
Piecewise Polynomial Representations of Genomic
Tracks
Maxime Tarabichi1, Vincent Detours1,2*, Tomasz Konopka1
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Abstract

Genomic data from micro-array and sequencing projects consist of associations of measured values to chromosomal
coordinates. These associations can be thought of as functions in one dimension and can thus be stored, analyzed, and
interpreted as piecewise-polynomial curves. We present a general framework for building piecewise polynomial
representations of genome-scale signals and illustrate some of its applications via examples. We show that piecewise
constant segmentation, a typical step in copy-number analyses, can be carried out within this framework for both array and
(DNA) sequencing data offering advantages over existing methods in each case. Higher-order polynomial curves can be
used, for example, to detect trends and/or discontinuities in transcription levels from RNA-seq data. We give a concrete
application of piecewise linear functions to diagnose and quantify alignment quality at exon borders (splice sites). Our
software (source and object code) for building piecewise polynomial models is available at http://sourceforge.net/projects/
locsmoc/.
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Introduction

Genomic studies often involve associations of measurements

with genomic coordinates. In high-throughput sequencing studies,

for example, one has information about genomic features such as

copy-number, expression, or binding affinity at near single-

nucleotide resolution. Such tracks can be thought of describing

functions in a one-dimensional space parameterized by a natural

coordinate. We here discuss the role piecewise polynomial curves

(PPCs) can play to conveniently store, process, and interpret such

data. We argue PPCs can be incorporated into existing analysis

pipelines and open opportunities to view data from new

perspectives.

PPCs are functions over a one-dimensional space that can be

formulated as simple polynomials within contiguous finite

intervals. Piecewise constant functions, which are special instances

of PPCs, describe properties that are fixed on a genomic range and

indicate the positions where these properties change discontinu-

ously. They are already in widespread use in genomics under the

guise of run-length encodings or segmentations, for example in

context of studying regions of copy-number variation (see [1–3]

and references therein).

Higher-order PPCs, i.e. piecewise linear or piecewise quadratic

functions, are more general objects capable of describing both

abrupt and gradual changes. Similarly to the discontinuities

already mentioned, gradual changes can also be informative. For

example, GC content at a locus is actually a property of a

neighborhood and thus changes slowly from one position to the

next. In high-throughput sequencing studies, signals have short

range correlations associated with the read length. Rolling patterns

can be observed in alignment coverage as well as in derived tracks

such as high-resolution mappability scores [4]. In such applica-

tions, it is desirable to optimally encode a signal and piecewise-

linear segments are natural candidates for the job (Figure 1).

The motivation for replacing raw data with functional models is

similar to that for using regression to summarize linearly related

points. Good models capture the essence of data, suppress noise,

and provide an output that can be interpreted meaningfully. In

this sense modeling can be regarded as a lossy compression

scheme. Whereas it can be dangerous if applied too aggressively, it

need not be detrimental to downstream analysis. For instance, in

another context, lossy compression of base quality scores in fastq

files has been shown not to be detrimental to identification of

single-nucleotide variants [5,6]. At the same time, the functional

form of the PPCs can enable novel types of analysis. In the

literature on modeling of gene-expression time-series, for example,

the ability to describe data in terms of mathematical functions is a

key ingredient in algorithms inferring regulatory mechanisms

between genes [7,8]. In genomics, the functional form can describe

a region as opposed to individual locations and thereby offers a

robust framework to compare trends and biases between

technologies and samples.

In practice, building effective piecewise polynomial models for

genomic signals (Figure 1) is nontrivial for several reasons. First,

the length of a chromosome or genome, denoted as Ng, can be on

the order of 108 or more. Second, genomic signals often contain a

large number of domains with distinct patterns. Characterizing

these events is often the objective of bioinformatic studies, for

example in finding copy-number breakpoints or splice-sites in

transcriptomics, but the space of possible event locations scales

super-exponentially with Ng. Third, although genomic features
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are sometimes measured at near single-nucleotide resolution,

relevant signals often show regional correlation. These can reflect

a certain read length in a high-throughput sequencing study or

reveal biological properties such as the distribution of genes along

a genome. Whatever the reason, regional correlations imply that a

signal of actual length Ng can often be encoded using much fewer

values via run-length encoding. Denoting Nr as the number of

runs, one can have Nr%Ng. Thus, run-length encoding provides a

natural reference to which curve smoothing can be compared to.

In light of these characteristics, one can understand why

polynomials have been used in internal processing in some

applications involving short signals (e.g. [9]), but they have rarely

been used for representation of long genomic tracks: Conventional

data smoothing methods turn out to be inappropriate for genomics

due to computational complexity or due to their smoothing

assumptions. Methods developed for short signals are impractical

if they require O(N2
g ) time or space resources. This applies to

many sophisticated segmentation methods which work top-down

[9]. Methods which work in the spirit of a convolution, for

example a basic moving average or locally weighted regression

(loess) can require only O(Ng) or O(WNg) resources, where W is

the width of a predefined window. However, they require the user

to specify a window width, which may not be obvious in practice

[2]. Another disadvantage of convolution methods is that they blur

sharp contrast (Figure 1). This is undesirable for biological reasons

and also leads these methods to provide output that is less

amenable to run-length encoding than the original signal. Thus,

although these smoothings eliminate local noise, they can inflate

rather than compress the size of a signal.

In order to smooth signals in regions where it is appropriate and

simultaneously preserve discontinuous boundaries, an adaptive

approach employing functional representations is required.

Segmented regression [10] and some spline-based techniques

[11,12] fall in this category. Some implementations use greedy

search and/or invoke constraints limiting the model complexity,

but top-down techniques can still require quadratic resources in

time or memory when the signal contains a large number of

domains. Implementations from non-genomic fields typically also

assume maximal continuity conditions. This does not immediately

rule out their use in genomics, but imposes unnecessary conditions.

Lastly, whereas some implementations rely on minimizations of

objective functions, a more intuitive approach for pattern

Figure 1. Modeling of signals. A sample signal (gray bars) modeled/smoothed using (A) a piecewise-linear function (blue line) and (B) loess
smoothing (blue and red dots, different settings). The PPC representation captures trends and highlights discontinuities.
doi:10.1371/journal.pone.0048941.g001
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detection in genomics is based on distributions (poisson, binomial,

generalized t-distributions, etc.).

We here describe a general tool appropriate for producing PPCs

for genomic signals. The algorithm builds on selected techniques

from the spline literature and adapts them to the genomic context.

As a result, it is suitable for processing very long signals with

multiple domains in time sub-quadratic in the length of the input.

Technically, the algorithm does not attempt to define and

minimize a global objective function for a piecewise polynomial

model. Instead, it produces approximate or acceptable models that

satisfy a-priori set conditions and show discontinuities where these

conditions are broken (Figure 1). It accepts run-length encoded

curves as input and thereby exploits one of the regularities of

genomic sequences. It can output both continuous and discontin-

uous models.

The rest of this paper is structured as follows. In the results

section, we illustrate some of the possible applications of piecewise

polynomial curves in bioinformatics with examples: signal

compression, improved detection of genomic copy-number from

array and sequencing data, and characterization of alignment

artifacts and gene-expression patterns in RNA-seq. Many of these

are supplemented by additional calculations in the Text S1. In the

discussion section, we summarize the applications and comment

on the general outlook. Our algorithm for generating PPC models

is reviewed in the methods section and in the Text S1.

Results

In this section, we illustrate the versatility of piecewise

polynomial curves in bioinformatic applications through a series

of examples.

Signal Compression
To demonstrate the use of PPCs as a compression scheme, we

generated synthetic sequencing data by placing single reads of

length 50 nt uniformly at random on ‘chromosomes’ of length

1Mnt. We created data of various coverage depth and saved the

coverage tracks using run length encoding. We then calculated

PPCs models with poisson error model for all the signals

(Methods). As the smoothing algorithm is stochastic and produces

different solutions when started with different seeds, we repeated

the smoothing procedure 10 times for each data signal. We

measured memory requirements to represent the coverage tracks

and their PPC models by loading the signals into tables in R and

applying the object.size function. Results show that high-coverage

signals can be compressed with high inverse compression ratios

(Table 1 and Text S1 B:1). Low coverage signals are ‘compressed’

less as knot operations pass the acceptance criteria less frequently

(Methods) and because their run-length encoding is more efficient

to begin with.

Similar compression performance is achievable on real signals

originating from sequencing projects. We downloaded human

genome mappability tracks for 100bp paired-end reads [4] and

saved them as run-length-encoded signals. We then computed

PPC models using various settings (Figure 2). Constraining first

order PPC to give a model with 1% maximal deviation, we found

the tracks can be represented with inverse compression ratios

between 5 and 10 (depending on chromosome). Allowing

deviations of 2% can push the ratios up to 20.

Copy Number Detection
Genomic regions of constant copy number are often described

via long segments [1–3]. As these are actually piecewise

polynomial curves of order zero, we here discuss the application

of our smoothing algorithm to that context. The aim here is not to

propose a new copy-number calling procedure, but rather to point

out certain issues where the PPC smoothing may be of use.

Array-based signals. In an array experiment studying copy-

numbers, DNA from a sample is hybridized on probes sampling

positions along a genome. A well-regarded algorithm [1] for copy-

detection using these probes is circular binary segmentation (CBS)

[13]. It begins by treating a chromosome as a single segment and

then breaks it up iteratively if co-localized groups of probes have,

according to an empirical t-test, statistically different mean

intensity from the rest. Our algorithm also supports segmentation

using the t-test (Methods), but works differently than CBS in that it

starts by treating single probes as segments and then joins them

together.

To compare these closely related algorithms, we started by

simulating synthetic signals of lengths L[f300,1500,50000g
probes (1250 signals for each length) by sampling random

numbers from a normal distribution with zero mean and unit

standard deviation. We then added between one and ten events in

windows of length in the range ½L=14, L=12� and amplitudes

selected from the same normal distribution (Figure 3). We ran

CBS (default parameters) and our algorithm with the t-test method

(Methods, p~0:01) on the simulated data. Since the PPC

algorithm is stochastic, we also considered composite PPC

segmentations by taking median segment values from 5 indepen-

dent runs. For each chromosome, we computed the probe-wise

sum of squared distances between segmented and simulated

signals. Finally, we measured the proportion of times CBS gave a

lower error than PPC (Table 2). This gave us a measure of

segmentation quality independent of copy-number calling.

Results show CBS often outperforms our algorithm for signals

with few copy-number events (Figure 3A) and for signals with very

large number of probes in which each event is supported by many

probes. In these situations, the error attributed to the PPC

approach can be high. However, it originates from very short

segments (Figure 3A), which can have minimal impact on copy-

number calling (Text S1 B:1). For signals with coarse to medium

resolution and a large (w5) number of events, which are not

uncommon when studying cancer samples, it is the bottom-up

approach that often gives smaller errors (Figure 3B). We therefore

conclude that CBS is an excellent tool in most situations, but that

the PPC approach may be an interesting alternative in niche

analyses.

Text S1 B:1 contains additional calculations relating to array

segmentation, including comparisons with two other segmentation

methods, GLAD [14] and HMM [15].

Table 1. Compression due to PPCs.

Memory (ICR) Mean Len.

P O 8r/nt 250r/nt 8r/nt 250r/nt

1 0 3.6 22.1 21.3 39.0

1 1 2.2 13.1 22.1 38.2

2 0 8.4 67.8 51.0 125.9

2 1 4.9 30.2 48.8 90.1

P and O denote error model parameter p and the order of the PPCs,
respectively. ICR stands for inverse compression ratio. Mean Len. describes the
typical segment length in the PPCs. For reference, mean lengths in
uncompressed signals are 3:9 and 1:1 for the low and high coverage density
signals. r/nt stands for reads per nucleotide. Note: since the PPC algorithm is
stochastic, values may vary from signal to signal and from one run to another.
doi:10.1371/journal.pone.0048941.t001
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Sequencing-based signals. In the context of sequencing,

one approach to detect copy numbers changes is through read

depth [2] (alternative methods involve analysis of insert sizes

between paired-end reads). The underlying logic is that a genomic

region that has been deleted will not be represented in a sample.

Thus, when sequenced reads are aligned to a reference genome,

the coverage depth within that region will be reduced relative to

other regions. Similar reasoning applies when copy number is

increased.

Because coverage signals in sequencing samples have a finite

auto-correlation length, many algorithms for copy-number detec-

tion developed for microarray platforms tend to produce

segmentations with too many events, taking a prohibitive amount

of time in the process [2,16]. A workaround, used in all methods

for segmentation of sequencing coverage, is to divide a signal into

non-overlapping windows of fixed width, compute coverage in

each window, and then perform segmentation or copy-number

calling using those values. This works because the averages in

neighboring windows become independent and thus resemble data

produced by sparse microarrays. The drawback of this approach,

however, is that a long window width required to remove the auto-

correlation implies that breakpoints cannot be inferred at

resolution better than the window width. It follows that it may

be beneficial to define short segments via an approach like PPC

instead of adopting fixed intervals by fiat.

To investigate this issue, we again generated synthetic data. We

first created a set of 104 paired chromosomes with random

sequence and considered them as a reference genome. We then

produced a derived genome with modified copy numbers by

selecting a subsequence of around 2 kilobases in each chromosome

and deleted, duplicated, or left it in place in either one or both

copies. Next, we generated perfectly matching single-end 75bp

reads from this aberrant genome and obtained a sample with

coverage depth 30. We aligned the reads to the original genome

using Bowtie [17] and computed the coverage tracks.

Next, we segmented the coverage signals using fixed windows of

various lengths and using our approach with various parameters

settings, which each led to segmentations with a characteristic

(median) length. We labeled each window/segment as copy-

number aberrant if more than half of its width overlapped a region

with actual copy-number change. This procedure is somewhat

arbitrary, but is blind to the segmentation method. We can thus

regard these labels as the best possible classification achievable by

a perfect copy-number caller given the segmentations. We

computed the number of bases in the synthetic genome that can

be regarded as true positive, false positive, true negative and false

negatives (Figure 4). The results show that for segments with

median length greater than the read length, the PPC segments

consistently outperform the fixed-window approach (higher true

positive and true negative rates, lower false positive and false

negative rates). For shorter segments, the perfect classifiers would

give comparable results with fixed windows and PPC segments.

The calculation based on the ‘‘perfect’’ classifier supports the

argument that working with dynamically defined segments can

improve performance relative to fixed-width windowing. Howev-

er, the relevance of the calculation to actual practice relies on the

assumption that real classifiers show similar trends. To see this is

indeed the case, recall that segmentation algorithms based on long

windows generally give acceptable results while windows that are

much shorter than the auto-correlation length do not [2]. Thus,

real classifiers can plausibly achieve close-to-perfect performance

with long windows but not for short ones. To verify this intuition

explicitly, we performed classification of the synthetic data using

support vector machines. The details and results, consistent with

the reasoning above, appear in Text S1 B:2.

To conclude this section, we discuss normalization of real

sequencing data. Raw coverage signals are often normalized to

remove biases due to read capture or mappability. To demonstrate

that avoiding fixed-length windows can enhance this normaliza-

tion step, we started by downloading alignments (hg18) of full-

genome sequencing sample NA12891 from the 1000 Genomes

Project [18]. We computed the coverage tracks and smoothed

them (poisson smoothing, p~3) to obtain variable-length windows

with median lengths around 100 and mean lengths around 150

Figure 2. Representations of mappability track of human chromosome 21. MSE is mean square error between a model and the original
track (solid lines, left scale). ICR is inverse compression ratio (dotted lines, right scale). Red points summarize performance of an approach averaging
the track in windows of fixed width. Blue and green points summarize performance of PPCs with order 0 and 1, respectively. Points represent
computed values, lines are drawn to show trend. The plot shows that for given ICR, the PPC models produce fits with lower mean square error than
averages in fixed windows.
doi:10.1371/journal.pone.0048941.g002
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(numbers vary by chromosome). We then looked up the fraction of

each segment overlapping bases C or G and computed the mutual

information (MI) between CG content and coverage depth. We

found MIs around 0:25 (Text S1 B:2). For each chromosome, we

divided the coverage track into windows of fixed width equal to the

median and mean found by the PPC approach and then

recomputed the MIs. We found that in all but two chromosomes,

calculations using dynamically defined segments produced higher

mutual informations than the fixed window approach (differences

are around 0:03). This result opens the opportunity to study CG

bias in sequencing data by controlling for length of dynamical

windows. One possibility for doing this would be to adapt the

technique presented in [16].

RNA-seq Coverage
In addition to enhancing segmentation analyses, the generality

of the PPC modeling framework also permits us to explore

genomic data in novel ways. We here explore PPCs of linear order

in the context of RNA sequencing.

Figure 3. CGH signals with aberrations. Dots are probe intensities, horizontal lines indicate true copy-number levels (green), and segments
output by CBS (red) and the median of 5 PPC runs (blue). Where some lines are not visible, it is because multiple segments overlap. Both signals
contain 1500 probes. (A) Situation where CBS outperforms the PPC method. (B) Situation with multiple copy-number events where PPC segments
outperform CBS (missed events around positions 200 and 950).
doi:10.1371/journal.pone.0048941.g003

Table 2. Array segmentation methods.

Number of CN events

Passes Probes 1 3 6 9

1 300 0.63 0.48 0.51 0.37

1 1500 0.94 0.88 0.75 0.67

1 50000 1 1 1 1

5 300 0.55 0.38 0.34 0.25

5 1500 0.90 0.78 0.57 0.41

5 50000 1 1 1 1

Entries in the table indicate the proportion of times (out of 125 observations in
each category) that top-down segmentation outperforms the bottom-up
approach. Values smaller than 0:5 (highlighted) indicate the bottom-up
approach (PPC) is more appropriate than top-down (CBS) for short signals and
signals with many copy-number events. Performance improves by averaging
several PPC models. Note: since the PPC algorithm is stochastic, proportions can
vary slightly from one run to another (variation is on the order of +0:05).
doi:10.1371/journal.pone.0048941.t002
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In an RNA sequencing study, reads originate from mRNA

transcripts rather than raw DNA. Thus coverage is high

predominantly on exons of annotated genes and low elsewhere.

The coverage depth on the exons depends on gene expression

level, splicing events, and can contain a number of biases (e.g.

[19,20]). As a result, coverage can vary even within single genes or

even single exons (Figure 5).

We began by studying a coverage track from a human thyroid

sample from the publicly available bodymap dataset (Illumina

sequencing, 50bp paired-end reads; dataset consists of 16 samples

originating from various human healthy tissue types) [21]. We

aligned the sample on the hg19 reference genome using Tophat

[22] (v. 2.0.0) with and without exon junction libraries, and

computed the coverage tracks. We found genomic ranges labeled

as exons in the refGene annotation set [23] and eliminated

overlapping regions.

We computed piecewise linear models using poisson smoothing

with parameter p~2 (Figure 5). As the resulting PPCs can be

continuous or discontinuous, we looked at the positions of

discontinuities. Among the exons with coverage density greater

than the median, 87% showed a discontinuity at the position

specified as a boundary by the refGene annotation or within 3

bases from it. The high rate is consistent with the notion that non-

exonic sequence is spliced out and quickly degraded. However, the

result opens the opportunity to identify and study the cases where

an RNA-seq signal does not conform.

We investigated slopes near boundaries between long (width

w100 nt) and highly covered exons (depth w50) and neighboring

introns and intergenic regions. Unsurprisingly, a vast majority of

segments just outside exons are either flat or downward sloping as

seen from the exon boundary. Segments on inside boundaries, in

contrast, are more likely to be upward sloping than downward

sloping as seen from the exon boundary (Figures 5 and 6, and Text

S1). The bias is acceptable at the 5
0

and 3
0

ends of genes and

indeed also appears near boundaries in synthetically generated

signals. However, given the accepted view that RNA transcripts

are long strands spanning multiple exons, a strong bias is not

expected in general.

Figure 4. Fixed vs dynamic windows of sequencing coverage. Red circles indicate the best possible classification performance based on
signal processed into fixed windows of various lengths. Blue diamonds show equivalent measures for dynamically defined segments with a certain
median length. Note the scales on the vertical axes do not reach zero.
doi:10.1371/journal.pone.0048941.g004
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Strong slope biases are qualitatively observed in other samples

in the bodymap dataset, including those from other tissues and

those sequenced with 75 bp and 100 bp single-end protocols. They

are also present when the same computation is repeated counting

only segments from inner exons, i.e. those not classified as first or

last in any known gene isoform. The universality is therefore likely

an artifact due to well-known difficulties in aligning relatively short

reads across exon junctions. Indeed, it is greatly reduced when

alignment is performed in supervised mode using the same splice

junction library used in the slope bias test (Figure 6B). However,

the bias is not removed completely (binomial test, pv10{15).

As the histograms in Figure 6 contain information about the

sign of the slopes but not their magnitudes, it is in principle

possible that the bias arises due to segments that are very shallow.

We thus investigated in more detail the subgroup of boundary

segments on inner exons that are steep (slope magnitude greater

than 0.7) and longer than 25nt. We counted 7086 upward- and

5871 downward-sloping segments, respectively (binomial test,

pv10{15), showing that the bias is not purely cosmetic.

Although the bias might not carry direct biological meaning, it

does have important consequences. For instance, lower apparent

coverage near exon boundaries reduces power to detect variants or

to use those variants to estimate allelic ratios. This may not be a

Figure 5. Smoothing of coverage tracks. Randomly selected exons with mean coverage density above 50, exon width greater than 100, and
where segment slopes near both boundaries are (A) positive in inward direction and longer than 25nt; (B) negative in inward direction and longer
than 25nt. Dashed lines indicate exon boundaries. Examples capture segments contributing to the tails of the histograms in Figure 6.
doi:10.1371/journal.pone.0048941.g005
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problem for highly-expressed genes in well-annotated organisms,

but becomes increasingly relevant when studying weakly expressed

genes, especially if they are not included in the splice library or

when overall coverage is low. In addition, taking the slope bias as

an indicator of alignment quality prompts questions about the

reliability of the alignment near exon boundaries and possibly

elsewhere.

To finish this section, we mention that steep and long segments

also occur well away from exon boundaries. This may indicate

additional artifacts or perhaps novel locations of transcription

start/end sites. Previous reports [20] noticed sequence-specific

biases in read start and end locations, so we computed position

weight matrices (PWM) for sequences around features found by

the PPCs. We observed strong signals in PWM computed around

exon boundaries (as controls) but did not find similarly striking

effects around steep long segments entirely inside exons and far

from the boundaries. Thus, these coverage patterns are either due

to sampling or are regulated in ways not captured by PWM. In

any case, the ability to evaluate slopes at loci opens opportunity to

systematically study trends across as well as within samples.

Discussion

Piecewise polynomial curves (PPCs) are a compact and versatile

description of one-dimensional signals that have different behav-

iors in different domains. Encoding genomic signals using PPCs

can serve two main purposes: to compress data by eliminating

noise, and to provide a representation that has greater interpret-

ability value than the original.

We presented a general tool for constructing PPC models for

genomic data. It is related to conventional model-building

methods, but unlike regression or smoothing splines, the method

does not aim to minimize a global objective function. Instead, the

Figure 6. Segments close to inner exon boundaries Positive (negative) lengths indicate upward (downward) sloping segments.
Colors emphasize sign of slope. (A) Unsupervised alignment. (B) Using splice junctions library.
doi:10.1371/journal.pone.0048941.g006
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goal is to provide PPC representations of the input data that

respects user-specified criteria. A positive consequence of this is

that outliers in the data are never quietly incorporated into a

model. Rather, they create breakpoints/discontinuities that can be

later identified and interpreted as needed. This approach also

allows us to take advantage of peculiarities of genomic data such as

run-length encoding of the input.

The smoothing program provides output in O(Nr log Nr) time,

where Nr is proportional to the length of the input (measured in

bytes, which can be smaller that length of signal due to run length

encoding). In contrast to smoothing methods such as loess, the

PPC representation can sometimes provide significant compres-

sion both in memory and disk. Moreover, PPCs can be stored in a

tabular data-structure similar to those currently used for piecewise-

constant curves (e.g. wiggle files). They thus provide an accessible

extension to existing data storage formats.

Extensions to the described method are possible, particularly in

the direction of applying Monte-Carlo techniques (e.g. [11,12]).

Our algorithm could provide an input to such an approach. We

did not investigate such an extension here as it would increase

running time.

We demonstrated piecewise constant curves can be useful in

identifying copy-number changes in both array- and sequencing-

based data. The bottom-up approach is particularly suited for

studying signals with multiple copy-number changes. For sequenc-

ing data, the dynamic formation of segments is an alternative to

windowing with a-priori specified width, which is an essential stage

in all currently available methods. Furthermore, the generality of

the PPC could perhaps be exploited in the future to build even

better classifiers. For example, information from piecewise-linear

representations of the coverage signal may help improve break-

point detection at the expense of added curve smoothing time.

We also showed that a piecewise linear representation of RNA-

seq coverage can be used to analyze systematic biases. Our

example involved a well-known problem of aligning reads across

splice sites. The PPC representation of coverage reveals the

magnitude of this bias and suggests that using splice libraries

during the alignment procedure need not necessary eliminate it

completely.

Other applications of piecewise polynomial curves are possible.

In particular, wherever piecewise constant (i.e. run-length

encoded) curves are used, it is natural to ask whether benefit in

terms of compression or interpretability might be drawn from a

representation using first- or higher-order polynomials. Signals

encoded by PPCs need not be limited to the types above; they can

just as well be SNP data, binding affinities, normalization factors,

probability mass functions, or any other function in one

dimension.

Methods

Our algorithm works from the bottom up, i.e. it starts with an

input with a large number of segments and then joins pairs of these

together. This produces a more compact description of the data in

which the fused segments are represented by polynomial functions.

In brief (see Text S1 A for technical and implementation details),

the algorithm starts by reading a run-length encoded input signal

from disk. We call the start positions of these runs, borrowing from

the literature on splines, as ‘knots.’ The algorithm marks all knots

as candidates for processing and visits them in a random order. At

each knot, the algorithm attempts to remove the knot by replacing

the segments adjacent to it by a single longer segment (Figure 7A),

by adjusting the endpoints of the adjacent segments (Figure 7B), or

by moving the location of the knot (Figure 7C), in this order. Once

one such pass over all the knots is complete, the whole process

starts again, but only visiting those knots that have been modified

in the previous pass or whose immediate neighbors were. The

procedure ends either when all knots are removed or when no

further changes to the PPC are consistent with the adjustment

criteria. The PPC model is finally output to disk in a tabular

format showing the segment lengths and the polynomial coeffi-

cients.

Knot operations (Figure 7) involve generating a new polynomial

line fitting the original data and in some cases this is aided by a

local error minimization calculation. Since we work with curves

rather than collections of points, we define local error as an

integral of the squared difference between curves (this is a

difference between our approach and traditional point-based

regression techniques.) Although we sometimes minimize error to

produce well-fitting polynomials, we stress this is only performed

locally. The approach does not guarantee or even attempt to find a

globally optimal fit.

Whether a given knot operation is carried out or rejected

depends on the smoothing ‘‘method’’ and an associated numerical

parameter p. We implemented a number of distinct ‘‘methods’’ to

make the tool applicable in a range of applications. These methods

compare areas Ai under the original segments, labelled by an

index i, of the input curve and the corresponding areas ~AAi under

polynomials.

One method accepts knot changes as long as the relative

differences in areas below the original run-length encoded signal

and corresponding sections of the PPC are below a threshold, i.e. if

the condition D~AAi{Ai Dvp~AAi holds for all i. Another method is

motivated by the Poisson distribution. It accepts changes to the

PPC as long as the areas satisfy the condition D~AAi{Ai Dvp
ffiffiffiffi

A
p

i for

all i, where p can be used to modulate under- or over-dispersion of

the distribution. Both methods are suitable for data originating

from high-throughput sequencing. Finally, the last method is

based on an empirical t-test statistic computed from segments

adjacent to the knot, with p acting as a p-value cutoff (Text S1 A).

This method is suitable for copy-number detection in array CGH

or read-based sequencing of DNA. In all the methods, the focus is

on checking the signal conforms to a set of criteria specified by the

user and distinguishes the algorithm from canonical spline-

building approaches.

A corollary to the tune-ability of the acceptance of knot

operations is that the algorithm can be run in a continuum

between two limits: a strict limit in which the PPC output is

identical to the input, and a loose limit in which the output signal

contains only one polynomial segment. Between these limits, the

procedure can produce smooth, discontinuous, as well as mixed

models.

Because the order of knot adjustment is randomized, repeated

application of the algorithm on a given input can produce slightly

different results. This has a number of positive effects. First,

randomization implies that very little computation is required to

determine which knot should be adjusted at any one stage.

Second, the variability in the results can be regarded as a measure

on uncertainty in the resulting model. Finally, stochasticity enables

our approach to sample a fairly large space of possible solutions

and is less prone to produce sub-optimal models than a method

using steepest descent. We note however that our approach is not

a full Monte-Carlo method as it terminates as soon as a locally

optimal PPC model is found.

As for implementation, our approach stipulates random access

to all knots and efficient removal of any knot. We achieved these

requirements using a data structure crossing a hash map and

linked list. The hybrid structure requires more book-keeping than
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a simple array, but pays off in knot-removal performance. The

smoothing program completes up to *log2Nr passes, where Nr is

the number of segments in the original data. In each pass, it

compares at most *Nr data elements so its asymptotic complexity

is O(Nr log Nr). For genomic data, it can be the case that Nr%Ng

so this is a significant optimization over any method not exploiting

run-length encoding.

In practice, the program can create a PPC model for a signal

originating from an array (104 probes) in less that 0.5 seconds on a

personal computer with 3.2Ghz processor. Processing a human

RNA-seq sample takes about 10 seconds per chromosome.

Processing of a human whole-genome sequencing coverage track

can take up to 15 minutes per chromosome. For the full-genome

signals, the program can require access to 16GB of RAM.

Supporting Information

Text S1 Details on algorithm and additional results and
examples.
(PDF)
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Figure 7. Operations on knots. Gray horizontal segments represent original data, black segments represent the PPC representation. Vertical lines
show positions of knots and need not be evenly spaced in actual data. (A) Knot removal. (B) Adjustment that removes a discontinuity. (C) Adjustment
of a knot position.
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