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Abstract
The copepod Calanus sinicus Brodsky dominates the zooplankton in the Yellow Sea,

China, and undergoes over-summering within the Yellow Sea Cold Water Mass (YSCWM).

Termination of over-summering and subsequent development are regarded as key pro-

cesses in population recruitment, and are probably linked to environmental variations in the

YSCWM. In this study, we examined the effects of temperature (9 and 18˚C) and food con-

ditions (0.1 μg C mL-1 and unfed) on metabolic rates, morphological characteristics, and rel-

ative gene expressions of six genes involved in molting, gonad development, lipid

catabolism, and stress tolerance processes of C. sinicus during termination of over-sum-

mering and subsequent development. Both elevated temperature and external food supply

rapidly ended over-summering of C. sinicus, accompanied by up-regulation of the ecdyster-

oid receptor (EcR) gene expression and increased metabolic rates. These environmental

conditions resulted in irreversible termination of over-summering and ensure the success

of molting. During subsequent development, the lipid reserve in oil sacs could permit only

early gonad development. The food supply might be a trigger to activate the final maturity of

gonad by up-regulating expression of the vitellogenin receptor (VgR) gene. Thus, food

played an indispensable role in population recruitment after termination of over-summering,

whereas the elevated temperature accelerated these physiological processes. This study

revealed the first dynamic profiles of physiological processes involved in over-summering

termination and the subsequent development of C. sinicus using morphological, physiologi-

cal and molecular methods simultaneously, confirmed the quiescent state of over-summer-

ing C5 copepodites, detected the effects of environmental changes on over-summering
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termination and subsequent development, and provided a foundation for future investiga-

tions of the mechanisms involved in over-summering in YSCWM.

Introduction

In the pelagic ecosystems of the Yellow Sea, China, the copepodCalanus sinicus is the domi-
nant species throughout the year and is the key intermediary to transfer primary production to
higher trophic levels [1]. Although C. sinicus has a wide temperature tolerance range (5–23°C)
[2, 3], a high surface temperature in summer (>26°C) has deleterious effects [4]. In summer,
the population is dominated by C5 copepodites (C5s), and most individuals of C. sinicus
undergo over-summering within the Yellow Sea ColdWater Mass (YSCWM,<10°C), which
allows persistence of the population [5, 6]. The over-summering C5s are thought to be in a rest-
ing state, called quiescence [7, 8]. Unlike diapause, quiescence is a shallow form of dormancy
that would suppress development during adverse conditions and in which development ensues
immediately when environmental conditions improve [9]. The over-summering terminates
when the YSCWM shrinks in autumn when the C5s molt into adults and contribute to the
population recruitment in the Yellow Sea [10, 11]. But the specific processes controlling this
over-summering are still unknown.
Similarly, other Calanus species (e.g.C. finmarchicus, C. glacialis and C. hyperboreus)

undergo diapause in the North Atlantic and Arctic seas to survive in poor conditions (e.g. low
food concentration and temperature) during winter [12–14]. Field studies of Calanus spp. have
suggested the lipid hypothesis, which posits that diapause terminates when the copepods con-
sume the lipid reserve to a certain degree [12, 15–17]. This hypothesis is supported by several
population models [18, 19]. The seasonal decrease in oil sac sizes of C. sinicus also supports
this hypothesis [11]. Furthermore, selective consumption of PUFA (polyunsaturated fatty
acids) is thought to be a trigger of diapause termination of C. finmarchicus [20, 21].
Environmental factors (temperature, food-threshold concentration and photoperiod) have

also been proposed as the triggers of termination of dormancy in the genus Calanus [22, 23];
however, no single factor can explain the termination of dormancy [24]. Strong verticalmixing
of seawater in autumn changes the environmental conditions at the YSCWM edge, which
might arouse over-summering C5s [10]. Increased temperature or elevated food conditions
could promote the development of quiescent C5s [25].
The main characteristics of over-summering C. sinicus include low metabolic rates, sus-

pended development, reduced diel vertical migration, a well-developed oil sac, and a low
RNA:DNA ratio [7, 26, 27], as found in diapausing C. finmarchicus [28]. Ecdysis, gonad matu-
rity, energy budget, and stress tolerance have been found to be important factors in dormancy
in Calanus spp. [28, 29]. Elucidating the molecular control of these factors and their linkages
to environmental conditons can improve overall understanding of the over-summering pro-
cess and population dynamics. Our objectives were to: 1) identify the changes of physiological
processes and associated gene expression levels during the termination and subsequent devel-
opment; 2) link the gene expression patterns to the associated physiological processes; 3)
understand the effects of environmental factors on the termination of over-summering and
subsequent development; 4) explore the termination mechanism of over-summering for C.
sinicus.
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Materials and Methods

We collected living C. sinicus from the central YSCWM. The over-summering C5s were cul-
tured at two temperatures and two food conditions to test the effects of temperature and food
supply on the termination and the subsequent development and maturity. Oxygen consump-
tion rates (OCR) were measured to reflect variation in metabolic activity. The morphological
characteristics of mandibular gnathobase and development stages of copepods in each group
were monitored to study the molting process [30, 31]. Gonad development stages (GS) were
recorded to explore the maturation process [32, 33], and the volume of the oils sac was used as
a proxy of lipid content [34]. Molecular techniques [e.g. quantitative real-time PCR (qPCR)
and high-throughput sequencing] were used to reveal more details of the physiological pro-
cesses related to copepod dormancy by evaluating expression levels of associated putative
genes [28, 35]. Recent transcriptome studies have provided valuable resources of gene
sequences that are associated with internal processes in C. sinicus [36]. Thus, six target genes
associated with molting, gonad development, lipid consumption and stress tolerance were
measured by the qPCRmethod to detail their changes during the termination and subsequent
development (Table 1).

Sampling and preparation

Samples were collectedwithin the YSCWM (122.89°E, 35.03°N) aboard the R. V. “Beidou” in
the southern Yellow Sea, China from 16 Aug to 1 Sep 2013 (Fig 1). Live C. sinicus were hauled
from 4 m above the bottom to 35 m depth (beneath the thermocline) using an 80-cm diameter
closing net (mesh size: 330 μm) to ensure that only the over-summering population was col-
lected. After sampling, the copepodswere transferred immediately to a 20-L incubation barrel
filledwith pre-cooled bottom seawater (about 9°C). About 45 C5-stage copepodswere picked
out haphazardly with a wide-mouth pipette and kept temporarily in a 10-cm wide cylinder
with pre-cooled (about 9°C) filtered seawater (FSW, filtered through a 0.45-μm pore size

Table 1. Genes and primer sequences of Calanus sinicus used in this study. GAPDH, EF1α and 16S are housekeeping genes, while the other six are

target genes.

Abbreviation Gene name Accession no Primer for qPCR

GAPDH Glyceraldehyde-3-phosphate dehydrogenase KT947470 F:5'-ACTGACTTCTTGGGAGACACC-3'

R:5'-TACCAAGAGATGAGCTTCACGAA-3'

EF1α Elongation factor-1-α KT947471 F:5'-GACAGGTCTCCAACGGAT-3'

R:5'-CTTCTCCTTGATCTCAGCGAAC-3'

16S 16S KT960998 F:5'-AATTAAATACTCCCGTGTG-3'

R:5'-CAATCTGACTTACGTCGA-3'

EcR Ecdysteroid receptor KT947472 F:5'-CATGCCCTCAAAGAGCCTA-3'

R:5'-ATTGCCAAGACTTCTCAGTTCG-3'

FAMeT Farnesoic acid O methyltransferase KT947473 F:5'-CAAGAACTGGATTCTGCGTCA-3'

R:5'-ACTGTCTCTCCGTAGGCAC-3'

HOAD Hydroxyacyl CoA dehydrogenase KT947474 F:5'-GTCTCCACTTCTTCAACCCTGTCC-3'

R:5'-TCAACAGTCATCTTCTTCATAGCCTT-3'

DI Dienoyl-CoA isomerase KT947475 F:5'-GATGACATTGCCAGGAAGTCCA-3'

R:5'-CCAATCACTGGCTTCTTGCACT-3'

Ferritin Ferritin KT947476 F:5'-AACCGTGATGATCAAGCTC-3'

R:5'-CGCTTGGTCTGATATTCCAT-3'

VgR Vitellogenin receptor KT947478 F:5'-TTTTCCAACAAGCTGAAGTCTCCC-3'

R:5'-CCCAATGTTAGGCATGAAGTGGT-3'

doi:10.1371/journal.pone.0161838.t001
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cellulose acetate filter) for the oxygen consumption rate measurements. Another 15 C5s were
washed by the FSW and then three copepods each were put into five 1.5-mL frozen tubes to
measure gene expression. The seawater was removed via bibulous paper. Copepods for RNA
samples were flash frozen and kept in liquid nitrogen until analysis. An additional ~1,600
healthy C5s were selected haphazardly for the later culture experiment.

Culture experiment

The C5s copepodidswere cultured at two temperatures and two food conditions in two incuba-
tors (9°C and 18°C), including Group 9NF (9°C not fed), 9F (9°C fed), 18NF (18°C not fed)

Fig 1. Sampling station for Calanus sinicus. The sampling station is marked with a star (☆) and is located inside the Yellow Sea Cold Water

Mass (YSCWM). The boundary of the YSCWM is defined by the 10˚C bottom isotherm and marked with bold black line.

doi:10.1371/journal.pone.0161838.g001
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and 18F (18°C fed). The temperatures were typical for the YSCWM (9°C) and the middle of
the thermocline (18°C). 18°C also was within the temperature range of tidal fronts when the
YSCWM shrinks in autumn [10]. In groups 18NF and 18F, the copepodswere kept at 9°C at
first, and then the temperature was set 1°C higher every two hours until 18°C. In Groups 9F
and 18F, food (the diatom Skeletonema costatum and the dinoflagellate Prorocentrum micans)
was added every two days and the concentration was kept at about 0.1 μg C mL-1. For each
group, ~400 C5s were kept in two 10-L plastic containers with FSW. The seawater was renewed
every two days. Samples were taken after 1, 3, 6, 9, 16, and 31 days incubation to test the oxygen
consumption rates and gene expression levels. 45 copepods for oxygen consumption rate mea-
surements and 15 for gene expression analysis were sampled from each group. The data were
marked as Day 1–31 (D1-31) in the results.

Metabolic rates

The water-bottle method with brown glass bottles (about 500 mL) was used to ascertain the
oxygen consumption rates. The bottles were filledwith FSW at the culture temperatures by
siphon to avoid creating bubbles. About 15 healthy copepodswere transferred by a pipette into
each bottle after gently washing. Three replicates were prepared for each treatment group and
three bottles with only FSWwere prepared simultaneously as controls. The bottles were sealed
and kept at the culture temperatures in the incubators for 24–30 hours in dark.
After incubation, two ~130-mL water samples were siphoned from each bottle to determine

the dissolved oxygen concentration based on theWinkler method [37]. The copepodswere
counted after the experiment and then preserved in 5% formalin seawater solution for later
morphometric analysis. To eliminate the effect of bodymass on metabolic rates, the carbon-
weight-specific oxygen consumption rate (OCR, μL O2 mg-1 h-1) was calculated by the formula:
OCR ¼ 0:7�ðC0 � CÞ�V

n�t�CW , where 0.7 was a constant to transform 1 μg O2 into corresponding vol-
ume, C and C0 represented the oxygen concentration (mg L-1) in experimental and control bot-
tles, respectively, V (mL) was the volume of incubation bottle, n was the number of copepods
in incubation bottle, t (h) was incubation time, CW (mg) was mean carbon weight of copepods
calculated from prosome length (PL) in the equation: lg(CW) = -9.416+3.378lg(PL) [38].
The lipid cost for respiration (R, μg) per copepodwas estimated using OCR [26, 39]:

R ¼
P OCR�CW�D�0:536RQ�24

0:8
, where OCRwas the mean value, D represented the cultivation

days, RQ (respiration quotient) was 0.7 for fat metabolism [40], 0.536 RQ was a factor to con-
vert the respiration into carbon, and 0.8 was the carbon composition in lipid [39].

Morphometrics

The lengths and widths of the prosome and oil sac of about 15 copepods in a sample were mea-
sured using a stereomicroscope (Zeiss Stemi SV11 Apro), three replicates for each group. The
oil sac volume (OSV) was calculated by the formula: OSV ¼ p

6
� L�W2 and the prosome

volume (PV) was calculated by the equation: PV = 0.58 × L ×W2 [34]. To remove the effect of
body size, oil sac proportion (OSV%) was defined as the OSV/PV ratio to represent the relative
amount of lipid reserve[11]. The lipid (μg) in the oil sac could be estimated from the oil sac vol-
ume (OSV): Lipid = OSV × ρ, where ρ was the lipid density (0.91 g mL-1) [29]. The develop-
mental stages also were determined. The beginning of adult stage was defined as the time when
50% of the individuals had molted into adults [38]. Four gonad developmental stages of
females also were determined (GS1, GS2, GS3 and GS4) [41]. Apolysis begins when the epider-
mis separates from the cuticle in mandibular gnathobase, which is a transition towards molting
[31]. The mandibular gnathobases of C5s were extracted using a stereomicroscope and then
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observed and photographed using an Olympus BX51 differential-interference microscope. Jaw
phases were assessed by the morphological characteristics of the mandibular gnathobase and
were classified into pre-apolysis and post-apolysis [30, 31].

Relative gene expression analysis

RNA extraction and cDNA synthesis. Total RNA was extracted from samples of three
copepodswith trizol (Invitrogen, Carlsbad, CA, USA), with five replicates from each treatment
group. The quality and quantity of RNA was assessed using 1% agarose gel electrophoresis and
Nanodrop 1000 (Thermo Fisher Scientific,Waltham, MA, USA). RNA samples with high qual-
ity (8 μL) were reverse-transcribed into cDNA using the RevertAid First Strand cDNA Synthe-
sis Kit (Fermentas, Lithuania). The cDNA samples were stored at -20°C.

Quantitative real time RT-PCR (qPCR) and data analysis. The putative genes were cho-
sen from the transciptome sequence of C. sinicus [36] based on mapping results against the
NCBI non-redundant (Nr) protein database via BLASTX. The validity of the candidate genes
have been confirmed by sequencing the PCR products amplified by the primers based on the
corresponding unigenes in the C. sinicus transcriptome. QPCR Primers were designed based
on the sequences obtained using Oligo 7 (Table 1).
The qPCR was performed on the Eppendorf Mastercycler (Eppendorf, Hamburg, Germany)

using a DyNAmo Color Flash SYBR Green qPCR Kit (Thermo Fisher Scientific). The reactions
were run in duplicate wells for each test, in a total volume of 20 μL containing 10 μL of Master
mix, 1 μL each of the primers, 2 μL of cDNA, and 6 μL of RNase-free water. The qPCR pro-
grams followed the protocol: 95°C for 7 min, followed by 40 cycles at 95°C for 10 s and 60°C
for 15 s. All the templates were diluted to 0.2 ng μL-1 with RNase-free water to ensure the Ct
value was within the range of 18 to 30.
Expression of target genes was normalized to the geometricmean of three housekeeping

genes EF1α, 16S, GAPDH. Because the C5s within the YSCWM in summer were quiescent
based on previous studies [6–8], the cDNA samples of C5s at the sampling station were cho-
sen as the control group to calculate the relative gene expression for each target gene in the
treatment groups. The data of C5s at the sampling station were marked as Day 0 (D0) in the
results.

Statistical analyses

All the statistical analyses were performedwith SPSS 16.0 software. One-way ANOVA and
multiple comparisons (LSD) were conducted to test for differences in morphological character-
istics and gene expression levels. Relative gene expression data were log-transformed to obtain
homogeneity of variance. The multiple comparisons were conducted and a significant differ-
ence was accepted when P< 0.05. Spearman correlation analysis was used to test for relation-
ships between gene expression and morphometric data.

Ethics statement

No vertebrates were sampled or used in our study. No specific permissions were required for
the field studies. The studied area in the Yellow Sea is not privately owned or protected in any
way. No endangered or protected species were involved either.

Results and Discussion

The sampling station was located within the YSCWM (Fig 1), with the boundary defined by
the 10°C bottom isotherm [42]. The sampling station had a strong thermal stratification
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between 10 and 30 m depth (Fig 2). The low bottom temperature (8.4°C) protected the C. sini-
cus from the high surface temperature (28°C), while the poor food conditions in bottom water
(Chl a concentration: 0.1 mg m-3; Fig 2) limited the development of copepods [4]. The over-
summering C5s had low metabolic rates (0.13 μL O2 ind.-1 h-1) and large oil sacs (OSV%: 0–
30.67%), consistent with previous studies of the characteristics of the quiescent C5s within the
YSCWM [7, 8, 11].

Fig 2. Vertical profiles of temperature and Chl a concentration at the Calanus sinicus sampling

station.

doi:10.1371/journal.pone.0161838.g002
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OCR variation and over-summering termination

The carbon-weight-specific respiration rates (OCR) varied significantly during the experiment
under constant temperature cultivation (Fig 3), suggesting a wide fluctuation of metabolic
activity in each group during the experiment. On Day 1, copepods in Group 18F had a slightly
higher respiration rate than on Day 0, while the other groups did not. Copepods in all groups
had significantly higher OCRs on Day 3 than on Day 0 (ANOVA, p< 0.05) and maintained
high OCRs for several days, coincident with the energy-consumingmolting process. The OCR
in Group 18F was significantly higher than in the other three groups (ANOVA, p< 0.01), sug-
gesting the combined effects of elevated temperature and food supply on copepods. Further-
more, on Day 16, the OCR increased again in both fed Groups 18F and 9F, consistent with the
energy-consuming gonad development process.
The increased respiration rate on Day 3 might have indicated the termination of over-sum-

mering. A more rapid response was observed at higher temperature with a food supply. A time
lag of 12 to 17 days, when endocrinologicaland biochemical processes towards molting occur,
exists before diapausing C. finmarchicus starts the terminal molt when environment changes
[12]. This preparatory periodwas much shorter in C. sinicus, suggesting a more rapid response
to the environmental changes and stronger environmental adaptability. C. sinicus within the
YSCWM should be quiescent and, when faced with either increased temperature or elevated
food conditions, the metabolic activity is enhanced within three days. Nevertheless, C5s cul-
tured without food at low temperature (Group 9NF) also showed an increased respiration rate
on Day 3. Other factors also might have induced termination of quiescence of copepods in the
experiment, such as stress due to hydrostatic pressure change, mechanical stimuli from sorting,
and sudden exposure to light [43]. Thus, environmental changes could end the over-summer-
ing of C. sinicus.

Fig 3. Oxygen consumption rate (OCR) of Calanus sinicus cultured under different temperatures by

food environments. 9NF = 9˚C not fed, 9F = 9˚C fed, 18NF = 18˚C not fed and 18F = 18˚C fed.

doi:10.1371/journal.pone.0161838.g003
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Molting development

C5s molted into adults successively in all the groups after termination (Fig 4). Copepods
entered the adult stage after 4.3, 6.7 and 11.4 days in Groups 18F, 18NF and 9F, respectively;
however, only 2–24% of C5s molted into adults in Group 9NF. Thus, higher temperature and
better food conditions accelerated the molting process.
Apolysis started on Day 3 in Groups 18F and 18NF, on Day 6 in Group 9F, and on Day 16

in Group 9NF before the beginning of the adult stage, suggesting preparation for molting (Figs
4 and 5). The expression level of genes involved in molting process, however, had an earlier
response. EcR (ecdysteroid receptor) expression was up-regulated and FAMeT (farnesoic acid
Omethyltransferase) was down-regulated significantly on Day 1 (Fig 6, ANOVA, p< 0.01).
High expression of EcR lasted for 3, 6, 9 and 16 days in Groups 18F, 18NF, 9F and 9NF, respec-
tively. Then the proportions of post-apolysis copepodids increased to maxima of 10, 17.6, 59.1
and 43.8% in Groups 18F, 18NF, 9F and 9NF, respectively, just before the beginning of the
adult stage. Post-apolysis occurred after the up-regulation of EcR expression, which was similar
to C. finmarchicus [31]. Thus, EcR expression should be a goodmolecularmarker to indicate
the molting process.

Fig 4. The composition time series of developmental stages and jaw phases in Calanus sinicus. (a) 9NF (9˚C not fed), (b) 18NF (18˚C not fed),

(c) 9F (9˚C fed) and (d) 18F (18˚C fed).

doi:10.1371/journal.pone.0161838.g004
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By binding to ecdysteroids, EcR could regulate molting [44]. The concentration of ecdyster-
oid increases before molting in crustaceans, as well as the relative expression of EcR [24, 45–
47]. Diapausing Calanus copepods suppress the molting process and down-regulate EcR
expression during the diapause period [28, 46]. Thus, the immediate up-regulation of EcR
expression on Day 1 suggested the termination of quiescence and preparation for final molting,
similar to diapause termination of C. finmarchicus [28, 48]. The EcR expression level was posi-
tively correlated with the proportion of C5s (Spearman correlation analysis, r = 0.537,
P< 0.05). The down-regulation of EcR expression in the late incubation period could be
related to negative feedback loops whenmost of the C5s molted into adults. On the other hand,
FAMeT participates in methyl farnesoate (MF) biosynthesis [49], a juvenile hormone-like
compound that is in low concentration to promote copepod adult maturation during the final
molting [49–51]. The decreased expression of FAMeT here could be a response to the final
molting.

Fig 5. Jaw phase morphology of Calanus sinicus. (a) pre-apolysis on Day 0; (b) post-apolysis on Day 6 in Group 9F (9˚C fed), tooth forming; (c) post-

apolysis on Day 9 in Group 9F. Scale bars: 20 μm.

doi:10.1371/journal.pone.0161838.g005

Fig 6. Relative gene expression variation of genes associated with the molting process of Calanus sinicus. (a) EcR (ecdysteroid receptor)

expression. (b) FAMeT (Farnesoic acid O methyltransferase) expression. 9NF = 9˚C not fed, 9F = 9˚C fed, 18NF = 18˚C not fed and 18F = 18˚C fed. D0

to D16 represent Days 0 to 16. The expression level was normalized to the geometric mean of three housekeeping genes (GAPDH, 16s, EFα1). Error

bars show the standard deviation. Significant differences (LSD): P < 0.05 (*); P < 0.01(**).

doi:10.1371/journal.pone.0161838.g006
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Gonad development

Almost all copepodidsmolted into females except for one male on Day 9 in Group 9F (Fig 4).
The gonads of females developed after the final molting, from GS1 to GS4 (Fig 7). Without a
food supply during the experiment, all females in Groups 9NF and 18NF developed their
gonads into GS1-2 with immature oocytes (oocyte development state 1–2; Fig 8). Reserved
lipid could be transformed into phospholipid as both energy and materials for gonad develop-
ment in C. finmarchicus at the end of diapause [13, 16, 29, 52]. In the Arctic Ocean,C. glacialis
and C. hyperboreus couldmature and spawn relying only on lipid reserve [14, 53, 54]. However,
the reserved lipid could only support the early gonad development (GS1-2) in C. sinicus after
over-summering. In contrast, with food, females eventually matured in Groups 9F (GS4% =
50%) and 18F (GS4% = 35%) on Days 31 and 16, respectively (Fig 7), which is similar to other
Calanus spp. copepods [12, 29]. Because of food limitation during over-summering period, the
gonad of C. sinicus remains immature and results in null egg production, which increases with
the recovery of the food resource [55]. Food bottleneck is also the main factor to suppress the

Fig 7. Time series of gonad developmental stages in Calanus sinicus in different temperatures by food conditions. (a) 9NF (9˚C not fed), (b)

18NF (18˚C not fed), (c) 9F (9˚C fed) and (d) 18F (18˚C fed). GS1 to GS4 represent gonad development stages 1–4.

doi:10.1371/journal.pone.0161838.g007
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reproduction of three cyclopoid copepods, and induce summer diapause in Lake Schierensee
[56]. Therefore, external food supply would be an indispensable energy source for final gonad
maturity in C. sinicus, whereas warmer temperature promoted the development processes.
When copepods had food, the vitellogenin receptor (VgR) expression increased significantly

from Day 9 in Group 9F and Day 6 in Group 18F (Fig 9, ANOVA, P< 0.01). Vitellogenesis is a
critical part in the gonad maturity process. During the late vitellogenesis process, the vitello-
genin receptor mediates the uptake of vitellogenin into the oocytes from the hemolymph when
oocytes develop into OS3 in GS3 [57–59], resulting an increased expression of VgR among
crustacean and insect species [60–62]. The VgR expression showed an earlier response to food
supply than did the occurrence of GS3 gonads on Day 9 in Groups 9F and 18F (Fig 7). The up-
regulation of VgR expression occurred 10–22 days before the final maturity. Without food,
copepods did not regulate VgR expression significantly (Fig 9) and the gonad remained imma-
ture during the experiment. Thus, elevated foodmight be the external trigger to up-regulate
VgR expression and activate final maturity of gonad development.

Fig 8. Gonad development states (GS2-GS4) in Calanus sinicus at the end of the culture experiment. (a) Group 9NF (9˚C not

fed), GS2, developing oocytes (OS1 and OS2); (b) Group 9F (9˚C fed), GS4, mature oocytes (OS4); (c) Group 18NF (18˚C not fed);

(d) Group 18F (18˚C fed). Scale bar: 400 μm.

doi:10.1371/journal.pone.0161838.g008
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Lipid consumption

The C5s within the YSCWM contained large lipid reserves in their oil sacs (OSV%: 0–30.67%),
which is the main energy source for dormant Calanus spp. copepods [11, 29]. After the termi-
nation of over-summering, the OSV% decreased significantly on Day 1 in Group 18NF and
Group 18F (Fig 10, ANOVA, p< 0.01), but not until Day 9 in Group 9NF and Group 9F

Fig 9. Relative gene expression variation of gene Vitellogenin receptor (VgR) of Calanus sinicus.

9NF = 9˚C not fed, 9F = 9˚C fed, 18NF = 18˚C not fed and 18F = 18˚C fed. D0 to D16 represent Days 0 to 16.

The expression level was normalized to the geometric mean of three housekeeping genes (GAPDH, 16s,

EFα1). Error bars show the standard deviation. Significant differences (LSD): P < 0.05 (*); P < 0.01(**).

doi:10.1371/journal.pone.0161838.g009

Fig 10. Oil sac proportion (OSV%) of Calanus sinicus cultured in different temperatures by food

conditions. 9NF = 9˚C not fed, 9F = 9˚C fed, 18NF = 18˚C not fed and 18F = 18˚C fed.

doi:10.1371/journal.pone.0161838.g010
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(Fig 10, ANOVA, p< 0.01). Elevated temperature accelerated the lipid consumption process
after termination of over-summering.
The total lipid loss and lipid cost for respiration were estimated to reveal the lipid assign-

ment after termination of over-summering (Fig 11). HOAD expression (hydroxyacyl CoA
dehydrogenase) was also tested to explore lipid consumption by β oxidization, which is up-reg-
ulated when copepods rely only on lipid reserves for energy needs [63, 64]. In the fed groups,
the lipid cost for respiration exceeded total lipid loss after Day 3 (Fig 11c & 11d). Meanwhile,
HOAD expression levels were down-regulated significantly in Groups 9F and 18F (Fig 12a).
Thus, external food would be the main energy source for metabolism and development in
these two groups. When unfed, the total lipid loss did not afford the respiration needs all the
time in Group 9NF (Fig 11a) and left no extra lipid to support molting. As a result, most of the
unfed C5s failed to molt in Group 9NF, even though EcR expression was up-regulated and
some C5s began apolysis. With down-regulation of HOAD expression, another energy source
(e.g. body carbon) existed to maintain basic metabolic activity in Group 9NF. At higher tem-
peratures, the total lipid loss exceeded the respiration cost in the first eight days of the experi-
ment (Fig 11b). During the period, the copepodsmolted into adults and the gonads developed

Fig 11. Cumulative lipid costs for respiration and total lipid loss in oil sacs of Calanus sinicus. (a) 9NF (9˚C not fed), (b) 18NF (18˚C not fed), (c)

9F (9˚C fed) and (d) 18F (18˚C fed).

doi:10.1371/journal.pone.0161838.g011
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in Group 18NF. Only 10–24% lipid loss was utilized for respiration in the first three days,
when gonad formation proceeded in the C5 stage [65]. Thus, the major lipid reserve in quies-
cent C. sinicus would be used for gonad formation and molting after the termination in Group
18NF, which is similar to C. finmarchicus [16, 29, 39]. In addition, the HOAD expression was
down-regulated and the total lipid loss could not meet the respiration needs in the late period
of the experiment, suggesting utilization of other energy sources (e. g. body carbon). Therefore,
elevated temperature would accelerate development processes, resulting in a pulse of molting
development within a few days after the termination. Thus, elevated temperature or food con-
ditions from the strong verticalmixing of seawater exchange when the YSCWM shrinks in
autumn could ensure the success of molting of the over-summering C. sinicus [10]. The lipid
reservewould be utilized both as nutriment and energy for molting and gonad development
after the termination, consistent with C. finmarchicus revived from diapause [16, 29, 39].
The expression pattern of dienoyl-CoA isomerase (DI), an auxiliary enzyme in the β oxidi-

zation of polyunsaturated fatty acids (PUFA), differed among the four groups (Fig 12b) [66,
67]. Without food, DI expression decreased significantly on Day 1 in Group 18NF and on Day
3 in Group 9NF (ANOVA, p< 0.05). With food, DI expression decreased in the early three
days, and then increased slightly in Group 9F and significantly in Group 18F on Day 16 when
the gonads becamemature (ANOVA, p< 0.01). DI expression also showed positive correlation
with VgR (Spearman correlation analysis, r = 0.493, p< 0.01), indicating increased catabolism
of PUFA after gonad maturity, which might be attributed to high PUFA contents in the food
supply (S. costatum and P.micans) [68].

Stress tolerance

With the poor food conditions within the YSCWM in summer, C. sinicus showed high ferritin
expression (Fig 13), which is an iron storage protein that could protect the cells and macromole-
cules from oxidative damage and is believed to suppress development during dormancy [28, 69,
70]. But after termination of over-summering, copepods in the experiment still maintained high
expression level of ferritin even during the molting and gonad development processes (Fig 13).

Fig 12. Relative gene expression variation of genes associated with lipid consumption of Calanus sinicus. (a) HOAD (hydroxyacyl CoA

dehydrogenase) expression. (b) DI (dienoyl-CoA isomerase) expression. 9NF = 9˚C not fed, 9F = 9˚C fed, 18NF = 18˚C not fed and 18F = 18˚C fed. D0 to

D16 represent Days 0 to 16. The expression level was normalized to the geometric mean of three housekeeping genes (GAPDH, 16s, EFα1). Error bars

show the standard deviations. Significant differences (LSD); P < 0.05 (*), P < 0.01(**).

doi:10.1371/journal.pone.0161838.g012
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When the quiescent eggs of Acartia tonsa were recovered from resting stage and hatched, the
expression level of ferritin was even 52-times greater than the quiescent status [71]. Thus, the
function of high ferritin expression in dormant Calanus copepods should be researched further.
Ferritin expression was down-regulated significantly only in copepodswith food on Day 16 in
Group 9F and Day 9 on Group 18F (ANOVA, p< 0.01; Fig 13). Thus, ferritin expression might
have a sensitive response to limited food, one of the major environmental stresses within the
YSCWM. In addition, ferritin expression was strongly correlated with the proportion of C5s
(Spearman correlation analysis, r = 0.815, p<0.01) and OSV% (Spearman correlation analysis,
r = 0.518, p< 0.05). Ferritin expression might be related to the development stage in C. sinicus,
whose C5s stage exhibited higher ferritin expression than did females [36].

Multivariate analysis of gene expression

Principal component analysis (PCA) was conducted to explore the overall regulation patterns
of the six genes’ expressions during termination of over-summering and subsequent develop-
ment in Group 18F, because only those copepodsmatured within 16 days. The first principal
component (PC1) explained 43.45% of the entire variance and was influenced strongly by EcR,
VgR, HOAD and DI, representing development and lipid consumption processes. The second
principal component (PC2) contributed another 29.38% of the variance, which was mainly
affected by FAMet and ferritin (Fig 14a), representing stress tolerance. The average daily values
of the PC1 and PC2 scores were shown in Fig 14b. The expression pattern on Day 0 was dis-
criminated from the other days by PC2 (ANOVA, p< 0.05) for high expression levels of ferri-
tin and FAMet. The expression patterns on Days 1 and 3 were clustered together for similar
scores in PC1 and PC2. The expression pattern on Day 16 was distinct from that on Day 6
based on the PC1 score for significantly up-regulated genes VgR and DI (Fig 14b, ANOVA,
p< 0.05). But the expression pattern on Day 9 was similar to those on both Days 6 and 16
based on the PC1 and PC2 scores, suggesting a transition phase between them.
Combined with the physiological and morphological results discussed above, the daily gene

expression patterns could be divided into 4 time periods (Fig 15): quiescence (Day 0),

Fig 13. Relative gene expression variation of gene ferritin of Calanus sinicus. 9NF = 9˚C not fed,

9F = 9˚C fed, 18NF = 18˚C not fed and 18F = 18˚C fed. D0 to D16 represent Days 0 to 16. The expression

level was normalized to the geometric mean of three housekeeping genes (GAPDH, 16s, EFα1). Error bars

show the standard deviations. Significant differences: LSD, p <0.05 (*), p <0.01(**).

doi:10.1371/journal.pone.0161838.g013
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termination and molting process (Days 1–6), early gonad development (Days 6–9) and final
gonad development (Days 9–16). On Day 0, the copepodswould be quiescent, exhibiting sup-
pressed molting process, low metabolic rates and large oil sacs. The quiescent copepods also
showed high ferritin, FAMet and HOAD expression and low EcR expression. On Days 1–6, the
quiescent C5s were aroused by the elevated temperature and food conditions, exhibiting nota-
bly increasedmetabolic rates. During this period, copepods up-regulated EcR expression and
then molted. The lipid reserve in oil sac (OSV%) was reduced slightly with down-regulation of
HOAD expression in the first six days. On Days 6–9, newly-molted females began early gonad
development (GS 1–2) with up-regulation of VgR and down-regulation of EcR. The lipid
reservewas exhausted quickly in this period to support gonad development. On Days 9–16, the
gonad matured (GS4) with extremely high expression of VgR. The DI expression was up-regu-
lated, while ferritin expression was down-regulated.

Conclusion

This study showed the first dynamic profiles of metabolic rates, gene expression and associ-
ated physiological processes during the termination of quiescence and subsequent develop-
ment, as well as their interaction with environmental factors in C. sinicus. Environmental
changes (increased temperature or better food supply) were cues to stimulate the termination
of over-summering C. sinicus. The up-regulation of EcR and down-regulation of HOAD and
FAMeT occurred on Day 1 after termination of over-summering, showing a more rapid
response to environmental change than did metabolic rates. After the copepodidsmolted into
females, the increased expression of VgR indicated the beginning of gonad maturity. Ferritin
was sensitive to the food condition and was down-regulated only when copepods had food.
During the whole incubation period, the reserved lipid in the oil sac was depleted to support

Fig 14. Principal component analysis of the relative gene expression data of Calanus sinicus in Group 18F (18˚C fed). (a) The loading plot of six

genes. (b) Scatterplot of the averages of the first two principal component scores for C. sinicus. D0 to 16 represent Days 0 to 16.

doi:10.1371/journal.pone.0161838.g014
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molting and early development of gonads. The improved temperature and food conditions
ensured the success of molting. The external food supply was a trigger to begin the final gonad
maturity by up-regulating VgR expression. The food supply also ensured the nutrient and
energy needs for the final gonad maturity. Thus, food played an indispensable role in popula-
tion recruitment when over-summering ended, whereas the elevated temperature accelerated
these physiological processes.
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