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of solubility prediction
via quality-oriented data selection

Murat Cihan Sorkun,1,2,3 J.M. Vianney A. Koelman,1,2,3 and Süleyman Er1,2,4,*

Summary

Accurate prediction of the solubility of chemical substances in solvents remains a
challenge. The sparsity of high-quality solubility data is recognized as the biggest
hurdle in the development of robust data-drivenmethods for practical use. None-
theless, the effects of the quality and quantity of data on aqueous solubility pre-
dictions have not yet been scrutinized. In this study, the roles of the size and the
quality of data sets on the performances of the solubility prediction models are
unraveled, and the concepts of actual and observed performances are intro-
duced. In an effort to curtail the gap between actual and observed performances,
a quality-oriented data selection method, which evaluates the quality of data and
extracts the most accurate part of it through statistical validation, is designed.
Applying this method on the largest publicly available solubility database and us-
ing a consensus machine learning approach, a top-performing solubility predic-
tion model is achieved.

Introduction

The solubility of chemical compounds in water is of fundamental interest, besides being a key property in

the design, synthesis, performance, and functioning of new chemical motifs for various applications,

including but not limited to drugs, paints, coatings, and batteries. Due to time, cost, and feasibility con-

straints on experimental measurements (Murdande et al., 2011), it is usually not straightforward to obtain

the solubility data of compounds rapidly. Moreover, considering the vastness of chemical space, where the

total number of small molecules (with up to 36 heavy atoms) is approximated to reach 1033 (Polishchuk et al.

2013), it is necessary to find alternative routes for the accelerated screening of candidate molecules with

intended solubility values. Data-driven modeling holds the promise of making solubility predictions in a

tiny fraction of a second. A data-driven model development consists of three main steps: collecting and

processing train and test data, extracting and selecting key molecular descriptors, and training and testing

the model.

In recent years, there has been a burgeon of efforts that apply the above steps for the development of data-

driven solubility prediction models. Although data-driven solubility prediction models cater for achieving

results quickly, they have not yet widely been adopted in the community due to accuracy issues (Jouyban

2009). The factors that affect the performances of prediction models can be basically grouped into four cat-

egories (Haghighatlari et al., 2020): the size of data, the quality of data, the relevance of chemical descrip-

tors, and the capability of the algorithm (Figure 1A). The first two pertain to the data and the latter two

pertain to the model.

Depending on the physical domain of the problem, the above factors may vary in their significance. In the

case of solubility, the paucity of measurement data, in addition to the internal errors that result from the

uncertainties in experimental procedures, is well-known. Thus, the size and quality of data have priority in-

terest when improving the performance of solubility prediction models (Tetko et al., 2001; Jorgensen and

Duffy 2002; Bergstroom et al., 2004; Balakin et al. 2006; Hewitt et al., 2009; Wang and Hou 2011; Falcón-

Cano et al., 2020). The latter is generally accepted as the accuracy threshold of a model. In this context,

Jorgensen and Duffy stated that the accuracy of a model cannot exceed the accuracy of the experimental

data (Jorgensen and Duffy 2002). Although this statement is correct, it can further be consolidated since

machine learning (ML) algorithms are capable of dealing with errors in the training data (Kordos and
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Rusiecki 2016). To put it differently, the observed performance of a model cannot be better than the inter-

nal error of the test set. To improve the capability of solubility prediction algorithms, it is therefore impor-

tant to distinguish the actual and the observed performances of a model and to comprehend the factors

affecting them. Figure 1B shows a decomposition of the factors that affect the actual and observed perfor-

mances of a model. We define the actual performance as the accuracy of themodel that would be observed

on a test set with zero internal error. In contrast, the observed performance is the accuracy of the model

demonstrated on an available test set with internal error (Figure 1B). Obviously, when testing a model

one can obtain only the observed performance. For instance, testing a perfect model, which by definition

should predict absolute true values, on a test set with internal error of ε, will result in observed error of ε,

despite the true error being zero. Therefore, the test set quality sets the theoretical limit for the observed

performance of the model. In domains where high-quality data is accessible, the gap between the actual

and observed performances is small enough to be ignored. However, for the case of solubility, this gap has

decisive importance and should be carefully treated.

In the current work, to develop an accurate solubility prediction model, we focus on the effects of data size

and data quality on the prediction performance of ML models. Starting with the design of a quality-ori-

ented data selection method that extracts the most accurate part of the data, and applying it on AqSolDB

(Sorkun et al. 2019) – the largest publicly available solubility data set that has been curated by using mul-

tiple data sources – the Aqueous Solubility Prediction Model (AqSolPred) is developed. AqSolPred shows

superior test performance when compared to available models on a conventionally used benchmark data

set (Huuskonen 2000). In addition to quality-oriented data selection, AqSolPred comprises a consensus of

three different ML algorithms, namely Artificial Neural Network (ANN), Random Forest (RF), and Extreme

Gradient Boosting (XGB). Below, we provide a detailed description of the development process, alongside

the links to open-source codes and the data.

In the following paragraphs, we briefly review the principal factors that affect the accuracy of solubility

predictions.

The size of data

It is a well-known fact that increasing the number of data instances in the training set has a positive effect on

the accuracy of data-driven models. For instance, Lusci et al. trained four different UG-RNN models by us-

ing datasets with 1144, 1026, 74, and 125 instances, and obtained the respective root mean squared errors

(RMSEs) of 0.58, 0.60, 0.96, and 1.14 (Lusci et al. 2013). It should be noted that the size of the train and test

sets yield different impacts. While the size of the training set affects the accuracy of the model, the size of

the test set affects the reliable evaluation of the model’s accuracy. A proper test set should be both large

and diverse enough to cover the chemical space of the training set and to beminimally affected by outliers.

Moreover, the solubility values of the test set should have a distribution similar to that of the training set.

A B

Figure 1. The categorization of the affecting factors for solubility predictions and their relationship with the

actual and observed performances

(A) The three-layered structure showing the categorization of the affecting factors on the accuracy of solubility prediction

ML models.

(B) The representation of affecting factors shown by the colors and symbols in Figure 1A on the actual and observed

performances of solubility prediction models.
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For example, one of the test sets (Yalkowsky and Banerjee 1992) commonly used in the literature (Tetko

et al., 2001; Delaney 2004; Dearden 2006) consists of only 21 instances, which is not large enough for reli-

able testing. Since there had been very few solubility data publicly available, studies on solubility predic-

tion have been limited with a few thousands of compounds for training and a few hundreds of compounds

for testing (Balakin et al. 2006; Dearden 2006). With an increase in public data resources, such as AqSolDB

(Sorkun et al. 2019) consisting of a diverse set of�104 compounds, it is becoming more feasible to conduct

reliable testing studies to improve the accuracies of the data-driven models.

The quality of data

Performing high-quality solubility measurements is a difficult task due to uncertainties in experimental pro-

cedures, as explained in detail in (Avdeef, 2020). Additionally, unintentionalmisprints, such as the erroneous

conversions of values or units while carrying them from one source to another, cause deterioration in the

quality of data. Unfortunately, not all solubility data sources provide uncertainty information on individual

compounds or on the complete data set. The generally accepted SD of public datasets is between 0.5

and 0.6 LogS (Jorgensen and Duffy 2002; Balakin et al. 2006). Recently, Avdeef has determined the average

SD of 870 molecules from theWiki-pS0 database as 0.17 LogS (Avdeef 2019), which is quite distant from the

conceded values in literature. Therefore, we should keep in mind that the SD values are specific to data and

they may differ significantly depending on the uncertainty of the measurement methods and the types of

chemical compounds they contain. For example, lowly soluble compounds are extremely difficult to mea-

sure (Hewitt et al., 2009), thus the experimental errors in their measurements can be high. Accordingly,

one expects that the datasets that contain many lowly soluble compounds to have high SDs. Therefore, it

is essential to determine the quality of the datasets prior to the development of supervised ML models.

Similar to data size, the quality of the train and the test sets have distinct effects on the performance and

therefore on the assessment of the model. Test set quality regulates the theoretical limit of observed per-

formance (Figure 1). Therefore, to correctly evaluate the performance of a model, it is vital to use a high-

quality test set. For instance, in a recent solubility prediction challenge (Llinas et al. 2020), two test sets

of different qualities: high quality (SD: 0.17 LogS) and low quality (SD: 0.62 LogS), have been shared and

the participants were invited to predict the solubility of compounds by using their own training data sets

and methods. From a total of 37 different methods, the average RMSE for the high- and the low-quality

data sets were 1.14 and 1.62 LogS, respectively. All the prediction models performed worse on the low-

quality data and better on the high-quality data. This result shows the importance of test set quality on

the observed performance of themodels. While the test set quality affects only the observed performances

of the models, the training set quality affects both the actual and observed performances. However, the

internal errors of the training sets are partly compensated by capable ML algorithms depending on the

size and the diversity of data. Thus, the effects of the internal errors of the training sets on the models’ per-

formances are usually smaller than the internal errors themselves.

The relevance of chemical descriptors

Descriptors provide a mathematical representation of the chemical information contained in a compound.

They are valuable inputs for data-driven models aimed at the prediction of chemical properties. Descrip-

tors can be classified into two groups: 2D and 3D. Basically, all the descriptors that require 3D optimization

of the structure are considered as 3D descriptors while the remaining are considered as 2D descriptors.

There are several publicly available resources to calculate molecular descriptors (Yap 2011; Moriwaki

et al., 2018). Most 2D descriptors are calculated with absolute accuracy while the 3D descriptors carry

the errors of the methodological approximations they have been calculated with (Raevsky et al., 2019).

Admitting that the 3D descriptors provide more detailed information, such as atomic distances and energy

data of the compounds, there is yet no clear evidence about their impacts on the solubility predictions (Ba-

lakin et al. 2006; Gao et al., 2020; Yan et al., 2004; Salahinejad et al., 2013). Although a large number of

chemical descriptors are available, it is usually preferred to use a modest number of relevant descriptors

to avoid redundancy and overfitting issues during the training of ML models (Wang and Hou 2011).

The capability of the algorithms

The earlier methods for solubility prediction were based on simple linear regression (LR) methods (Delaney

2004; Hansch et al. 1968; Yalkowsky and Valvani 1980; Meylan et al. 1996) and used only a few descriptors,

such as lipophilicity (LogP), melting point, and molecular weight. While these methods are easy to apply

and interpret, their predictive power is rather limited since the LR works only for linear dependencies. In
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the last years, ML algorithms, such as the variations of ANNs and tree-based ensembles, proved their ability

on solving complex problems in various research fields, also including the solubility predictions (Tetko

et al., 2001; Huuskonen 2000; Lusci et al. 2013; Yan and Gasteiger 2003; Schroeter et al., 2007; Tang et

al., 2020). Due to their black-box nature, these algorithms are hard to interpret by humans. Moreover,

they require large data sets and expert domain knowledge to circumvent overfitting issues. As ML algo-

rithms are properly configured and fed with sufficient amount of data, they becomemore competent in sol-

ubility predictions. Compared to the individual models, consensus modeling that combines the predic-

tions of different models (Todeschini et al., 2020) with an aim to compensate the weaknesses of each

model, shows improved performances (Bergstroom et al., 2004; Abshear et al., 2006; Chevillard et al.,

2012; Raevsky et al., 2015). Additionally, the variances in the predictions of the constituting models provide

valuable information about the prediction uncertainties.

Results

Quality assessment of the solubility data sets

The data selection and model development phases of the AqSolPred are shown in Figure 2. For train and

test purposes, AqSolDB that merges nine different sub-datasets, named from A to I, is used (Table 1).

Detailed information about the sub-data sets has been provided in (Sorkun et al. 2019), alongside the pub-

licly accessible database (https://doi.org/10.7910/DVN/OVHAW8) and the source code including the steps

for data curation (https://doi.org/10.24433/CO.1992938.v1).

As explained above, the train and test data affect the actual and observed performance of the models

differently. Therefore, instead of using all available data directly, we applied a quality-oriented selection

procedure for the training and test data. We determined the quality of each sub-dataset in terms of the

SD of multi-lab measurements as described in the Methods. The total number of multi-lab measurements

(N (SD)) and the calculated SDs are shown in Table 1. The SDs of the nine sub-data sets vary significantly,

with numerical values between 0.274 and 0.717 LogS. The data set E has the lowest SD and therefore is

considered to contain the highest quality data. Adversely, the data sets A and F have the largest SDs.

The SDs of the remaining data sets are close to each other and all are <0:4 LogS.

Selection of the test and the training data sets

For a proper evaluation of the model, the observed performance of the model should approach the actual

performance as explained above. Therefore, the test data should be of the highest possible quality. Addi-

tionally, it should be large enough to cover the chemical space of the training set. We selected dataset E as

the test set since it has the highest quality among the sub-data sets. It is important to note that, data set E is

also known as the Huuskonen data set, which is commonly used in literature as a benchmark data set. Using

the t-distributed stochastic neighbor embedding (t-SNE) dimensionality reduction technique (Maaten and

Hinton 2008), we validated that dataset E largely covers a reduced chemical space of the training data (Fig-

ure 3). We also validated that the distribution of the solubility values of data set E is compatible with the

training set (Figure S1). After reserving data set E as the test set, we also removed the two sub-data

Figure 2. The development phases of AqSolPred

The application of quality-oriented data selection method for selecting the test and training data based on their quality

levels as indicated by stars (left). The development of the consensus model based on ANN, RF, and XGB, and its

processes of training and testing (right).
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sets,A and F, with large SDs. Using the remaining data sets and the curation algorithm described in (Sorkun

et al. 2019), a high-quality training set, non-AF, is obtained. The SD of the non-AF dataset has been calcu-

lated by incorporating the SDs of the constituent sub-datasets. For comparison, we also calculated the SD

of the entire AqSolDB, namely the All, using the same procedure (Table 1).

Effect of quality and size of the training set

Asdiscussedabove,both the size and thequality of training set arepositively correlatedwith amodel’s accuracy.

However, quality-oriented data selection decreases the size of the data while increasing the quality. To analyze

the trade-off between size and quality, we developed separatemodels for each solubility sub-data set. For a fair

comparison, we trained sub-data sets with the same combinations of feature selection methods and ML algo-

rithms explained in theMethods. We selected the best configurations based on 10-fold cross-validation perfor-

mances of each of the sub-data sets. We trained the final models using their best configurations and the entire

training data. After ensuring that no test compounds were used in the trainingprocess (seeMethods), we tested

theperformancesof thefinalmodels against the testdata setE (Figure4). Tounderstand theeffectofdataquality

in predictions, we compared the datasets of similar size,A-B andD-F, and found that those having higher quality

perform significantly better than those having lower quality. To understand the effect of size, we compared the

data sets of similar quality. First, we compareddata setsB,C, andD, with 3185, 1798, and 1054 instances, respec-

tively. The test performances of these three datasets are very close, within � 0:1 LogS (Figure 4). Secondly, we

compared datasets G, H, and I, whose qualities are similar but the sizes are 363, 148, and 62, respectively. This

time the size effect is more obvious, as the accuracy decreases when the size of the data becomes smaller (Fig-

ure 4).Despitehaving the lowest SDwithin thegroupof training sub-data sets, I shows the lowest accuracydue to

its small size.According to these results,weconclude that thedatasize ismore influential on small-sizeddata sets

with a few hundred or fewer instances, while the data quality is more effective on large-sized datasets with thou-

sands of instances.

The quality-oriented data selection data set, non-AF, shows superior performance among all data sets by virtue

of its quality, despite the fact that this data set has 2617 fewer instances than the largest data setAll. So far all the

models have been developed without using any compounds from data set E. To quantify the impact of

including this high-quality data, in a new experiment we included data set E into the training process. We

applied the leave-one-out (LOO) cross-validation method and left out a single compound at a time from data-

set E for validation and included the remaining compounds in the training data. This process was repeated for

eachmolecule in data set E. As expected, the inclusion of data set E improved the performance as shownby the

bottom two rows in Table 2. Furthermore,we conducted experiments by oversampling the highest quality data,

but since this did not result in noteworthy improvements we have not included them here.

These results show that both the quality and the size of data have major impacts on the solubility prediction

performances of theMLmodels. Moreover, instead of direct use of all the available data for training, a qual-

ity-oriented data selection method empowers the model.

Table 1. The SD of AqSolDB and its sub-data sets

Data set Size Filtered size N(SD) SD

A 6110 3266 3093 0.717

B 4651 3185 1215 0.372

C 2603 1798 668 0.380

D 2115 1054 179 0.361

E 1291 1290 337 0.274

F 1210 1011 202 0.582

G 1144 363 170 0.392

H 578 148 100 0.383

I 94 62 46 0.338

All 9982 6937 – 0.495

Non-AF 6154 4399 – 0.356

Size, number of instances before pre-processing; Filtered size, number of instances after pre-processing; N(SD), total num-

ber of multiple values used to calculate SD; SD, standard deviation.
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Effect of descriptors and algorithms

We used a total of 123 2D descriptors for which the groupings, sizes, and use cases from literature are

shown in Table 3.

To pick out a minimum number of relevant descriptors, we independently applied the LASSO and PCC

feature selection methods as described in the Methods. The definitions and the correlation matrix of these

descriptors are shown in Table S1 and Figure S2, respectively. The cross-validation results of the various

configurations show that the LASSO performs slightly better than the PCC. Using the former method, a to-

tal of 58 descriptors have been selected.

Trained on each of the data sets, a consensusmodel that combines three different ML algorithms (ANN, RF,

and XGB) as described in Methods, exceeds the performance of any of the singular models that have been

trained by a single algorithm. Also importantly, using a consensus model it is possible to collect additional

uncertainty information, whereas using the individual algorithms independently does not provide this in-

formation. This is because the SDs from different model predictions are good indicators for the uncer-

tainties observed in the final predictions. The configurations of the different ML models and their results

are shown in Tables S2, S3, S4, S5, S6, S7, S8, S9, S10 and S11.

Figure 3. Visualization of the chemical space covered by the training and test data

The chemical space is visualized by the t-SNE dimensionality reduction technique. Blue hexagons show the chemical space that is covered by the training

data, whereas the red dots show the test instances in the chemical space. The color scale on the right shows the density of molecules found in the hexagons.
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Performance comparisons of the model with the literature

The AqSolPred shows the highest accuracy on the Huuskonen data set (i.e. data set E), when compared

to the available results from the literature on solubility predictions (Table 2). Due to the differences in

pre-processing steps, the total number of data instances that have been used by each method differs

slightly as shown in Table 2. Furthermore, some studies have used cross-validation techniques while others

have divided data into train and test sets.

Discussion

A cardinal result of the current study is the differentiation of actual and observed performances of the sol-

ubility models. Because the observed performance is highly sensitive to the quality of the test set, when the

test data contains high uncertainty, the difference between actual and observed performances becomes

more pronounced. Therefore, it is imperative to use high-quality data in testing to obtain an observed per-

formance close to the actual performance of a model. For this reason, the quality assessment prior to

training and testing experiments constitutes a vital step. The generally employed assumptions on the

SDs of experimental datasets (e.g. such as up to 0.6 LogS error) are fuzzy and they do not necessarily reflect

the true quality of data sets (see Table 1). Instead, comparing multi-lab measurement data of compounds

provides a way to estimate the solubility data quality. For instance, in the current study, we collected a total

of 6010 multi-lab measurements on 2236 unique compounds from nine different sources. We matched the

compounds based on their InChIKeys, a safe way to identify the same compounds. Considering that the

different datasets may contain compounds from the same source, as an early procedure, the duplicates

should be identified to ensure the usage of the same information only once in the quality estimation

step. As an example, we classified the compounds as duplicates if they have the same InChIKey and their

measured solubilities are within 0.01 LogS, as described in (Sorkun et al. 2019). An added value of compar-

isons between multi-lab values, next to that of determining the quality of the data sets, is the detection of

outliers in data, such as the ones caused by misprints.

A second conclusion is the impact of training size on the accuracy of data-driven models. We found that,

regardless of their quality, the small-sized data sets do not include the generic information to address the

solubility problem and they do not adequately cover the chemical space of the test data. Therefore, we

recommend that extra care should be taken when reaching conclusions based on models that have

been trained with small-sized data sets.

Data diversity is another important concept that designates the applicability domain of MLmodels. In addition

to being sufficiently large as explained above, a good training set should also have a high ratio of the data size

over the chemical diversity of compounds. In the case of the test data, it should cover the chemical domain

defined by the training set. Visualizing the data in two-dimensions allows for inspecting to what extend the

test set covers the chemical compound space of the training set. Dimensionality reduction methods (e.g. t-

SNE (Maaten and Hinton 2008) and UMAP (McInnes et al. 2018)) provide interpretable 2D graphs by clustering

the chemical compounds based on their local similarities. Defining the chemical space based on tailored

Figure 4. The quality and accuracy comparison of the sub-data sets

Blue bars show the SD of sub-data sets, whereas the red bars show the test performances (RMSE) on data set E of the

models that have been trained by that sub-data set. Both the SD and RMSE are given units of LogS. The total number of

data instances that have been used to train the models are shown for each sub-data set.
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similarities and using only the relevant descriptors of target properties, provides a better representation than

using arbitrary similarities such as the predefined fingerprints (Gute et al., 2002).

During the prediction of aqueous solubility data of compounds here, the observed superior performance

of a consensus model over the singular models promises that there is still room for algorithmic improve-

ments to further improve the accuracies in solubility predictions of the compounds. When building a

consensus model, increasing the number of constituent algorithms would generate more accurate predic-

tions by facilitating the elimination of the outliers before merging the prediction results. Moreover, the un-

certainty information obtained from multiple predictions would be more reliable. Lastly, since they are

modeling the problem from different aspects, bringing fundamentally diverse algorithms into play would

provide better results compared to using the same stochastic algorithm multiple times with different

initializations.

In summary, applying a quality-oriented data selectionmethod, employing 58 LASSO-selected 2D descrip-

tors and an ensemble of advanced ML algorithms, we developed the AqSolPred, a high-caliber solubility

prediction model.

Limitations of the study

The SDs of the data sets are calculated using the available multi-lab values. Since the accuracy of the SDs

will depend on the number of multi-labmeasurement data, the calculated SDsmay differ from the real SDs.

The risk is higher when only a few multi-lab measurements are present.

The performance of AqSolPred is compared with models from literature as based on the published reports

or generated results by using the online tools. Despite the fact that all studies considered in the present

study were tested on the same dataset, due to the black-box nature of tools or the missing descriptions

for training and testing processes, it is not always straightforward to make exact comparisons between

the methodological aspects of the different models.

Table 2. Comparison of AqSolPred to literature results

Year Model Method Total size Test size/method MAE RMSE R2 Reference

2000 Huuskonen ANN 1294 413 – 0.600 0.92 Huuskonen (2000)

2000 Huuskonen MLR 1294 413 – 0.710 0.88 Huuskonen (2000)

2001 Tetko ANN 1291 412 – 0.620 0.91 Tetko et al., (2001)

2003 Yan MLR 1294 496 0.680 0.790 0.82 Yan and Gasteiger (2003)

2003 Yan ANN 1294 496 0.490 0.590 0.92 Yan and Gasteiger (2003)

2004 Delaneya MLR 1290 1290 0.685 0.876 0.71 Delaney (2004)

2004 Hou MLR 1294 412 0.520 0.630 0.90 Hou et al., (2004)

2007 Schroeter GP 1290 3 fold CV 0.412 0.579 – Schroeter et al., (2007)

2007 Schroeter RR 1290 3 fold CV 0.586 0.996 – Schroeter et al., (2007)

2007 Schroeter SVM 1290 3 fold CV 0.431 0.600 – Schroeter et al., (2007)

2007 Schroeter RF 1290 3 fold CV 0.485 0.660 – Schroeter et al., (2007)

2012 Alia MLR 1290 1290 0.728 0.940 0.73 Ali et al., (2012)

2013 Lusci UG-RNN 1026 10-fold CV 0.460 0.600 0.91 Lusci et al. (2013)

2016 Filter-ita MLR 1290 1290 0.893 1.154 0.68 Daina et al. (2017)

2018 Bjerrum ANN 1297 10-fold CV – 0.650 0.90 Bjerrum and Sattarov, 2018

2020 Tang MPN 1310 10-fold CV – 0.661 – Tang et al., 2020

2020 AqSolPred Consensus 1290 1290 0.397 0.539 0.93 –

2020 AqSolPred Consensus 1290 LOO 0.348 0.483 0.94 –

ANN, artificial neural networks;MLR,multiple linear regression;GP,Gaussian processes;RR, Ridge regression; SVM, support

vector machine; RF, Random forest; UG-RNN, undirected graph-recursive neural networks; MPN, message parsing neural

network; consensus, an ensemble of ANN, RF, and XGB.
aResults collected from SwissADME web tool (Daina et al. 2017).
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Resource availability

Lead contact
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Table 3. The groupings of chemical descriptors

Group Size References

Atom-based 19 Lusci et al. (2013); Avdeef, 2020; Yan et al.,

2004 Schroeter et al., (2007); Tang et al., 2020;

Hou et al., (2004)

Ring-based 6 Avdeef, 2020; Yan et al., 2004; Tang et al.,

2020

Bond-based 9 Jorgensen and Duffy (2002); Lusci et al. (2013);

Delaney (2004); Avdeef, 2020 Yan et al., 2004;

Tang et al., 2020; Raevsky et al., 2015

LogP 1 Lusci et al. (2013); Delaney (2004); Avdeef,

2020; Yan et al., 2004 Schroeter et al., (2007);

Raevsky et al., 2015; Ali et al., (2012)

Topological 18 Jorgensen and Duffy (2002); Huuskonen

(2000); Avdeef, 2020; Yan et al., 2004

Schroeter et al., (2007); Raevsky et al., 2015; Ali

et al., (2012)

E-state indices 70 (Avdeef, 2020; Huuskonen, 2000; Tetko et al.,

2001)
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Transparent Methods
Quality-oriented data selection
Quality-oriented data selection identifies the quality of datasets by calculating the deviations in the multi-lab experimental mea-
surements of the compounds. Using the quality information, the highest quality dataset is reserved as the test set and the poor
quality datasets are removed from the training set. To assess the quality of each dataset, the following steps have been applied:

• Compounds that have multi-lab measurement data have been identified.

• The average of the measured solubility values of compounds have been calculated.

• The deviations of measurement data from the average values have been calculated.

• The SDs of the constituting datasets have been calculated.

The SDs for each dataset (from A to I) have been calculated using Eq. 1:

SD =

√√√√ 1

n

n∑
i=1

xi − x̄ (1)

where n is the total number of compounds that have multi-lab measurement data, xi is the experimentally measured solubility
value of compound i, and x̄ is the average of multi-lab solubility values of the compound.

The SDs of the combinatorial datasets (i.e. ”non-AF” and ”All”) have been calculated using Eq. 2:

SD =
1

N

Z∑
j=1

SDjTj (2)

where N is the total number of compounds in the dataset, Z is the total number of constituent datasets, SDj is the SD of
dataset j, and Tj is the total number of compounds that have been included from dataset j.

Data pre-processing
To prepare the datasets for training, we removed the compounds from datasets when they met any of the following criteria:

• The compound exists in the test set (dataset E).

• The compound does not contain carbon atom.

• The compound contains adjoined mixtures.

• The compound contains charged atoms.

The remaining numbers of compounds found in each training sub-dataset, obtained after the completion of data pre-processing,
have been shown in Table 1 (Filtered Size).

Descriptor selection
To generate the molecular descriptors, we used the Mordred Python package [1]. Currently, there are more than 1800 2D and
3D descriptors in the Mordred catalog. To determine the most relevant descriptors, we applied the following feature selection
methods:

• Least absolute shrinkage and selection operator (LASSO): A regression analysis method that enhances the prediction
accuracy and interpretability of the statistical model. To learn the best descriptors (i.e. variables) the LASSO regularization
eliminates the irrelevant descriptors by forcing their coefficients to zero.

• Pearson correlation coefficient (PCC): Selects the descriptors that have PCC with LogS higher than a defined threshold
parameter.

For both methods, we tested different parameter sets that change the strictness of selections. The results of these different
configurations are provided in Table S2-S11.

Out of the generated 123 descriptors using Mordred, 58 have been selected by LASSO regularization. The correlation matrix
of the selected chemical descriptors is shown in Figure S2. The complete list of the selected descriptors, including their names
and descriptions, are shown in Table S1.



Machine learning algorithms
We employed the following ML algorithms in combination with the scikit-learn and xgboost Python packages.

• Artificial neural network (ANN)

• Random forest (RF)

• Extreme gradient boosting (XGB)

ANN is a network consisting of several layers that are connected to each other through the neurons it contains. ANN learns
non-linear functions by modifying the coefficients between neurons via a back-propagation algorithm. In the current work, the
ANN configuration employs single hidden layer with 500 neurons and a tanh activation function. RF is an ensemble of decision
trees that use bootstrap aggregating of the instances and a random sampling of the features. Our RF configuration consists of 1000
trees with the maximum depth. XGB is a regularized gradient boosting algorithm that creates a strong learner from an ensemble of
many weak trees that are trained sequentially. Our XGB configuration consists of 1000 trees with a maximum depth of six. Other
parameters of the models are used with their default values. Lastly, our consensus model is based on a combination of the above
three ML models and an arithmetic averaging of the predictions by these models.

Configuration of the AqSolPred
The best performing AqSolPred model has been achieved by using the following configuration:

• Training set: non-AF (4399 data instances)

• Features: 58 2D descriptors as selected by LASSO with α = 0.01

• ML Algorithm: A consensus of ANN, RF, and XGB models

Chemical space visualization
We used tailored similarity for the visualization of the chemical space based on 58 LASSO-selected descriptors. We applied t-SNE
from scikit-learn Python package to reduce the data into two-dimensions with the following two parameters, while the remaining
parameters are used with their default values:

• Perplexity: 50

• Random state: 1



Supplemental Figures

Figure S1. The normalized distribution of solubility for the train dataset (non-AF) and the test dataset (E), Related to Figure 3.

Figure S2. The correlation matrix of a total of 58 LASSO-selected chemical descriptors, Related to Table 3.



Supplemental Table

Table S1. The names and descriptions of a total of 58 LASSO-selected descriptors, Related to Table 3.

ID Name Description ID Name Description
1 nHeavyAtom number of heavy atoms 30 NssssC number of ssssC
2 nHBAcc number of hydrogen bond acceptor 31 SsCH3 sum of sCH3
3 nHBDon number of hydrogen bond donor 32 SdCH2 sum of dCH2
4 nRot rotatable bonds count 33 SssCH2 sum of ssCH2
5 nBonds number of all bonds in non-kekulized structure 34 StCH sum of tCH
6 nBondsO num of bonds connecting to heavy atom in non-kekulized structure 35 SdsCH sum of dsCH
7 nBondsS number of single bonds in non-kekulized structure 36 SaaCH sum of aaCH
8 nBondsD number of double bonds in non-kekulized structure 37 SsssCH sum of sssCH
9 TopoPSA(NO) topological polar surface area (use only nitrogen and oxygen) 38 StsC sum of tsC
10 TopoPSA topological polar surface area 39 SdssC sum of dssC
11 LabuteASA Labute’s Approximate Surface Area 40 SaasC sum of aasC
12 bpol bond polarizability 41 SaaaC sum of aaaC
13 nAcid acidic group count 42 SssssC sum of ssssC
14 nBase basic group count 43 SsNH2 sum of sNH2
15 ECIndex eccentric connectivity index 44 SssNH sum of dNH
16 GGI1 1-ordered raw topological charge 45 SaaN sum of aaN
17 SLogP Wildman-Crippen LogP 46 SsssN sum of sssN
18 SMR Wildman-Crippen MR 47 SaasN sum of aasN
19 BertzCT Bertz CT 48 SsOH sum of sOH
20 BalabanJ Balaban’s J index 49 SdO sum of dO
21 WPol Wiener polarity index 50 SssO sum of ssO
22 Zagreb1 Zagreb index (version 1) 51 SaaO sum of aaO
23 ABCGG atom-bond connectivity index 52 SsF sum of sF
24 nHRing hetero ring count 53 SdsssP sum of dsssP
25 naHRing aromatic hetero ring count 54 SdS sum of dS
26 NsCH3 number of sCH3 55 SddssS sum of ddssS
27 NssCH2 number of ssCH2 56 SsCl sum of sCl
28 NaaCH number of aaCH 57 SsI sum of sI
29 NaaaC number of aaaC 58 C C atoms count
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