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Introduction
The B lymphocyte-induced maturation protein 1 
(BLIMP1) encoded by the positive regulatory domain 
1 gene (PRDM1), is a critical regulator of plasma cell 
differentiation in B cells.1 In order to have proper 
induction of effector functions in mouse T cells, BLIMP1 
is essentially needed in CD4+ T lymphocytes2-6 and 
in CD8+ T lymphocytes.3,5,7-10 Mouse models that are 
deficient in BLIMP1 have reduced T lymphocyte cytotoxic 
activity,3,11,12 increased memory phenotype population,3,5,11 
and enhanced survival of effector cells (persistence).5 

However, there is no direct experimental evidence for 
the role of BLIMP1 in regulating human T cell fate and 
function.

Elucidation of the regulatory functions of BLIMP1 in 
human T cells is not only important for understanding 
the mechanism of the cellular immune response against 
infections and cancer, but also may provide insights 
for improving T cell-based immunotherapies. Ex vivo 
expanded human T cells are particularly important in 
human cancer immunotherapy because of their ability to 
mediate cancer regression in patients.13 The duration of T 
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Abstract
Introduction: B lymphocyte-induced maturation 
protein 1 (BLIMP1) encoded by the positive 
regulatory domain 1 gene (PRDM1), is a key 
regulator in T cell differentiation in mouse models. 
BLIMP1-deficiency results in a lower effector 
phenotype and a higher memory phenotype. 
Methods: In this study, we aimed to determine the 
role of transcription factor BLIMP1 in human T 
cell differentiation. Specifically, we investigated 
the role of BLIMP1 in memory differentiation and 
exhaustion of human T cells. We used CRISPR interference (CRISPRi) to knock-down BLIMP1 
and investigated the differential expressions of T cell memory and exhaustion markers in BLIMP1-
deficient T cells in comparison with BLIMP1-sufficient ex vivo expanded human T cells. 
Results: BLIMP1-deficiency caused an increase in central memory (CM) T cells and a decrease in 
effector memory (EM) T cells. There was a decrease in the amount of TIM3 exhaustion marker 
expression in BLIMP1-deficient T cells; however, there was an increase in PD1 exhaustion marker 
expression in BLIMP1-deficient T cells compared with BLIMP1-sufficient T cells. 
Conclusion: Our study provides the first functional evidence of the impact of BLIMP1 on the 
regulation of human T cell memory and exhaustion phenotype. These findings suggest that 
BLIMP1 may be a promising target to improve the immune response in adoptive T cell therapy 
settings.
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datasets contained the expression data of four human 
T cell phenotypes: naïve (N), stem cell memory (SCM), 
central memory (CM), and effector memory (EM). We 
used R statistical programming language and applied 
log2 transformation to raw expression levels, and the 
datasets were merged by similar gene symbols. Cleaning 
and normalization,19 and adjustments for the batch effect 
amongst these two datasets were done using an empirical 
Bayesian method described by Johnsen et al,20 which is 
implemented in the SVA package.21 A pairwise comparison 
was performed between each two consecutive stages (i.e., 
N vs. SCM, SCM vs. CM, and CM vs. EM) by using linear 
models for microarray (LIMMA). Statistically significant 
differentially expressed genes (DEGs) were identified 
by applying a threshold of 0.05 to the adjusted P-value, 
which was based on the false discovery rate using the 
Benjamini-Hochberg procedure22 and more than 1.5-fold 
change. Next, we computed the intersection of the DEG 
sets with the purpose of locating genes that upregulated 
during the course of differentiation from N T cells to EM 
T cells. In order to identify the regulators of EM T cell-
upregulated genes, a list of 107 DEGs that had more than 
two-fold higher expressions in EM T cells compared with 
CM T cells were subjected to TF gene enrichment using 
Enrichr23 and the ARCHS4 TF Co-expression database.24

Genetic vectors
The lentiviral CRISPR interference (CRISPRi) plasmid 
used in this study, pLV hU6-sgRNA hUbC-dCas9-KRAB-
T2a-Puro, was a gift from Charles Gersbach (Addgene 
plasmid #71236; http://n2t.net/addgene: 71236; RRID: 
Addgene_71236).25 pLV-hU6-sgPRDM1-5-hUbC-dCas9-
KRAB-T2a-Puro (sgPRDM1-5), pLV-hU6-sgPRDM1+35-
hUbC-dCas9-KRAB-T2a-Puro (sgPRDM1+35), and 
pLV-hU6-sgPRDM1+61-hUbC-dCas9-KRAB-T2a-Puro 
(sgPRDM1+61) were generated using Esp3I and T4 DNA 
ligase enzymes (Thermo Fisher Scientific, #FD0454, 
UK). Table 1 lists the sequences of these three sgRNAs. 
In order to ensure the specificity of the sgRNA sequences, 
we confirmed that there is no potential off-targets in 
the human genome with less than 3 mismatches using 
CRISPOR (http://crispor.tefor.net/) and CRISPR RGENE 
Tool (http://www.rgenome.net/cas-offinder/).

In order to produce the lentiviral particles, the 
aforementioned pLV plasmids and packaging plasmids 

cell persistence after the adoptive transfer is correlated with 
clinical response, and this has led to strategies to enhance 
in vivo persistence. These strategies consist of extrinsic 
modification of the host environment, conditioning 
lymphodepletion, intrinsic manipulation of the T cell 
itself, cytokine modulation to enhance cellular replicative 
potential,14 phenotype-based selection, and genetic 
engineering.15 The importance of the differentiation state 
of the infused cells has been shown by studies in mouse 
models.16,17 Antigen-independent persistence and self-
renewal are considered to be specific memory T cell 
characteristics.7

The effects of BLIMP1 knock-down on T cell 
differentiation have been extensively studied in mouse 
models.1-12 To the best of our knowledge, this research 
has not been conducted on human T cells. Therefore, we 
intend to study the effects of BLIMP1 knock-down on 
human T cells. We focused on ex vivo expanded primary 
human T cells due to their application in human T cell 
therapies. We knocked down the PRDM1 gene in primary 
human T lymphocytes to determine the effects of BLIMP1 
deficiency on T cell phenotype and T cell exhaustion.

Materials and Methods
Materials
Esp3I enzyme (#FD0454), TurboFect Transfection 
Reagent, and Dynabead Human T-Activator CD3/
CD28 (#11131D) were purchased from Thermo Fisher 
Scientific. RPMI-1640 medium, fetal bovine serum, 
and L-glutamine were purchased from Sigma-Aldrich. 
Lymphodex (#002041500) was obtained from Inno-train, 
the RNeasy Micro Kit (#74004) from Qiagen, PrimeScript 
RT Reagent Kit from Takara, SYBR Green Master Mix 
(#4367659) from Applied Biosystems Life Technologies, 
Inc., True-Nuclear™ Buffer Set from BioLegend, Rat 
IgG2a antibody from BD Biosciences, and human IL-2 
from Royan Institute. The anti-CD3-FITC (clone HIT3a, 
#555339), anti-CD4-PerCP (clone SK3, #566316), anti-
CD8-PE (clone HIT8a, #555635), anti-CD45RA-PE (clone 
5H9, #556627), anti-CD45RA-APC (clone 5H9, #561210), 
and anti-BLIMP1-PE (clone 6D3, #564702) antibodies 
from BD Biosciences, the anti-CD8-Pacific Blue (clone 
SK1, #344718) and anti-CD62L-FITC (clone DREG-56, 
#304812) antibodies from BioLegend, the anti-CD3-APC-
Alexa Flouor 750 (clone UCHT1, #A66329), anti-CD4-
Krome Orange (clone 13B8.2, #A96417) antibodies 
from Beckman Coulter, and the anti-CD107a-PE (clone 
eBioH4A3, #12-1079-42) antibody from eBioscience were 
used for the flow cytometry experiments.

Microarray data collection and analysis
Two publicly available microarray gene expression 
datasets were obtained from the NCBI Gene Expression 
Omnibus. The CD4+ T cell16 (accession GSE23321) 
and CD8+ T cell18 (accession GSE61697) datasets were 
used for differential gene expression analysis. Both 

Table 1. sgRNA oligonucleotides integrated into the CRISPR interference 
(CRISPRi) construct

sgRNA Strand Sequence

sgPRDM1-5
Sense CACCGTGGCTAAGGAAATCTTAAGC
Antisense AAACGCTTAAGATTTCCTTAGCCAC

sgPRDM1+35
Sense CACCGCACTGGAGGGCCGAGTGTCA

Antisense AAACTGACACTCGGCCCTCCAGTGC

sgPRDM1+61
Sense CACCGCACTCGGCCCTCCAGTGTTG
Antisense AAACCAACACTGGAGGGCCGAGTGC

http://n2t.net/addgene
http://crispor.tefor.net/
http://www.rgenome.net/cas-offinder/
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psPAX2 and pMD2.G were transfected into HEK293T 
cells using a TurboFect transfection reagent (Thermo 
Scientific). psPAX2 and pMD2.G were gifts from 
Didier Trono (Addgene plasmid #12259; http://n2t.net/
addgene:12259; RRID: Addgene_12259 and Addgene 
plasmid #12260; http://n2t.net/addgene:12260; RRID: 
Addgene_12260). The Lentivirus-containing supernatants 
were collected at 48- and 72-hour post-transfection, 
filtered through a 0.45 µm filter, and concentrated by 
centrifugation at 20 000 g for 2 hours.

Primary T cell culture and transduction
Peripheral blood mononuclear cells (PBMCs) were 
obtained from 5 ml blood obtained from healthy blood 
donors. The donor signed a written informed consent 
to authorize use of their blood sample. The Institutional 
Review Board, Royan Institute (Tehran, Iran) approved 
this research study and study-related informed consent. 
PBMCs were isolated by Lymphodex (Inno-train, REF 
002041500) by gradient centrifugation. The PBMCs 
were subsequently cultured with Dynabead Human 
T-Activator CD3/CD28 (ThermoFisher Scientific, REF 
11131D) in RPMI-1640 medium supplemented with 10% 
heat-inactivated fetal bovine serum (Sigma-Aldrich) and 
2 mM L-glutamine (Sigma-Aldrich). The culture was 
placed in a humidified incubator in 5% CO2 at 37°C. 
After 24 hours, the activated T cells were transduced 
with lentiviral supernatants in the presence of 100 U/ml 
of human IL-2 (Royan Institute, Iran), and maintained 
in the presence of 50 U/mL of human IL-2 for the rest of 
the culture period. In order to enrich the transduced T 
cells, puromycin (2.5 µg/mL) was added to the media at 48 
hours post-transduction and continued for six days. 

For the co-culture experiment, K562 cells engineered by 
a membrane-bound single-chain variable fragment (scFV) 
from an anti-CD3 antibody (K562-OKT3) were used as 
universal target cells. Transduced T cells were cultured in 
a 1:1 ratio with the K562-OKT3 cells in the absence of IL-
2. The percentages of the CD3- target cells and CD3+ T 
cells, and the expression of CD107a were ascertained by 
flow cytometry analysis.

RNA isolation, cDNA synthesis, and RT-qPCR analysis.
Total RNA was isolated from the PBMCs by using an 
RNeasy Micro Kit (Qiagen, 74004) according to the 
manufacturer's instructions. First-strand cDNA was 
synthesized from 2 μg of total RNA by using a PrimeScript 
RT Reagent Kit (Takara, Japan). A total of 2 µL of diluted 

cDNA template (25 ng) was added per reaction to achieve 
a final volume of 20 μL of the reaction mixture. Duplicate 
RT-qPCR reactions were designed with SYBR Green 
Master Mix (Applied Biosystems Life Technologies, Inc., 
REF 4367659). Gene expression analysis was assessed by 
RT-qPCR for the candidate genes with an ABI StepOnePlus 
(Applied Biosystems Life Technologies System) according 
to the following program: 95°C for 10 minutes, 40× (95°C 
for 15 seconds, 60°C for 1 minute), followed by melting 
curve acquisition at a ramp from 60°C to 95°C.

All of the target genes were normalized to GAPDH, 
an endogenous control, in order to analyze the gene 
expression results, which were finally calibrated against 
a control group. Relative gene expression levels were 
determined by the 2-(ΔΔCT) method. Table 2 lists the primers 
used in the RT-qPCR analysis.

Flow cytometry
Transduced T cells were used in this experiment. The T 
cells were washed with phosphate-buffered saline (PBS), 
centrifuged, and then blocked with BSA. The cells were 
subsequently washed with PBS. Primary antibodies were 
added to the test samples according to the manufacturer’s 
recommendations. The cells in both groups were 
rinsed with PBS. After surface staining and to perform 
intracellular staining of BLIMP1, initially the cells were 
fixed and permeabilized with a True-Nuclear™ Buffer Set 
(BioLegend) according to the manufacturer’s instructions 
and then stained with rat anti-human BLIMP1 antibody 
or rat IgG2a antibody (BD Biosciences, San Jose, CA, 
USA). Finally, the cells were assessed by flow cytometry 
(BD FACSCalibur or BD FACSCanto, BD Biosciences) 
and analyzed with FlowJo v. 10 software.

Statistical analyses
All the experiments were carried out in triplicate. The data 
are expressed as mean ± SD. The independent student’s t 
test with either SPSS 24.0 (SPSS Inc., Chicago, IL, USA) or 
GraphPad Prism 8.0.2 (GraphPad Software, Inc., La Jolla, 
CA, USA) was applied to analyze group differences in the 
data. Significance was set at 5%. The statistics symbol for 
meaningful differences is an ‘*’ for the student’s t test.

Results
Gene expression analysis of human T cell memory 
subpopulations
First, we compared the transcriptomes of the N, SCM, CM, 
and EM subpopulations of the human T cells to identify 

Table 2. Primers used for RT-qPCR

Target gene/element Forward primer Reverse primer

PRDM1 ACGTGTGCCCTTTGGTATGT CTGGGATTCTGGTGCTGATG
WPRE CGTTGTCAGGCAACGTG CTGACAGGTGGTGGCAAT
GAPDH CTCATTTCCTGGTATGACAACGA CTTCCTCTTGTGCTCTTGCT

PRDM1: Transcription factor PR/SET domain 1

http://n2t.net/addgene:12259
http://n2t.net/addgene:12259
http://n2t.net/addgene:12260
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potential regulators of memory T cell differentiation. We 
identified eight genes: CCL5, CST7, BHLHE14, PRDM1, 
MYO1F, ERN1, MAF, and CD58, which upregulated during 
the course of differentiation from the N to the EM T cell 
phenotypes (Fig. 1A). We also performed a transcription 
factor enrichment analysis on the genes that upregulated 
in the EM T cells compared to the CM T cells (Table 
S1, Supplementary file 1) to identify the transcription 
factors associated with differentiation of the memory T 
cell subpopulations (Figs. 1B and 2A). According to our 
observation, PRDM1 was associated with the highest 
number of EM T cell upregulated genes (19 genes), which 
included three transcription factors (FOSL2, PLEK, and 
ID2) and, in turn, link PRDM1 to more target genes in 
the built network (Fig. 2B). We then confirmed a graded 
increase in PRDM1/BLIMP1 expression during T cell 
differentiation from the N to EM T cells by measuring 
BLIMP1 protein expression in the different memory T 
cell subpopulations in unstimulated human PBMCs. The 
highest BLIMP1 median fluorescence intensity (MFI) was 
detected in the EM T cell and terminally effector (TE) 
subpopulations; the lowest MFI was observed in naïve 
like T cells (NL) that comprised the N T cell and SCM T 
cell populations (Fig. 1C, D). These results, along with the 
previous knowledge on the function of mouse BLIMP1 in 
T cell differentiation, prompted us to investigate the role of 
PRDM1/BLIMP1 in human memory T cell differentiation 

by using a loss-of-function approach.

Efficient knock-down of the transcription factor PR/SET 
domain 1 (PRDM1) gene with sgPRDM1/Cas9-KRAB 
In order to efficiently knock-down BLIMP1 expression 
using the CRISPRi method, we tested three different 
sgRNAs that targeted different positions, -5, +35 and +61, 
relative to the PRDM1 transcription start site (TSS) (Fig. 
3A). The three designed sgRNAs were integrated into a 
lentiviral CRISPRi construct that expressed a Cas9-KRAB 
fusion protein along with a puromycin resistant gene 
(Fig. 3B). The three constructs performed differently in 
reducing PRDM1 mRNA expression. While sgPRDM1+61 
and sgPRDM1-5 did not make a significant change in 
PRDM1 expression, sgPRDM1+35 dramatically decreased 
PRDM1 gene expression at the mRNA level (Fig. 3C). 
Thus, sgPRDM1+35 (subsequently denoted as sgPRDM1 
in this paper) was selected for PRDM1 suppression for the 
following experiments.

The role of B lymphocyte-induced maturation protein 1 
(BLIMP1) in determining T cell memory phenotype
We sought to determine whether BLIMP1 deficiency 
impacted the T cell phenotypes. To this extent, we 
measured CD4, CD8, CD45RA, and CD62L cell surface 
markers by extracellular staining and flow cytometry 
analysis on day 18 and day 22 after T cell activation (Fig. 

Fig. 1. Global gene expression and BLIMP1 protein expression in different human T cell memory phenotypes. A) Gene expression of eight genes on a 
significantly meaningful (adj. P>0.05) graded scale of increase were expressed in different phenotypes, from N to EM T cells. B) The top ten transcription 
factors with enriched targets among the EM T cell-upregulated genes, based on the ARCHS4 TF co-expression database. The number of detected targets for 
each TF is shown in parentheses. C) The scatter plot (left) shows a representative data of memory phenotypes of CD3+ T cells in unstimulated human PBMCs 
detected based on CD62L and CD45RA expressions. Stacked histograms (right) show BLIMP1 MFI, which is gated on different memory phenotypes. D) The 
summary quantitative data of BLIMP1 MFI across different memory phenotypes of human T cells. The data are presented as mean ± SD, *P<0.05, **P<0.01, 
and ***P<0.001, n = 9 in transcriptome data, n = 4 in BLIMP1 staining. BLIMP1: B lymphocyte-induced maturation protein 1; MFI: Median fluorescent intensity; 
N: Naïve; EM T cell: Effector memory T cell; PBMC: Peripheral blood mononuclear cells.
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4A). We did not observe any association between PRDM1 
knock-down and the CD4+/CD8+ ratio (Fig. 4B, C). No 
statistical changes were observed in the expressions of the 

Fig. 2. Transcription factor enrichment analysis on a list of genes upregulated 
in EM T cells compared to CM T cells. A) Heatmap representation of the 
overlap of the list of top ten enriched transcription factors  (vertical axis) 
and corresponding EM T cell upregulated genes (horizontal axis). Some 
of the enriched transcription factors, FOSL2, PLEK and ID2, are also 
present in the EM T cell upregulated gene list. B) A network model built 
based on top ten enriched transcription factors illustrates the genes directly 
(red) and indirectly (orange) connected to PRDM1 through other enriched 
transcription factors. The network was visualized with Cytoscape software. 
EM T cell: Effector memory T cell; CM T cell: Central memory T cell; 
PRDM1: transcription factor PR/SET domain 1.

Fig. 3. Knock-down of the transcription factor PR/SET domain 1 (PRDM1) gene by designed CRISPR interference (CRISPRi) constructs in human T cells. A) 
The sgRNA target sites near the PRDM1 transcription start site (TSS). The PRDM1 gene is located on chromosome 6. sgPRDM1-5 targets five nucleotides 
downstream of the TSS; sgPRDM1+35 targets 35 nucleotides upstream of the TSS; and sgPRDM1+61 targets 61 nucleotides upstream of the TSS. B) The 
CRISPRi construct to knock-down PRDM1. The vector is created to knock-down the PRDM1 gene by the designed sgRNA and the CAS9-KRAB enzyme. By 
pairing dCas9 with a sequence-specific sgRNA, the dCas9–sgRNA complex can interfere with transcription elongation by blocking RNA polymerase (Pol). It 
can also impede transcription initiation by disrupting transcription factor binding. In order to achieve enhanced repression, the Krüppel-associated box (KRAB) 
is fused to the carboxyl terminus of dCas9. Together with a target-specific sgRNA, the dCas9–KRAB fusion proteins can efficiently repress endogenous 
genes. The puromycin resistant gene expression product is segregated by T2A, a self-cleaving peptide, from the other products of the vector. C) RT-qPCR 
data depicts expression of the PRDM1 gene. The bar graph shows mRNA expression in different T cell groups transduced with CRISPRi constructs that 
comprise the designed sgRNAs. The three constructs perform differently in reducing the expression of PRDM1 mRNA. sgPRDM1+35 dramatically decreased 
PRDM1 gene expression at the mRNA level. The data are presented as mean ± SD, *P<0.05, n = 3.

CD45RA and CD62L cell surface markers in BLIMP1-
sufficient and BLIMP1-deficient T cells at day 18 (Fig. 
5). However, flow cytometry analysis of T cell memory 
phenotypes in the whole T cell population at day 22 
revealed a meaningful increase in the BLIMP1-deficient 
CM T cells (P=0.003) and a significant decrease in the 
EM T cell population (P=.019) in comparison with the 
BLIMP1-sufficient counterpart T cells (Fig. 4D, E). 
Phenotypic analysis of CD4+ T cells at day 22 revealed a 
significant increase (P=0.010) in the CM T cell population 
(Fig. 4F), while a more significant increase was observed 
in CM (P=0.002) versus a significant decrease in NL 
(P=0.032), EM (P=0.00027), and TE (P=0.043) T cells in 
the CD8+ population at day 22 (Fig. 4G). 

The effect of B lymphocyte-induced maturation protein 
1 (BLIMP1) suppression on the exhaustion marker 
expressions
We next explored the expressions of exhaustion markers 
on sgPRDM1-transduced BLIMP1-deficient human T 
cells. We first assessed PD1 expression by flow cytometry 
on day 18 of culture. Although statistically not significant, 
there was an elevated proportion of PD1-expressing cells 
in the BLIMP1-sufficient T cells at this time point (Fig. 6 
A-C). In order to further assess the influence of BLIMP1 
on T cell exhaustion, PD1 and TIM3 exhaustion markers 
were measured by flow cytometry on day 25. In the whole 
T cell population on day 25, there was a statistically 
significant lower frequency of PD1−TIM3+ cells observed 
in the BLIMP1-deficient T cells, but no statistical 
difference was seen in the percentage of PD1+TIM3− and 
PD1+TIM3+ cells (Fig. 7A, B). No statistically significant 
difference was seen for PD1+TIM3− cells in the BLIMP1-
deficient CD4+ T cell populations on day 25 (Fig. 7C); 
however, there were statistically fewer PD1+TIM3− cells 



Azadbakht et al

BioImpacts, 2022, 12(4), 337-347342

Fig. 4. BLIMP1 knock-down prevents EM and TE T cell phenotypes and increases CM T cell differentiation. A) The schematic timeline of the experimental 
setting. PBMC was activated by anti-CD3/CD28 Dynabead on day zero. The sgPRDM1/Cas9-KRAB genetic constructs that contain the designed sgRNAs 
were transduced into T cells of different groups on the first day. T cells received IL-2 from the first day until the end of the experiment, while puromycin 
treatment was carried out for six days. Flow cytometry assessments were done at different days after the puromycin treatment. B) The scatter plot represents 
the percentages of the CD4+ and CD8+ T cell population on day 10 in a representative donor. This assessment was fulfilled after puromycin selection on 
the transduced groups. C) The bar graph represents the percentages of CD4+ and CD8+ T cell populations on day 10. There was no observed association 
between transcription factor PR/SET domain 1 (PRDM1) knock-down and the CD4+/CD8+ ratio. D) Scatter plot shows the percentages of CD62L and 
CD45RA expression in the whole T cell population on day 22 in the Mock group and in the whole T cell population on day 22 in the Mock and sgPRDM1 
groups. A meaningful increase in BLIMP1-deficient CM T cells and a significant reduction in EM T cells is shown. F) Bar graph depicts the different T cell 
phenotypes in the CD4+ T cell population on day 22 in the Mock and sgPRDM1 groups. G) Bar graph depicts the different T cell phenotypes in the CD8+ T 
cell population on day 22 in the Mock and sgPRDM1 groups. The data are presented as mean ± SD, *P<0.05, **P<0.01 and ***P<0.001, n = 3. EM T cell: 
Effector memory T cell; TE T cell: Terminally effector T cell; CM T cell: Central memory T cell; BLIMP1: B lymphocyte-induced maturation protein 1; PBMC: 
Peripheral blood mononuclear cells.

Fig. 5. The early influence of BLIMP1 inhibition on T cell phenotype. No statistical changes were observed in the expressions of the CD45RA and CD62L cell 
surface markers in BLIMP1-sufficient and BLIMP1-deficient T cells. A) The scatter plots represent the percentages of CD62L and CD45RA expression in the 
whole T cell population in the Mock and sgPRDM1 groups on day 18. Bar graphs depict: B) different T cell phenotypes in the CD4+ T cell population in the 
Mock and sgPRDM1 groups on day 18; C) different T cell phenotypes in the CD8+ T cell population on day 18 in the Mock and sgPRDM1 groups; and D) 
different T cell phenotypes in the whole T cell population on day 18 in the Mock and sgPRDM1 groups. BLIMP1: B lymphocyte-induced maturation protein 1.

in the BLIMP1-deficient CD8+ T cell populations on day 
25 (Figs. 6D, E and 7D).
Next, we measured the MFI in the whole T cell population 
as well as the CD4+ and CD8+ subpopulations to 

determine if there were any additional differences between 
BLIMP1-sufficient and BLIMP1-deficient T cells for the 
expressions of PD1 and TIM3 on day 25. A decreased 
TIM3 MFI level was observed in BLIMP1-deficient T cells 
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(Figs. 6F, G and 7E, F). On the other hand, PD1+ T cells 
showed higher PD1 MFI in the BLIMP1-deficient group 
(Figs. 6H, I and 7G, H,). Overall, this data suggests that 
BLIMP1 knock-down results in elevated PD1 and reduced 
TIM3 expressions in ex vivo expanded human T cells.

The effect of B lymphocyte-induced maturation protein 
1 (BLIMP1) knock-down on functional characteristics of 
human T cells
The preferential differentiation of BLIMP1-deficient 
T cells into cells with a CM phenotype suggested that 
these cells would have lower proliferation and death 
rate. Examination of T cell proliferation and death, with 
an adjusted number of 1×105 cells for each group after 
Puromycin selection (10 days after PBMC isolation), 
showed that the proliferation rate for BLIMP1-deficient 
T cells was half and these cells had longer longevity 
compared to BLIMP1-sufficient T cells (Fig. 8A, B). 

We sought to investigate the effect of BLIMP1 knock-
down on T cell activation and cytotoxicity by co-culturing 

the transduced T cells with an engineered K562 cell line 
that expresses a membrane-bound anti-CD3 protein 
(K562-OKT3), and serves as a universal target cell for 
T cells. Next, we examined the activation marker and 
changes in T cell-target cell ratio. As shown in Fig. 8C, 
D, the percentage of target cells was lower in the control 
group compared to the BLIMP1-deficient group. On the 
other hand, the MFI of CD107a, a degranulation marker, 
showed no significant diference btween the groups (Fig. 8E, 
F). Collectively, these results suggest that downregulation 
of BLIMP1 is associated with increased overall killing by 
T cells that might result from their improved persistance 
instead of increasaed cytotoxic activity.

Discussion
In this study, we used the CRISPRi genome editing 
tool. It is noteworthy to mention the merits of CRISPRi 
over siRNA and CRISPR/Cas9. The main advantage of 
CRISPRi over CRISPR/Cas9 is its transient knock-down 
effects compared to the full knock-out effects of CRISPR/

Fig. 6. The impact of BLIMP1 knock-down on exhaustion markers PD1 and TIM3 in the Mock and sgPRDM1 groups in CD4+ and CD8+ T cells. On day 18, 
there were no statistically meaningful differences observed in the expression levels of PD1 and TIM3 between BLIMP1-sufficient and BLIMP1-deficient T cells. 
However, on day 25, there was a decline in TIM3 expression and an increase in PD1 expression in BLIMP1-deficient T cells rather than BLIMP1-sufficient T 
cells. Bar graphs show: A) expression of the exhaustion marker PD1 in the whole T cell population for the Mock and sgPRDM1 groups on day 18 and B, C) 
expression of the exhaustion marker PD1 in the CD4+ and CD8+ T cell populations, respectively, for the Mock and sgPRDM1 groups on day 18. D, E) Scatter 
plots depict the expression of the exhaustion markers PD1 and TIM3 in the CD4+ and CD8+ T cell populations, respectively, for the Mock and sgPRDM1 
groups on day 25. F, G) The representative histogram and bar graph delineate TIM3 expression in the CD4+ and CD8+ T cell populations, respectively, on day 
25. H, I) The representative histogram plot and bar graph show PD1 expression in the CD4+ and CD8+ T cell populations, respectively, on day 25. BLIMP1: 
B lymphocyte-induced maturation protein 1.
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Cas9.26 Gene knock-down via CRISPRi is not dependant 
on ploidy or frame shift mutations, which is a major 
benefit.27 CRISPRi appears to produce a more consistent 
and robust knock-down given the same number of 
effector RNAs rather than RNAi. For instance, six out of 
eight sgRNAs were found to repress GFP levels by at least 
75%28 and CRISPRi shows significantly stronger loss-of-
function phenotypes for gene inhibition compared with 
RNAi.29 In addition, reversible PRDM1 knock-down, 
which is possible by inducible CRISPRi through the Tet 
on/off system rather than RNAi, was used in this study 
because the BLIMP1 protein is necessary for the proper 
function of effector T cells and for the recall response of 
memory T cells.30 Therefore, we considered CRISPRi to be 
the best genome editing tool for this study.

We observed that PRDM1 knock-down enhanced CM 
T cell (P=0.003) and decreased EM T cell (P=0.019) 
phenotypes in human T cells. Less of the TIM3 exhaustion 
marker was observed in BLIMP1-deficient CD8+ T cells; 
however, there was higher, but not statistically meaningful, 
PD1 expression in the BLIMP1-deficient T cell population.

To the best of our knowledge, previous studies on the 

impacts of BLIMP1-deficiency were mostly conducted 
on mouse T cells. It has been reported that BLIMP1 
influences effector versus memory subsets of CD4+ T 
cells in mouse models,3,5,31 which we confirmed by our 
findings in the human CD4+ T cell population. Our data 
showed that BLIMP1-deficiency caused a meaningful 
increase in the CM T cell phenotype (P=0.010) in CD4+ 
human T cells. In terms of CD8+ T cells, previous studies 
on mouse T cells depicted a critical regulatory role for 
BLIMP1 in driving the termi nal differentiation of effector 
T cells,3,5,9,10 which was completely compatible with our 
results on human CD8+ T cells. The current study results 
had enough compelling data for BLIMP1-deficient CD8+ 
T cells to have a higher CM T cell phenotype (P=0.002) 
versus lower EM (P=0.00027), TE (P=0.043), and NL 
(P=0.032) T cell phenotypes. Overall, for the whole T cell 
population in human T cells, we showed that a BLIMP1 
deficiency increased the CM T cell phenotype and lowered 
the EM T cell phenotype, which confirmed results of 
previous studies on mouse models.3,5

We observed that BLIMP1-deficiency in human T cells 
resulted in a non-meaningful PD1 increase despite a 

Fig. 7. BLIMP1 knock-down affects the expression of the exhaustion markers PD1 and TIM3 in human T cells. A) The representative scatter plot illustrates 
PD1 and TIM3 expression for the whole T cell population on day 25. B) The bar graph depicts the percentage of the T cell subpopulations based on the 
expression of the exhaustion markers PD1 and TIM3 in the whole T cell population for the Mock and sgPRDM1 groups on day 25. C) Percentages of PD1 and/
or TIM3 expressing cells in the CD4+ T cell population on day 25. D) Percentages of PD1 and/or TIM3 expressing cells among the CD8+ T cells on day 25. 
E) The representative histograms compare TIM3 expression between the Mock and sgPRDM1 groups for the whole T cell population on day 25. F) The bar 
graph represents the MFI for the expression of the exhaustion marker TIM3 in the whole T cell population for the Mock and sgPRDM1 groups on day 25. G) 
The representative histograms of PD1 expression in the Mock and sgPRDM1 groups for the whole T cell population on day 25. H) The bar graph represents 
the MFI for the expression of PD1 in PD1+ cells for the Mock and sgPRDM1 groups on day 25. The data are presented as mean ± SD, *P<0.05, **P<0.01 
and ***P<0.001, n = 3. BLIMP1: B lymphocyte-induced maturation protein 1; MFI: Median fluorescent intensity.
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Fig. 8. The effect of BLIMP1 knock-down on the functional characteristics of T cells. A) The line graph represents fold change expansion in the Mock and 
sgPRDM1 groups during a 10 day-expansion period. B) The line graph shows the trend for T cell death in the Mock and sgPRDM1 groups during a 30 day-
expansion period after a re-stimulation on day 3. C) Representative flow cytometry data of a co-culture of T cells with target cells (K562-OKT3) analyzed after 
three days. T cells were distinguished from target cells based on CD3 expression. D) A summary of data observed from the co-culture experiment (n = 3) 
shows significantly fewer target cells in the BLIMP1-deficient T cell group (sgPRDM1) compared to untransduced T cells (Ctrl). E) Representative data for 
the expression of a degranulation marker, CD107a, on T cells in the co-culture experiment. F) CD107a median fluorescent intensity (MFI) measured in the 
co-culture experiment (n = 3). The data are presented as mean ± SD, *P<0.05. BLIMP1: B lymphocyte-induced maturation protein 1.

meaningful TIM3 decrease in the whole T cell population. 
In line with our findings, BLIMP1 expression has previously 
been reported to repress PD1, such that there is an increase 
in PD1 expression in BLIMP1–deficient CD8+ T cells in 
mouse models.32 Our findings that PD1 increased this level 
in human T cells supported the results of those studies. It 
has previously been reported that exhausted T cells have 
higher expression of BLIMP1 and, in contrast, BLIMP1-
deficient CD8+ T cells resist exhaustion and exhibit 
improved cell numbers.6 There is higher PD1 expression 
in BLIMP1 deficient CD8+ T cells.12 BLIMP1 deficiency 
has been shown to lead to higher/increased levels of PD1 
expression during T follicular helper (Tfh) and regulatory 
T (Treg) cell differentiation.20,33 A compensatory effect 
between a number of checkpoint inhibitors including PD-
1, LAG-3, and CTLA-4 has been proposed.34 However, 
there is no data on such compensatory effect between 
TIM3 and any of the known BLIMP1 targets. On the other 
hand, there are several reports about upregulation of PD1 
and TIM3 in exhausted T cells,31,35-41 which is indirectly 
in line with our findings on TIM3 downregulation in 
BLIMP1 deficient human T cells because BLIMP1 is a key 
up-regulator of exhaustion markers.42 

Of note, BLIMP1 knock-down reduces T cell 
proliferation. Our results showed a three-fold expansion 
for BLIMP1 knock-down T cell groups and a six-fold 
expansion for BLIMP1 sufficient T cells. However, 
BLIMP1 knock-down improved T cell persistence and 
cytotoxicity. Since our knock-down system only partially 
deplete BLIMP1, our cytotoxicity result is in line with 
previous data showing that a genetic mice model with 
haploinsufficiency of BLIMP1 in CD8+ T cells (conditional 
heterozygous) controls infection more rapidly than wild-

type or BLIMP1-null mice.6

It can be inferred from the results of our study and 
previous studies on knocking down Prdm1 in mouse 
models that BLIMP1 is a master inducer of effector 
phenotype in human T cell differentiation. A BLIMP1 
deficiency leads to a reduction in effector phenotype 
through an increase in memory phenotype, a reduction 
in TIM3, but an increase in PD1 markers. Although we 
provided the first functional evidence on the significant 
role of BLIMP1 in human T cell differentiation, additional 
research should be conducted to determine the impact 
of BLIMP1 function on memory T cell recall response in 
human T cells in addition to a thorough investigation of 
this effect in subsequent in vivo experiments. Our findings 
can also be assessed in an adoptive immunotherapy model, 
most importantly the CAR T cell models. 

In conclusion, the results of this study showed the 
specific impacts of BLIMP1 deficiency on the human T 
cell phenotype and exhaustion. We uncovered the critical 
role of BLIMP1 in the human T cell fate; therefore, it can be 
determined how BLIMP1 could be a potential key factor in 
regulating T cell persistence in human immunotherapies.

We suggest that further studies be conducted to 
ascertain the mechanism of action for BLIMP1. Whether 
BLIMP1 increases CD62L+ memory T cells through an 
outgrowth in their population or through its direct impact 
on increasing the expression level of CD62L remains to 
be determined. The result of our study proved the effects 
of BLIMP1 knock-down on human T cell phenotypes 
and showed that BLIMP1 knock-down changed the cell 
surface markers. Further molecular research on BLIMP1 
targets that change their expression levels due to BLIMP1 
knock-down could be conducted to determine the effects 
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of BLIMP1 on the functional properties of T cells at the 
molecular level.
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