
10 62 13.5 2-naphthyl 3-OCH3 (R)-CH3 H H
11 63 149 2-naphthyl 4-OCH3 (R)-CH3 H H
12 64 12.1 2-naphthyl 2,6-diCH3 (R)-CH3 H H
13 65 46.1 2-naphthyl 4-NH2 (R)-CH3 H H
14 67 22.6 1-naphthyl 2-CH3 (R)-CH3 H CH3

15 68 24.8 1-naphthyl 4-NH2 (R)-CH3 H H
16 71 11.1 1-naphthyl 2-CH3, 5-NH2 (R)-CH3 CH3 H
17 72 5.2 1-naphthyl 2-CH3, 5-CN (R)-CH3 H H
18 73 2.7 1-naphthyl 2-CH2OCH3, 5-NH2 (R)-CH3 H H
19 74 1.4 1-naphthyl 2-CH3, 5-I (R)-CH3 H H
20 75 4.8 1-naphthyl 2-CH3, 5-CH2NHBoc (R)-CH3 H H
21 76 1.3 1-naphthyl 2-CH3, 5-CH2NHCH3 (R)-CH3 H H
22 77 0.46 1-naphthyl 2-CH3, 5-CH2NH2 (R)-CH3 H H

R1 N
H
N

O

R3

R2

R4

Entry Comp No IC50 (µM) R1 R2 R3 R4

23 18 2.2 1-naphthyl H (R)-CH3 H
24 19 13.5 1-naphthyl H (R)-CH3 (R)-CH3

25 20 12.7 1-naphthyl H (R)-CH3 (S)-CH3

26 21 18 1-naphthyl H (R)-CH3 (R)-CH2-O-CH3

27 22 1.9 1-naphthyl H (R)-CH3 (S)-CH2-O-CH3

28 23 0.47 1-naphthyl 4-CH2CH3 (R)-CH3 H
29 24 0.6 1-naphthyl 4-CO-NH-CH3 (R)-CH3 H
30 25 0.63 1-naphthyl 3-CO-NH-CH3 (R)-CH3 H
31 26 5.7 1-naphthyl 4-NH-CO-CH3 (R)-CH3 H
32 27 0.39 1-naphthyl 3-NH-CO-CH3 (R)-CH3 H
33 28 20.4 1-naphthyl 3-CH2-NH-CO-CH3 (R)-CH3 H
34 29 27.2 1-naphthyl 3-Cl (R)-CH3 H
35 30 0.58 1-naphthyl 4-Cl (R)-CH3 H
36 31 29.2 1-naphthyl 3,4-diF (R)-CH3 H
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different molecular optimal descriptors (DCW) used for QSAR 
modelling study.

In this method, the models were generated on the basis of 
three optimal descriptors like: SMILES, graph and hybrid. The 
SMILES-based optimal descriptors used in the study were cal-
culated as:

where T represents threshold and N is number of epoch used 
for generation of models. Further, the constants like: a, b, c, 
d, α, β and γ represents different coefficients that are used 
to modify the descriptors. The CW stands for correlation 
weight of specific structural attributes for PLpro inhibition.

Global SMILE attributes include NOSP (presence or 
absence of nitrogen, oxygen, sulphur and phosphorus atom), 
HALO (presence or absence of halogen groups like: fluorine, 
chlorine, bromine and iodine), BOND (presence or absence 
of bond like: = is double bond, # is triple bond and @ is ste-
reo-chemical bond), and ATOMPAIR (represents presence 

SMILES
DCW (T , N) = aCW (ATOMPAIR) + bCW (NOSP) + c CW (BOND)

+ d CW (HALO) + � ΣCW
(

S
k

)

+ � ΣCW
(

SS
k

)

+ � ΣCW
(

SSS
k

)

of two atom consecutively). The local SMILE attributes 
are Sk (signifies presence of only one SMILES atom like: 
C……, N….. etc.), SSk (combination of two SMILES atoms 
like: C….N…., C….C…. etc.), and SSSk (denotes combina-
tion of three SMILES like: C…..N…C, N…(….c…. etc.).

The graph-based descriptors comprise of three types 
they are: GAO (graph of atomic orbital), HSG (hydrogen-
suppressed graph) and HFG (hydrogen-filled graph). These 
graph-based descriptors are calculated by means of different 
molecular connectivity indices like: 0ECk,1ECk and 3ECk. 
The graph-based descriptors are represented as:

Here, the chemical atoms like C, N, O, etc., are repre-
sented by Ak. The coefficients having value 0 and 1 are 
denoted by as α, β and γ. The coefficients having value 1 
are generally used for model building, whereas 0 value are 
excluded. Further, the notations like: 0ECk, 1ECk and 3ECk 
denotes different Morgan’s connectivity indices used in the 

GraphDCW (T , N) = � ΣCW
(

Ak

)

+ � ΣCW
(

0ECk

)

+ gΣCW
(

1ECk

)

+ � ΣCW
(

2ECk

)

+ �ΣCW
(

3ECk

)

a tail function has different scaffold

Table 1   (continued)

R1 N
H
N

O

R3

R2

R4

Entry Comp No IC50 (µM) R1 R2 R3 R4

37 32 0.49 1-naphthyl 4-F (R)-CH3 H
38 33 0.15 1-naphthyl 3-F (R)-CH3 H
39 38a 26.3 1-naphthyl Tail: 3-Pyridinyl-CH2 (R)-CH3 H
40 39a 18.3 1-naphthyl 4-Pyridinyl-CH2 (R)-CH3 H
41 40a 0.35 1-naphthyl Tail: 2-OCH3-4-Pyridinyl-CH2 (R)-CH3 H
42 41a 1.6 1-naphthyl Tail: 4-Cl-Ph-CH2-CH2 (R)-CH3 H
43 42a 1.9 1-naphthyl Tail: 3-F-Ph-CH2-CH2 (R)-CH3 H
44 43 59.2 1-naphthyl 4-OCH3 H H
45 44 116 1-naphthyl 2-OCH3 H H
46 45 30 1-naphthyl 3-OCH3 H H
47 46 1.21 1-naphthyl 2-OCH3 (R)-CH3 H
48 47 0.34 1-naphthyl 3-OCH3 (R)-CH3 H
49 48 0.34 1-naphthyl 4-OCH3 (R)-CH3 H
50 49 13.2 2-naphthyl 3-OCH3 (R)-CH3 H
51 50 34.8 2-naphthyl 2-OCH3 (R)-CH3 H
52 51 5.8 2-naphthyl 3-OCH3 (S)-CH3 H
53 53 0.67 1-naphthyl 1,3-dioxolane (R)-CH3 H
54 54 0.56 1-naphthyl 1,3-dioxolane (S)-CH3 H
55 55 45 1-naphthyl 1,3-dioxolane H H
56 56 100 2-naphthyl 1,3-dioxolane H H
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study [41]. Thus, the combination of SMILES and graph-
based descriptors forms hybrid descriptors which are rep-
resented as:

In our study, twenty-one robust classification models were 
generated from three different splits on the basis of optimum 
descriptors (SMILES, graph and hybrid) using the balance of 
correlation method. The dataset consisting of 56 compounds 
was distributed into the sub-training (25 compounds), cali-
bration (21 compounds) and test (10 compounds). The train-
ing set compounds were used for model building, calibration 
set was used to check the predictive potential and to prevent 
overtraining of the model, and the test set is used as an esti-
mator to validate the models developed using training and 
calibration set [43, 44]. Optimization of T (threshold) and N 
(epoch) values are also performed separately for each model. 
Here, the number of threshold required for molecular feature 
extraction from SMILES is represented by T value, and N 

HybridDCW (T , N) =SMILES DCW (T , N) +Graph DCW (T ,N)

(epoch) value denotes number of iterations used in Monte 
Carlo optimization methods (Fig. 2).

Molecular docking study

The molecular docking experiments were implemented with 
the help of AutoDock Vina [45]. Prior to docking study, 
polar hydrogen atoms were added by the aid of AutoDock 
Tools (ADT) [46] in order to relax the conformational strain. 
The docked poses of naphthyl derivatives were visualized by 
using the Discovery Studio 3.5 Visualizer [47].

MD simulations

The MD simulations for apo and each complex form of the 
protein were conducted by the GROMACS v5.1.4 [48] using 
GROMOS96 45a3 force field [49] for the parameterization 
of the protein. The ligand topology was generated through 
GROMOS96 force field by the PRODRG 2 server [50]. Each 

Fig. 2   Schematic representation of current work design
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of the system was solved by the SPC/E water molecules, 
and the charge on simulating systems was neutralized by 
providing the equal number of counter ions [51]. Then, 
minimization of the systems was executed by the steepest 
descent algorithm in 50,000 steps. After the minimiza-
tion, each system was subjected to the position restrained 
NVT (300 K) and NPT (1 atm) simulations of 100 ps for 
the equilibration according to the mentioned temperature 
and pressure. Equilibrated systems were then submitted for 
the non-position restrained production simulations of 20 ns 
each, and the generated data of MD were then used for the 
enumeration of the RMSD, RMSF and Rg data of the protein 
backbone, which helps in structural analysis during dynam-
ics. The binding energy of each complex was calculated by 
g_MMPBSA package of the GROMACS considering 200 
frames from 20 ns data of simulations [52].

Result and discussions

In this twenty-first century, health crisis posted by SARS-
CoV-2 outbreak, drug repurposing and/or screening of 
SARS-CoV inhibitor databases is the fastest option in terms 
of strategic and economic way. However, systematic and 
rational drug discovery approaches to find potent inhibi-
tors against different targets of SARS-CoV-2 should not be 

ignored. In this connection, the inhibitors already designed 
against SARS-CoV will be very helpful due to the sequence 
similarity between them. Different modelling approaches 
were applied on naphthyl derivatives as SARS-CoV PLpro 
inhibitors as outlined in Fig. 2.

Classification‑based QSAR study

Performing classification-based structural and physico-
chemical interpretation (SPCI) and Monte Carlo-based coral 
QSAR methods enable interesting visualization of impor-
tant chemical sub-structural features attributed to enhance or 
decrease the SARS-CoV PLpro inhibitory properties. Con-
sidering the potency threshold value, out of 56 compounds, 
31 compounds were identified as lower and 25 compounds 
were denoted as higher SARS-CoV PLpro inhibitors.

SPCI analysis

In our study, four different models like gradient boost-
ing machine (GBM), random forest (RF), support vec-
tor machine (SVM) and k-nearest neighbour (kNN) were 
developed. The different tuning parameters used to build 
the machine learning models for naphthyl-based PLpro 
inhibitors are given in Table S1. The models generated by 
using SPCI analysis were found to have acceptable statistical 
parameters as shown in Table 2.

Among four different models (GBM, RF, SVM and kNN), 
GBM and RF models are found to have similar statistical 
parameters. Further, a consensus model was generated in 
order to remove the biasness of the individual model; this 
was further considered for the interpretation. The contribu-
tions of different fragments obtained from the SPCI analysis 
are shown in Fig. 3.

A limpid trend of structure–activity (SARS-CoV PLpro 
inhibition) relationship is recognized in Fig. 3. Piperidine 
moiety, acyclic CONH, aromatic NH2, aromatic halogen and 

Table 2   Five-fold cross-validation performance for classification 
model built in this study

Model Balanced accu-
racy

Sensitivity Specificity

GBM 0.73 0.76 0.71
RF 0.73 0.72 0.74
SVM 0.68 0.56 0.81
kNN 0.55 0.32 0.77

Fig. 3   Contribution plot of different fragments (present in at least 5 
compounds) identified by using consensus (red), GBM (light green), 
kNN (dark green), RF (cyan), and SVM (purple) models. The num-
bers M and N are different, signify the number of compounds con-

taining a fragment and the number of fragments present in the data-
set, respectively as some compounds have several identical fragments 
and contributions of those fragments were calculated separately
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phenyl unsubstituted functions exhibit positive effects on 
SARS-CoV PLpro inhibitory activities, whereas phenoxy and 
methoxy group attached with an aromatic ring suggest clear 
negative influence on biological properties (Fig. 3).

Monte Carlo‑based Coral QSAR study

In Monte Carlo optimization, a total of twenty-one differ-
ent models from three different splits were generated using 
SMILES and graph-based descriptors with a combination of 
different connectivity indices calculated for generation of dif-
ferent models (Table S2). Each models were developed after 
the search for desirable T (threshold) and N (epoch) values. 
Among these models (Table S2), the model M3 (SMILES 
and GAO with 1ECkconnectivity of split-1) was found to be 
the best model and was used for the physical interpretation of 
structural fingerprints for PLpro inhibition (Table 3).

The best model from each split is shown in bold face.
The end point values calculated for M3 are shown below:

Different structural attributes of the best model M3 
obtained from Monte Carlo optimization method are 
depicted in Table S3.

Interpretation of the QSAR models

Each compound of this dataset can be represented as con-
sisting of three parts: head and tail connected by a linker 
moiety (Fig. 4).

As the head region is structurally conserved in between 
1 and 2-naphthyl, maximum influenced sub-structure/

Endpoint = 0.1381188 (± 0.0113900) + 0.0308263 (± 0.0006586) ∗ DCW (4, 5)

fingerprints were noticed from linker and tail portions. 
More interestingly, a limpid trend of structure–activity 
(SARS-CoV PLpro inhibition) relationship was recog-
nized in Fig. 3. From the SAR study, it can be conferred 
that the 1-naphthyl head was preferable over the 2-naph-
thyl prototypes. Thus, the polarizability of the 1-naph-
thyl function modulates the binding against SARS-CoV 
PLpro (Fig. 5a). The importance of a single methyl sub-
stituent at the R3 position when compared to unsubstituted 
compounds 43–45, 55–56. Notably, the stereo-chemical 
pattern of the methyl substituent was a critical factor to 
modulate PLpro binding affinity. This can be understood 

Table 3   The statistical characteristics of the best classification models of each split obtained from Monte Carlo optimization method

The best model from each split is shown in bold face

Parameter Set TP TN FP FN N Sensitivity Specificity Accuracy MCC

Split-1
M3 SMILES, GAO (1ECk) Sub-Training 10 14 1 0 25 1.0000 0.9333 0.9600 0.9211

Calibration 9 12 0 0 21 1.0000 1.0000 1.0000 1.0000
Test 5 4 0 1 10 0.8333 1.0000 0.9000 0.8165

Split-2
M11 SMILES, HFG (0ECk) Sub-Training 13 10 2 0 25 1.0000 0.8333 0.9200 0.8498

Calibration 8 13 0 0 21 1.0000 1.0000 1.0000 1.0000
Test 4 4 2 0 10 1.0000 0.6667 0.8000 0.6667

Split-3
M21 SMILES, HSG (1ECk) Sub-Training 10 13 1 1 25 0.9091 0.9286 0.9200 0.8377

Calibration 10 10 1 0 21 1.0000 0.9091 0.9524 0.9091
Test 4 5 1 0 10 1.0000 0.8333 0.9000 0.8165

Fig. 4   Naphthyl derivaties featuring head (cyan) and tail (purple) 
connected by a linker marked as red
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by observing the X-ray crystal structure of the compound 
53-bounded SARS-CoV PLpro complex (Fig. 5b) where 
the (R)-methyl enantiomer extends into an interior of the 
PLpro enzyme between Tyr-265 and Thr-302.24 Similarly, 
(R)-1-naphthylethylamide of compound 9 interacted with 
Tyr-265 and Tyr-269 aromatic rings and with side chains 
of Pro-248 and Pro-249 and consequently forms hydro-
phobic interactions.23 Báez-Santos and collaborators24 
very nicely explained the loss of PLpro inhibitory activity 
with proportional to substituent size at R3 position, due to 
the potential entropic gain by displacing the water mol-
ecules lead to a larger enthalpic penalty of breaking the 
H-bonds (between these water molecules and aminoacid 
residues D165, R167, Y274, T302 and D303). Thus, in all 
docking calculations as well as reported crystal structures 
with different inhibitors (PDB: 4OW0, 3MJ5, 4OVJ), the 

conserved water molecules were present in the binding site 
for ligand–receptor interactions.

Piperidine moiety, acyclic CONH, NH2, aromatic halo-
gen and phenyl unsubstituted functions exhibited positive 
effects on SARS-CoV PLpro inhibitory activities (Fig. 5c–f). 
However, the methoxy group attached with an aromatic ring 
suggested clear negative influence on biological proper-
ties. Figure 3 predicted the positive contribution of acyclic 
CONH and aromatic NH2 in the PLpro inhibition. This can 
be justified by the SAR observation. At the middle posi-
tion, the amide NH was demonstrated to be an optimal 
feature for PLpro inhibition. Addition of a methyl group 
at amide nitrogen resulted in significantly differing activ-
ity levels (the N-methyl derivative 67, IC50 = 22.6 μM vs 
compound 6, IC50 = 2.3 μM). In addition, the aromatic NH2 
was found to be conducive for compounds 9 (IC50 = 0.6 μM), 

Fig. 5   Importance of different 
fingerprints for the inhibition of 
SARS-CoV PLpro enzyme: Ori-
entation of 1-napthyl group in 
interactions with P248, P249 as 
well as Y269 for the best active 
inhibitor 33 in PDB: 4OW0 (a); 
position of methyl substituent of 
inhibitor 53 in interaction with 
T302 and Y265 in PDB: 3MJ5 
(b); position of unsubstituted 
phenyl moiety in the docking 
pose of inhibitor 22 (c); interac-
tion of piperidine moiety in the 
linker part with the amino acids 
in PDB: 4OW0 (d); Importance 
of CONH fragment in H-bond 
interactions with the main chain 
of amino acids G164, Y269 in 
PDB: 4OW0 (e); interaction 
of amino group in the docking 
pose of inhibitor 77 with the 
amino acid D165 (f) 
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29 (IC50 = 11.1 μM), 7 (IC50 = 2.6 μM), 40 (IC50 = 2.7 μM), 
26 (IC50 = 5.7 μM), 27 (IC50 = 0.39 μM); consequently, this 
feature increased the biological property against SARA-CoV 
PLpro. These observations were also in agreement with the 
descriptors of Monte Carlo-based QSAR analysis where the 
structural attributes ‘N…1…(…’ explained importance of 
a nitrogen atom outside any ring which is attached to an 
aromatic ring having branching (Table S3).

Table S3 demonstrated the importance of ‘C…(…1…’ 
that can be decoded as sp3 carbons with branching attached 
to a ring. This is explained by the presence of methylamine 
fragments, another promoter of activity which contrib-
utes to increase of biological activity against SARS-CoV 
PLpro. This can be explained by compound 77 where 
incorporation of 5-methylamine substituent on the ben-
zamide ring would result in escalation of the inhibitory 
activity (IC50 = 0.46 μM). Thus, addition of donor groups 
(− NH2) at the benzamide ring can lead to promising 
PLpro inhibitory activity (Fig. 5f). Further introduction of 
a methyl function to the amine group of 77 yielded com-
pound 78 with minutely narrowed PLpro inhibitory activ-
ity (IC50 = 1.3 μM). However, compound 78 exhibits slight 
enhancement of anti-SARS-CoV potency (EC50 = 5.2 μM) 
compared to compound 77 (EC50 = 6 μM). Compounds 65 
and 68 were poor PLpro inhibitors, both comprising p-NH2 
at R2 position. Therefore, it was evidenced that p-NH2 alone 
at R2 position might hamper the binding with the PLpro 
enzyme.

The presence of ‘O…(…1…’ (as evidenced by the Monte 
Carlo-based QSAR analysis) can be decoded by comparing 
compounds 43–45, 50, 61 and 63 where OCH3 substitution 
negatively influenced the PLpro inhibitory activity (IC50 
range 30 to 149 μM). Thus, increasing the level of negatively 
charged atom with hydrophobic characteristics of methoxy 
function at the terminal phenyl ring would result in fall of 
the biological activity against PLpro. This observation can 
be understood by the molecular interaction that substituents 
in 4-position of tail phenyl ring should be from a positively 
charged group with additional demand of hydrophilic effects.

As mentioned previously, Fig. 3 showed the contribu-
tions of the unsubstituted phenyl function, positively, to the 
SARS-CoV PLpro inhibitory activity (Fig. 5c). This obser-
vation may clearly be explained by comparing the naphthyl 
derivatives 18–22 (bearing unsubstituted phenyl tail), whose 
IC50 values were found in between the range of 1.9 and 18. 
However, the marked differences in the PLpro inhibitory 
activities of these compounds were due to the type of R4 
substituents. Moreover, the effect of stereochemistry of 
R4 substituents ‘C…@…….’ (as evidenced by the Monte 
Carlo-based QSAR analysis) played critically (compounds 
21 vs 22). A tenfold decrease in PLpro inhibitory activ-
ity was manifested for (R)-methoxymethyl containing 21 
(IC50 = 18 μM), compared to the corresponding S-isomer 22 

(IC50 = 1.9 μM). Overall, the minute observation of the SAR 
study of these naphthyl derivatives 18–22 suggested that 
R4 substituents were not at all pleasurable towards biologi-
cal activity because the most active analogue in this series, 
22, was similar effective the R4 unsubstituted prototype 18 
(IC50 = 2.2 μM).

More interestingly, methylcarboxamide (compounds 
24–25) and more electronegative halogen (compounds 
32–33) substitutions at the 3rd or 4th position of the termi-
nal phenyl ring manifested improvement in potency com-
pare to the corresponding unsubstituted analogue 18. Fig-
ure 3 clearly expressed the importance of aromatic halogen 
substitutions.

Additionally, dioxolane derivatives 53–54 and 4-ethyl 
prototype 23 (IC50 = 0.47 μM) also showed promising inhibi-
tory activity against PLpro. The dioxolane group contributed 
positively to the PLpro inhibitory property not because of 
the interaction with Gln270 only; there should be another 
effect which contributed largely to the substituted phenyl 
derivatives to improve the biological potency. As noted, 
the mono-fluoro substitution at the phenyl ring induced 
conspicuous polarization effects in the π-system of the 
associated terminal phenyl ring and consequently, showed 
improved binding affinity with the PLpro active site amino 
acids residues.

Notably, the substitutes at the phenyl ring ‘[…(…1…’ 
(as evidenced by the Monte Carlo based QSAR analysis) 
were sensitive to the positional isomers (meta vs para trail). 
The PLpro inhibitory potency of the compounds bear-
ing the acetamido group at meta position (compound 27: 
IC50 = 0.39 μM) significantly diverged from para aceta-
mido derivative (compound 26: IC50 = 5.7 μM), where the 
acetamido function tolerated only at the meta position. A 
swing in the meta vs para trail was observed with the chloro 
substituted positional isomers [29 (IC50 = 27.2 μM) vs 30 
(IC50 = 0.58 μM)], where meta-Cl containing 29 resulted in a 
∼47-fold drastic loss in potency. Although meta vs para trail 
could not justify the effect of fluoro substituted positional 
isomers (compounds 32–33), surprisingly, 3,4-difluoroben-
zyl variant 31 possessed a significant detrimental effect on 
the PLpro inhibitory potency (IC50 = 29.2 μM). The addi-
tional fluoro function might increase the negative charge 
characteristic of compound 31, thereby tailed off its PLpro 
inhibitory activity.

Implications of naphthyl derivatives as SARS‑CoV‑2 
PLpro inhibitors

PLpro inhibitors have the potential to be broad spectrum 
inhibitors due to high sequence similarities of PLpro enzyme 
in different CoVs. It is interesting to know whether these 
naphthyl derivatives are effective also in SARS-CoV-2 
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PLpro target along with SARS-CoV PLpro. We have done 
both molecular docking and molecular dynamics simula-
tions of three naphthyl derivatives, compounds 23, 27 and 
32, against SARS-CoV-2 PLpro target (PDB: 6WUU). The 
energy minimized geometry of naphthyl derivatives were 
considered for the docking experiments against SARS-
CoV-2 PLpro by the aid of AutoDock Vina [45]. The dock-
ing results are depicted as Fig. 6.

Figure 6 highlighted the superimposition of docking 
poses of compounds 23, 27 and 32 in SARS-CoV-2 PLpro 
(PDB: 6WUU). The docking analysis clearly highlights that 
naphthyl derivatives can nicely bind with the binding pocket 
of SARS-CoV-2 PLpro.

MD simulations

After the selection of the lowest energy conformation from 
the docking output of compounds 23, 27 and 32 (Fig. 7a–c), 
the stability of the protein structure with those ligand con-
formations was analysed by MD simulations. The calculated 
average RMSD of the apo, prt-23, prt-27, and prt-32 are 
0.320, 0.315, 0.309, and 0.357 nm, respectively. Data of the 
average RMSD showed that each of the complex protein 
structure has almost similar structural deviations like the 
apo form during dynamics (Fig. 7d). But as depicted in the 
Fig. 7d, the backbone deviation of protein structure is more 
stable with the compound 23 in comparison of other com-
pounds. Average RMSF in the residues of the apo, prt-23, 
prt-27 and prt-32 are calculated to be 0.142, 0.132, 0.133 
and 0.143 nm during the dynamics, respectively (Fig. 7e). 
These revealed that the fluctuations in the residues of pro-
tein are more relaxed after binding of compounds 23 and 
27 as compared to compound 32 that presented fluctuation 
similar to apo protein. To analyse the induced changes in the 
compactness of protein structure after binding of ligand, the 
Rg data of each complex is compared with that of the apo 
form (Fig. 7f). The average Rg in the backbone structure of 

the apo, prt-23, prt-27, and prt-32, are enumerated as 2.338, 
2.327, 2.330, and 2.305 nm, respectively, which showed that 
the compactness of the structure in the apo and complexes 
in similar during the dynamics. The plotted data (Fig. 7f) 
depicted that the compactness of the protein backbone is 
slightly better in the presence of compound 32 in compari-
son to other compounds and apo protein.

 Hence, comparative MD data analysis delineated that 
the protein bound with compounds has retained apo-like 
backbone deviations and compactness along with low fluc-
tuations in the residues throughout the dynamics. Addi-
tionally, stability of each ligand conformation in the active 
site of the PLpro substantiates the docking studies.

The g_MMPBSA tool of the GROMACS is also used to 
determine the affinity of the compounds with protein as well 
as the free energy terms responsible for the affinity (Table 4).

The binding energy analysis showed that the compound 
32 has more affinity towards protein during the dynamics in 
comparison with other compounds. Throughout the simu-
lation, both of the electrostatic and van der Waals energy 
terms contributed majorly for the affinity between the com-
pound and protein in the complexes.

This above analysis proves that naphthyl derivatives have 
potential to be inhibitor against SARS-CoV-2 PLpro enzyme. 
All the structural attributes identified by our different model-
ling approaches may be valid for SARS-CoV-2 PLpro enzyme 
also. Therefore, it can be emphasized that the naphthyl deriva-
tives have potential to use as a seed for ligand design as well 
as optimization against SARS-CoV-2 PLpro enzyme by tak-
ing different modelling insights performed in this study.

Conclusion

Human coronavirus infections had almost been forgotten, 
and it was not challenged until novel coronavirus out-
break in December 2019. As per the recent World Health 

Fig. 6   Superimposition of docking poses of compounds 23, 27 and 32 (yellow) in PLpro SARS-CoV-2 (PDB: 6WUU, marine blue) in surface 
representation a and interactions with important amino acids in the binding site b 
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Organization reports, the novel corona virus may never 
be wiped out completely from the world. There are vari-
ous strategies including drug repurposing, vaccine and 
immunity approaches, etc., employed to quickly react in 
the situation. However, scientific community should also 
give serious thought to start finding inhibitors against the 
different targets of the virus through rational drug discov-
ery approaches. In this connection, the inhibitors already 
designed against different targets of previous human coro-
navirus infections will be a great starting point for fur-
ther optimization. In spite of few drugs being assessed 
clinically against COVID-19, there remains thirst for dis-
covering new molecules with increased efficacy as well 
as safety. Our research unit previously demonstrated the 
quantitative structure–activity relationship studies on 
SARS-CoV protease inhibitors [31–34].

Here, we endorsed rational drug design efforts through 
computational drug discovery approaches including 
machine learning and molecular docking studies. The 

different molecular modelling techniques such as struc-
tural and physico-chemical interpretation (SPCI) analysis 
and Monte Carlo optimization-based QSAR study collec-
tively deliver some crucial structural information modulat-
ing SARS-CoV PLpro inhibitory activities. By consider-
ing all these QSAR models, molecular docking and MD 
simulation studies, it can be concluded that:

(1) Presence of 1-naphthyl head affects the activity, 
since it modulates the interactions at the active site resi-
dues (Fig. 8). This conclusion is based on SPCI analy-
sis, Monte Carlo optimization-based QSAR and docking 
studies.

(2) The presence of a piperidine moiety is important 
for binding interaction, since it plays a significant role in 
interaction with active site residues as suggested by the 
molecular docking study (Fig. 8).

(3) The stereo-chemical pattern of the methyl substitu-
ent at R3 position is a critical factor to modulate PLpro 
binding affinity (Fig. 8). This can be understood by the 

Fig. 7   (a–c) Detailed ligand receptor interactions for compounds 23 
a, 27 b and 32 c in PLpro SARS-CoV-2 (PDB: 6WUU). (d–f) Molec-
ular dynamics plots are showing RMSD d, RMSF e and Rg f of the 

backbone-atoms of the apoPLpro SARS-CoV2 and its complexes. 
In MDS plots, apo, prt-23, prt-27, and prt-32 are represented as red, 
green, black and blue lines, respectively [here, prt = PLpro]

Table 4   The van der waals, electrostatic, polar solvation and binding energy of the different complexes

Complex van der Waals 
energy (kJ/mol)

Electrostatic energy 
(kJ/mol)

Polar solvation 
energy (kJ/mol)

SASA energy (kJ/mol) Binding energy (kJ/mol)

Compound 23  − 164.41 ± 1.55  − 157.97 ± 1.44 305.51 ± 1.83  − 18.15 ± .11  − 34.95 ± 1.45
Compound 27  − 171.79 ± 0.96  − 165.22 ± 2.50 307.38 ± 2.75  − 18.86 ± 0.08  − 48.45 ± 1.70
Compound 32  − 154.57 ± 1.12  − 174.01 ± 2.60 289.02 ± 2.91  − 17.54 ± 0.10  − 56.92 ± 1.96
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docking study. Similarly, (R)-1-naphthylethylamide func-
tion is important since it interacts with amino acid residues 
Tyr-265 and Tyr-269 aromatic rings and with side chain 
of amino acid residues Pro-248 and Pro-249 and conse-
quently, forming hydrophobic interactions.

(4) The unsubstituted R4 position is more favourable 
for PLpro inhibition.

(5) The amino function at the linker area is important 
to form hydrogen bond interaction with PLpro active site 
residue as evidence by the molecular docking study.

(6) Presence of p-NH2 alone at the R2 position might 
hamper the binding with the PLpro enzyme.

(7) 5-Methylamine and halogen substituent at the R2 
position are beneficial for the PLpro inhibitory activity.

(8) Methoxy substation at the R2 position is unfavour-
able for biological activity towards PLpro enzyme. This 
conclusion is based on SPCI analysis and Monte Carlo 
optimization-based QSAR studies (Fig. 8).

Significantly, the above requisite structural features 
(Fig. 8) enlighten the perspective of medicinal chemists 
to develop potent PLpro inhibitors in the future. Research 
funding agencies and industries should consider in vitro 
and in vivo studies of the investigated naphthyl deriva-
tives as a seed which sustain significant hope against 
SARS-CoV-2.
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