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Abstract
Background: T1‐weighted dynamic contrast‐enhanced (DCE) perfusion magnetic 
resonance imaging (MRI) has been broadly utilized in the evaluation of brain tumors. 
We aimed at assessing the diagnostic accuracy of DCE‐MRI in discriminating be-
tween low‐grade gliomas (LGGs) and high‐grade gliomas (HGGs), between tumor 
recurrence and treatment‐related changes, and between primary central nervous sys-
tem lymphomas (PCNSLs) and HGGs.
Methods: We performed this study based on the Preferred Reporting Items for 
Systematic Reviews and Meta‐Analysis of Diagnostic Test Accuracy Studies crite-
ria. We systematically surveyed studies evaluating the diagnostic accuracy of DCE‐
MRI for the aforementioned entities. Meta‐analysis was conducted with the use of a 
random effects model.
Results: Twenty‐seven studies were included after screening of 2945 possible entries. 
We categorized the eligible studies into three groups: those utilizing DCE‐MRI to dif-
ferentiate between HGGs and LGGs (14 studies, 546 patients), between recurrence and 
treatment‐related changes (9 studies, 298 patients) and between PCNSLs and HGGs 
(5 studies, 224 patients). The pooled sensitivity, specificity, and area under the curve 
for differentiating HGGs from LGGs were 0.93, 0.90, and 0.96, for differentiating 
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1 |  INTRODUCTION

Gliomas account for approximately 28% of all central ner-
vous system tumors and 80% of all malignant brain tumors.1 
The 2016 World Health Organization classification divides 
gliomas into grade I to IV, with grades I and II considered to 
be low‐grade gliomas (LGGs) and grades III and IV consid-
ered high‐grade gliomas (HGGs), on the basis of their histol-
ogy and molecular features.2 Primary central nervous system 
lymphoma (PCNSL) most commonly occurs in the elderly3 
and comprises 2.1% of primary intracranial tumors.1

The treatment options and prognosis are heavily dependent 
on the histological types and the recurrence status. The present 
standard therapy of HGGs is surgical resection and concomi-
tant chemoradiation.4 Chemoradiation may knowingly result in 
radiation necrosis and pseudoprogression, which may notori-
ously resemble recurrence and tumor progression.5 Therefore, 
it is crucially important to utilize a noninvasive imaging tech-
nique that can differentiate them for the patient management.

Although magnetic resonance imaging (MRI) is routinely 
applied to classify brain tumors, conventional MRI has short-
comings.6-9 To overcome such limitations, previous studies 
have reported combining conventional MRI with multimodal 
techniques, which increase the diagnostic accuracy.9-11

Perfusion‐weighted imaging is commonly used for the as-
sessment and classification of intracranial tumors, and may 
be performed as dynamic susceptibility contrast‐enhanced 
(DSC) MRI, T1‐based dynamic contrast‐enhanced (DCE) 
MRI, and arterial spin labeling (ASL).12-15 The most com-
mon MR perfusion technique in clinical practice is DSC‐
MRI.8,12 However, DCE‐MRI has added benefits of higher 
spatial resolution, more reliable quantification measurement 
of microvasculature and permeability indices, and reduced 
susceptibility artifacts with respect to DSC‐MRI.16,17

A number of single‐center studies in mainly small cohorts 
have shown the potential of DCE‐MRI.18-20 Our work extends 
previous studies with a systematic large‐scale meta‐analysis 
and aims at evaluating the diagnostic value of DCE‐MRI. To 
achieve these aims, we have specifically explored whether 

using DCE measurements can successfully differentiate 
LGGs from HGGs, tumor recurrence from treatment‐related 
changes, and PCNSLs from HGGs.

2 |  MATERIALS AND METHODS

This study was performed in accordance with the Preferred 
Reporting Items for Systematic Reviews and Meta‐Analysis 
of Diagnostic Test Accuracy Studies criteria.21 This system-
atic review was registered in the PROSPERO online database 
of systematic reviews (CRD42018108948).

2.1 | Search strategy
The search was systematically conducted on June 8, 2017 using 
PubMed, Ovid Embase, and the Cochrane Library. The detail of 
the search strategy is presented in the Supplementary Material 1.

2.2 | Selection criteria
The abstracts of all articles retrieved in the initial search 
were screened by board‐certified neuroradiologists and 
in‐training neuroradiologists with research experience in 
perfusion imaging in neuro‐oncology. Selected full text 
manuscripts were reviewed to determine their relevance in 
detail. Both processes were executed by independent re-
viewers according to the following criteria. The inclusion 
criteria were: (a) DCE performed on brain tumor patients 
prior or during treatment; (b) study assessed diagnostic or 
prognostic value of DCE parameters. The exclusion criteria 
were: (a) no DCE (T1‐weighted perfusion) was performed; 
(b) no brain tumor patients were examined; (c) the study 
was conducted in pediatric population (<18 years old); (d) 
animal/laboratory study; (e) review articles, case reports, 
letters, commentaries, or conference proceedings; (f) brain 
tumor histology was not confirmed; (g) non‐English arti-
cles. In cases of discrepancies between two reviewers, a 
third one resolved the case.

tumor relapse from treatment‐related changes were 0.88, 0.86, and 0.89, and for dif-
ferentiating PCNSLs from HGGs were 0.78, 0.81, and 0.86, respectively.
Conclusions: Dynamic contrast‐enhanced‐Magnetic resonance imaging is a promis-
ing noninvasive imaging method that has moderate or high accuracy in stratifying 
gliomas. DCE‐MRI shows high diagnostic accuracy in discriminating between HGGs 
and their low‐grade counterparts, and moderate diagnostic accuracy in discriminating 
recurrent lesions and treatment‐related changes as well as PCNSLs and HGGs.

K E Y W O R D S
dynamic contrast‐enhanced MRI, gliomas, lymphoma, meta‐analysis, perfusion



5566 |   OKUCHI et al.

For the meta‐analysis, selected full manuscripts were re-
viewed by two independent reviewers and in cases of discrep-
ancies between two reviewers, all discrepancies were resolved 
by consensus. The inclusion criteria were: (a) the studies as-
sessed the diagnostic accuracy of DCE‐MRI for discriminating 
between HGGs and LGGs, between recurrence and treatment‐
related changes, and between PCNSLs and HGGs. The exclu-
sion criteria were: (a) patient population clearly overlapped 
with other studies cohorts; (b) the information for extracting or 
calculating true‐negative (TN), false‐negative (FN), true‐posi-
tive (TP), and false‐positive (FP) values was not listed. Studies 
assessing the prognostic value of DCE‐MRI were excluded due 
to their small number. If overlapping studies showed no distinct 
information, the study with more patients was chosen.

2.3 | Data extraction
Data were extracted from the included studies. Data included 
sensitivity and specificity to calculate subsequently the TN, 
FN, TP, and FP for each of the diagnostic task under inves-
tigation, number of patients, age of patients, study design, 

tumor histology, MRI field strength, whether DCE‐MRI was 
followed with DSC‐MRI or not, methods of a region of inter-
est (ROI) analysis, deconvolution with arterial input function, 
and DCE model. The same two reviewers, who performed 
full‐text screening, independently conducted data extraction, 
and all inconsistencies were resolved by consensus.

2.4 | Study quality assessment
We assessed the study quality based on the Quality Assessment 
of Diagnostic Accuracy Studies (QUADAS‐2) instrument 
(see Supplementary Material 2).22 Each study was evaluated 
for potential bias and quality by two independent reviewers 
experienced in neuro‐oncological imaging and advanced MRI 
techniques. Disagreements were resolved by consensus.

2.5 | Statistical analysis
True‐negative, FN, TP, and FP values were calculated from 
the number of patients, and their sensitivity and specificity 
for statistical analysis. Two studies showed complete pa-
tients data but did not present calculations of sensitivity and 
specificity.23,24 Therefore, we calculated these from the pub-
lished patient data in each article using commercially avail-
able (MedCalc version 18.5 for Windows) software (Ostend, 
Belgium). Our statistical analysis explored the diagnostic 
accuracy of DCE in the following comparisons: HGGs vs 
LGGs, recurrence vs treatment‐related changes, and PCNSLs 
vs HGGs. Specifically, DTA meta‐analysis, subgroup analy-
sis, heterogeneity, and publication bias were executed with 
the use of the MIDAS in STATA 15.0 (College Station, TX).

In DTA meta‐analysis, the pooled sensitivity, specificity, 
positive likelihood ratios (PLRs), negative likelihood ratios 
(NLRs), diagnostic odds ratios (DORs), and their 95% CIs 
were calculated for each comparison. The values of DCE 
parameters with the highest diagnostic accuracy were used. 
Random effects models were applied to address the expected 
heterogeneity. The accuracy was determined using a summary 
receiver operating characteristic curve (SROC) plot. To quan-
tify error and accuracy, the area under the curve (AUC) was 
calculated. AUC values of more than 0.9 represented high ac-
curacy and 0.7 ≤ AUC ≤ 0.9 reflected moderate accuracy.25

The pooled sensitivity and specificity were calculated in sub-
groups (studies number ≥4) created based on DCE perfusion 
imaging derived parameters (Ktrans, ve, and vp), applied phar-
macokinetic model (model‐independent and two‐compartment 
model approaches), and methods of ROI analysis (whole lesion 
volume, lesion “hot‐spot,” and operator‐selected tumor part).

Heterogeneity was tested with the use of the quantity I2. 
An I2 >50% indicated substantial heterogeneity. The publica-
tion bias was evaluated for the analyses including >10 stud-
ies26 with the use of funnel plot asymmetry test.27,28 P < 0.10 
indicated significant asymmetry and low publication bias.27,28

F I G U R E  1  Flowchart describing the study selection process. 
One study was categorized in two categories (HGGs vs LGGs, PCNSLs 
vs HGGs). DCE, dynamic contrast‐enhanced; HGG, high‐grade 
glioma; LGG, low‐grade glioma; PCNSL, primary CNS lymphoma

Studies identified by database search (n = 2945)
1803 from PubMed 
78 from Cochrane Library
1064 from Embase

Studies excluded after removing duplicates
and screening of titles and abstracts
(n = 2700)

Full-text studies assessed for eligibility (n = 245)

Studies excluded (n = 154)
5 case reports, 1 commentary, 21 reviews
63 animal/ laboratory measurements 
30 not within the field of interest of this study 
29 no DCE 
3 pediatric population
1 no English full-text
1 not brain tumours

Full-text studies assessed for the meta-analysis (n = 91)

Studies excluded (n = 64)
40 not within the research purpose
17 data is missing
7 overlapping studies

Studies included in meta-analysis (n = 27)
- differentiating HGGs from LGGs (n = 14) *
- differentiating recurrence from treatment-related changes (n = 9)
- differentiating PCNSLs from HGGs (n = 5) *

* One study was categorized into both HGGs vs LGGs and PCNSLs vs HGGs subgroups.
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3 |  RESULTS

A total of 2945 articles were confirmed using our elec-
tronic database search. After removing duplicate articles and 
screening the studies titles and abstracts, 245 articles meeting 
the inclusion criteria underwent full‐text assessment result-
ing in 27 relevant studies.12,13,15,18-20,23,24,29-47 A flowchart of 
the selection procedure is summarized in Figure 1.

3.1 | Eligible studies characteristics

We categorized the 27 eligible studies into three groups as-
sessing the role of DCE‐MRI in differentiation: HGGs from 
LGGs (14 studies12,18,23,24,29-38: 190 LGG and 356 HGG pa-
tients), recurrence from treatment‐related changes (9 stud-
ies13,19,39-45: 179 patients with relapse and 119 subjects with 
histologically/clinico‐radiologically verified treatment‐related 
changes) and PCNSLs from HGGs (5 studies15,20,34,46,47: 68 
PCNSLs and 156 HGGs patients). One study was categorized 
into both HGGs vs LGGs and PCNSLs vs HGGs subgroups.34 
All features of the included studies are demonstrated in Table 1 
and Supplementary Material 3. The sensitivity and specificity 

of each DCE‐derived parameter are listed in Supplementary 
Material 4.

3.2 | Qualitative assessment
The results of the qualitative assessment are shown in Figure 2. 
Many studies had high bias in the patient selection and in the 
conduct or interpretation of the index test because of retrospec-
tive study design and a single rater. In more than 10 studies, it 
was unclear whether radiologists were blinded to histology or 
whether the interval between MRI and surgery was appropriate.

3.3 | Diagnostic test accuracy analysis: 
HGGs vs LGGs

3.3.1 | Overall diagnostic accuracy
The pooled sensitivity was 0.93 and the pooled specificity was 
0.90. Table2 shows PLR, NLR, and DOR. Figure 3A demon-
strates the SROC plot with AUC of 0.96, implying high diag-
nostic accuracy. The sensitivity showed mild heterogeneities 
(I2 = 57.25%), specificity was also heterogeneous (I2 = 41.57%). 
The funnel plot revealed publication bias (P = 0.010).

T A B L E  1  The characteristics of the studies included in the meta‐analysis

High‐grade gliomas vs 
Low‐grade gliomas

Recurrence vs Treatment‐re-
lated changes

Primary central nervous system 
lymphomas vs High‐grade gliomas

Patients, N 546 (14 studies) 298 (9 studies) 224 (5 studies)

LGG: 190 Recurrence: 179 PCNSL: 68

HGG: 356 Treatment‐related change: 119 HGG: 156

DCE model

Two‐compartment model 437 (12 studies) 183 (6 studies) 182 (4 studies)

Model independent 109 (2 studies) 139 (4 studies) 42 (1 study)

DCE parameters

Ktrans 352 (8 studies) 183 (6 studies) 125 (2 studies)

ve 193 (5 studies) 57 (2 studies) 146 (3 studies)

vp 235 (6 studies) 61 (2 studies) 36 (1 study)

Region of interest

Whole volume 131 (4 studies) 243 (7 studies) 203 (4 studies)

Hot-spot 415 (10 studies) 55 (2 studies) 21 (1 study)

Country

China 4 studies 2 studies

USA 3 studies 3 studies 1 study

India 2 studies

Canada 2 studies

Korea 1 study 3 studies 1 study

Italy 1 study

Germany 1 study 2 studies 1 study

Denmark 1 study

Abbreviations: DCE, dynamic contrast‐enhanced; HGG, high‐grade glioma; LGG, low‐grade glioma; PCNSL, primary CNS lymphoma.
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3.3.2 | Subgroup analyses
The results of the subgroup analyses are shown in Table 2. 
Sensitivity (0.95) was higher for studies with the hot‐spot 
method of ROI. AUC (0.97) was the highest for the studies 
that used Ktrans. Heterogeneity was lower for the studies that 
used ve. The model‐independent parameters were not entitled 
for subgroup meta‐analysis due to the small number of studies.

3.4 | Diagnostic test accuracy analysis: 
recurrence vs treatment‐related changes

3.4.1 | Overall diagnostic accuracy
The pooled sensitivity was 0.88 and the pooled specificity 
was 0.86. Table 2 shows PLR, NLR, and DOR. Figure 3B 
exhibits the SROC plot with AUC of 0.89, suggesting mod-
erate diagnostic accuracy. The sensitivity analysis showed 
substantial heterogeneity (I2  =  72.77%) and the specificity 
analysis presented low heterogeneity (I2 = 0.00%).

3.4.2 | Subgroup analyses
Table 2 summarizes the results of the subgroup analyses. 
Sensitivity (0.94) and AUC (0.96) were the highest for studies 
using model‐independent approaches. The subgroup analysis 
for the two‐compartment model approach, the model‐inde-
pendent approach, and Ktrans estimation had no obvious heter-
ogeneity. Articles with ve, vp calculation, and “hot‐spot” ROI 
placement were not eligible for further subgroup meta‐analysis.

3.5 | Diagnostic test accuracy analysis: 
PCNSLs vs HGGs

3.5.1 | Overall diagnostic accuracy
The pooled sensitivity and specificity were 0.78 and 0.81, re-
spectively. Table 2 shows PLR, NLR, DOR, and AUC. Figure 
3C presents the SROC plot with AUC of 0.86, demonstrating 
moderate diagnostic accuracy. The sensitivity and specificity 
were characterized by mild heterogeneity (I2 = 51.10% and 
69.63%, respectively).

3.5.2 | Subgroup analyses
The results of the subgroup analyses are detailed in Table 2. 
We could perform subgroup analysis only for studies with 
two‐compartment model approaches (N = 4) and whole vol-
ume analysis (N = 4).

4 |  DISCUSSION

Our results suggest that DCE‐MRI can stage gliomas into 
HGGs and LGGs with high diagnostic performance, whereas 
the accuracy in discriminating between tumor recurrence and 
unspecific treatment‐induced changes, and between PCNSLs 
and mimicking HGGs is slightly lower. The overall diagnos-
tic performance results indicate that DCE‐MRI can be suc-
cessfully utilized in the current neuro‐oncological clinical 
practice.

F I G U R E  2  Results of the QUADAS2 quality assessment of the included studies. The risk of bias in four different domains and concerns 
regarding applicability in three domains are shown
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Our work adds to the existing literature and a previous 
systematic review and meta‐analysis, which had compared 
the diagnostic value of selected advanced MRI techniques, 
including DCE‐MRI, in brain tumors.8,48-50 We believe that 
this is the first meta‐analysis to perform subgroup analyses 
addressing the type of ROI analysis, the applied pharmaco-
kinetic model, and DCE‐MRI derived parameters. DCE‐MRI 
as perfusion surrogate measures is relatively understudied 
because data noise and model fitting instabilities have a re-
markable effect on the modeling process.51 Parameter values 
and diagnostic accuracy differ also depending on the methods 
of ROI selection with the optimal strategy to be still an open 
debate.

Among the applied ROI methods for stratifying gliomas, 
“hot‐spot” measurement had higher accuracy than whole vol-
ume ROI, in line with the report by Santarosa et al38 Although 
“hot‐spot” is presumed to reflect accurate staging, whole le-
sion measurement is reproducible, comprehensive but can be 
time consuming.

To differentiate between recurrence and treatment‐related 
changes, the model‐independent showed clearly higher sen-
sitivity and AUC than for the 2‐compartment model‐derived 
perfusion biomarkers, as reported by Hamilton et al19 Model‐
independent parameters are generally preferred because tem-
poral resolution requirements are relaxed and the potential for 
fit failure owing to signal noise is irrelevant.52

There are some limitations in our study. First, the analysis 
of studies aiming at grading gliomas revealed publication bias 
and the composition of the two groups was imbalanced. Most 
analyses indicated substantial heterogeneity in terms of MR 
field strength, different types of MR coils, pulse sequence 
parameters, volume of contrast agent, injection time, which 
all could affect the outcomes. Some studies performed DCE 
using only half of contrast agent for DCE‐MRI, followed 
with DSC‐MRI.12,38 ROI methodology, DCE parameters, and 
DCE models (most studies were on the basis of the two‐com-
partment Tofts‐Kermode model) also differed substantially 
prompting us to perform subgroup analyses, which in turn 
indicated substantial heterogeneity. Model‐independent anal-
ysis papers also reported different parameters on each study. 
The study designs of the included studies revealed only retro-
spective analyses, lack of consensus and blinding in placing 
ROIs exposing the studies to substantial bias. Another limita-
tion is the small number studies included in subgroup analy-
ses, and we acknowledge that further studies are needed for 
adding credibility. Last but not least, in the era of integrated 
histomolecular glioma classification, there was insufficient 
number of studies which evaluated the diagnostic accuracy of 
molecular subtype using DCE‐MRI.53

In conclusion, our results suggest that DCE‐MRI is 
a promising noninvasive imaging method that has good 
accuracy in diagnosing different types of brain tumors. 
Specifically, DCE‐MRI has high diagnostic performance in 
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stratifying gliomas in high‐ or low‐grade, and moderate diag-
nostic accuracy in differentiating recurrence from treatment‐
related changes, and PCNSLs from HGGs. Significant efforts 
for the standardization of the acquisition parameters and the 
postprocessing should be, however, intensely made.
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