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Abstract
Acute pancreatitis is a common inflammatory condition affecting the pancreas, predominantly caused by gall-
stones, alcohol excess, and hypertriglyceridaemia, with severe disease carrying up to 50% mortality. Despite
significant research and preclinical promise, no targeted drug treatments exist for the disease and precision
medicine approaches are lacking significantly, when compared to other health conditions. Advances in omics
applications will facilitate improved preclinical models and target identification as well as biomarker discov-
ery for refined trial design, focusing on risk stratification, subject selection, and outcome determination.
Randomised treatment of Acute Pancreatitis with Infliximab: Double-blind, placebo-controlled, multi-centre
trial (RAPID-I) is a pioneering trial, currently under way in acute pancreatitis, which may serve as an innova-
tive model for the implementation of precision medicine strategies for acute pancreatitis in the future.
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Introduction
Precision medicine is not a new concept. Hippocrates,
the so-called ‘Father of Western Medicine’, wrote over
2500 years ago that ‘different (drugs) to different
patients, for the sweet ones do not benefit everyone,
nor do the astringent ones, nor are all the patients able
to drink the same things.’1 Indeed, the practice of
adapting and modifying management strategies
depending on the individual being treated has been
practiced by excellent physicians and surgeons for cen-
turies. William Osler, the illustrious Canadian physician
wrote in 1892, ‘If it were not for the great variability
among individuals, medicine might as well be a science

and not an art.’2 We now recognise, however, that bas-
ing clinical decision making on clinical experience alone
is significantly prone to bias and constrained by short-
comings in available scientific knowledge. The means
to apply precision medicine is recent and has now
become firmly established. Current technological and
scientific advances allow us to identify crucial genomic
and molecular patterns that facilitate the determination
of individual risk, early diagnosis, assessment of sever-
ity, disease prognostication, and the determination of
optimum management strategies. Nevertheless, the
application of these technologies across the panoply of
diverse human health conditions has not been equal,
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with certain organs and disease conditions reaping the
benefits faster than others. For instance, the first gen-
ome wide association scan (GWAS) for acute respiratory
inflammatory conditions (asthma) was published in
2010,3 and although the first GWAS in chronic pancrea-
titis was published not long after in 2012,4 the first
GWAS for acute pancreatitis is still awaited. A compari-
son of the number of indexed Pubmed publications
related to precision medicine based on year and type of
organ reveals how far pancreatic disease is behind
(Fig. 1). Precision medicine publications focussing on
pancreatic diseases have experienced the slowest rise
in numbers and were least in total of all organ systems
assessed. Although this discrepancy may be explained
by differences in disease incidence, lack of targeted
treatments, research funding availability, and socio-
economic healthcare burdens,5 it is clear that when it
comes to precision medicine, pancreatic disease man-
agement is currently far from precise.

Acute pancreatitis is an inflammatory condition of the
pancreas that has increased in global incidence over the
last 50 years.6,7 According to the revised Atlanta classifi-
cation, the condition is categorised as mild in approxi-
mately 60% of patients, moderate in 20%–30%, and
severe in 5%–10%, with up to 50% mortality risk in severe
disease.8–10 Gallstones and alcohol are the two most
common aetiologies in adults of Western countries and
Japan,11,12 while there is a pronounced incidence of
hypertriglyceridaemia-associated acute pancreatitis in
China (Fig. 2)13–18 that accounts for approximately 30% of

patients in large cohort series.19,20 The risk factors for
severe acute pancreatitis include aging, comorbidities,
elevated body mass index, and pre-existing diabetes.21,22

Despite a wealth of ongoing international research with
significant preclinical promise, currently there are no
licensed targeted drug treatments available.23 This fact,
together with a major drop in overall research invest-
ment, seen in the fall from 25.7% to 10.7% of gastrointes-
tinal inflammatory disorders in the USA over the last 50
years,5 have been significant barriers to the implementa-
tion of precision medicine for pancreatitis. Preclinical
success has not been translated to trial success for a
number of reasons, likely because of inappropriate target
selection and insufficient preclinical characterisation,
the selection of subsets of patients unlikely to show
maximal beneficial effects, speed of treatment delivery,
and lack of widely applicable outcome measures.24

Where deficits lie, however, opportunities exist. With a
lack of effective drug treatments, precision medicine for
acute pancreatitis is at an earlier stage than most other
conditions (Fig. 1), with precision medicine efforts pri-
marily directed at prognostication, trial refinement, and
optimisation of the treatment of complications. A signifi-
cant momentum has now gathered in pancreatology,
with multiple collaborative national and international
networks and initiatives under way,25 poised to exploit
technological advancements facilitating personalised
approaches. Areas of current application and future
opportunity for precision medicine approaches in acute
pancreatitis are outlined and discussed.

Figure 1. Pubmed indexed precision medicine publications by organ system. Number of publications in different disease areas assessed by
organ-specific MeSH search and precision medicine within the Pubmed database (10/04/19).
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Preclinical models and target
identification
The exact mechanisms leading to acute pancreatitis are
yet to be fully elucidated, although great progress has
been made in recent decades in better understanding the
mechanisms of pancreatic acinar injury.26 These have
established pancreatic acinar cell calcium overload,27

mitochondrial dysfunction,27,28 premature digestive
enzyme activation,29 NF-κB activation,30 disordered
autophagy,31 and vacuolisation,32 all critical in acute
pancreatitis pathogenesis. Further studies highlight the
key role of innate immunity33 and the release of key cel-
lular damage-associated molecular patterns (DAMPs),
notably HMGB134 and histones.35,36 Three highly promis-
ing pharmacological inhibitory strategies are calcium
release activated channel (CRAC) inhibition,37 mitochon-
drial permeability transition pore (MPTP) inhibition,28

and kynurenine-3-monooxygenase (KMO) inhibition,38

all of which have resulted from extensive animal mech-
anistic studies. Most of these models use rodent tissues,
because of the difficulty of obtaining relevant human tis-
sue. Although studies in pancreatic parenchymal cells
have revealed that pathways in rodent cells mirror those
in humans,28,39–41 it must be remembered that significant
differences remain, particularly as human patients
affected by acute pancreatitis remain diverse, displaying
genetic and epigenetic heterogeneity as well as different
environmental exposures. These all contribute to differ-
ences in acute pancreatitis susceptibility, severity, and
progression.

The application of omics technologies with a systems
medicine approach will facilitate an understanding of
the heterogeneity of response in contrasting models,
and most importantly within the human condition,
allowing appropriate comparisons to be drawn. This will

then define the optimal utility of different preclinical
models as well as develop more novel clinically relevant
models, to aid ongoing translational drug discovery and
the identification of further targets. As promising thera-
peutic strategies progress toward clinical trials, biomar-
kers will be essential for risk stratification, subject
selection, and optimal outcome determination, all
applicable to obtain improved outcomes.

Biomarker discovery for improved trial
design
Early prediction of severe acute pancreatitis through
novel blood and imaging biomarkers is essential for
future clinical trial risk stratification. This remains
intimately linked to better methods of defining signifi-
cant biological pathways influencing severity, aiding
better patient selection and clearer defined outcomes.
Overall, focusing on these areas will allow a more ‘per-
sonalised’ approach to therapy.

Risk stratification

Although major complications related to acute pancrea-
titis overall remain low, the consequences of persistent
organ failure can be life-threatening. As a result, sub-
stantial effort has been devoted to early identification of
patients at increased risk of complications. Numerous
approaches to risk stratification have been developed
that include clinical prediction scores, biochemical para-
meters, and machine learning algorithms.42 A compari-
son of nine scoring systems in two prospectively
collected cohorts of patients hospitalised for acute pan-
creatitis did not demonstrate clear advantage for any
specific approach to identify patients at increased risk
for persistent organ failure.42 Recent large cohort studies

Figure 2. Pooled incidence of hypertriglyceridaemia-associated acute pancreatitis from multiple centre studies of China. The pooled incidence
was 0.13 (95% CI: 0.1–0.17).
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have suffered from inaccurate prognostic indices to
stratify severity.43 This failure of prognostication is of
significant detriment to accurate trial stratification and is
likely in part to be because of a lack of studies using sys-
tems medicine approaches and the application of preci-
sion medicine.44 The application of omics strategies to
identify novel biomarkers would be of clear benefit, but
such studies of acute pancreatitis are lacking.

Outcome determination

In a previous systematic literature review of clinical trials
in acute pancreatitis involving human subjects, 61 stud-
ies were identified from 1996 to 2014.45 The most com-
mon primary outcome was mortality (16%). Other
common outcome parameters included organ failure
(15%), pancreatic infections (13%), and systemic inflam-
matory response syndrome (SIRS, 10%). Selection of
study end points in acute pancreatitis should be deter-
mined based on the context of the proposed interven-
tion. Traditional approaches for the development of
novel therapeutics in acute pancreatitis have focused on
prevention or reduction of severe forms of illness. These
studies incorporated initial risk stratification to identify
higher-risk subgroups of patients for amelioration in out-
comes such as persistent organ failure or mortality.45

These strategies have not been optimal, particularly in
trials with recruitment within 72–96 hours of admission
despite the emergency nature of the condition. An alter-
native approach would be to include all acute pancrea-
titis patients early after disease onset. In parallel with
this, improvement in patient-reported outcomes related
to pain, nutritional deficit, and quality of life alongside
inclusion of surrogate outcomes of severity, such as C-
reactive protein (CRP), albumin, and neutrophils offers
the potential for easier trial conduct and greater general-
isability of results but requires validation.

RAPID-I: a case study for future precision
medicine

Findings from multiple omics platform strategies in acute
pancreatitis focused on human genomic, transcriptomic,
proteomic, and metabolomic strategies are awaited. Of
significant promise and actively applying the points
raised in this review is the RAPID-I trial (Randomised
treatment of Acute Pancreatitis with Infliximab: Double-
blind, placebo-controlled, multi-centre trial). This trial
includes transcriptomic biomarker detection and mech-
anistic evaluation for anti-TNF-α therapy in acute pan-
creatitis. Adults admitted with a new diagnosis of acute
pancreatitis of all severities and pain for less than 24
hours prior to admission are randomised to receive a
double-blind infusion of 5 mg/kg or 10 mg/kg infliximab
or saline, begun within 12 hours of admission. The pri-
mary outcome measure is cumulative CRP (measured at
timed intervals over 28 days), with secondary outcome
measures of pain, nutritional deficit, SIRS, Sequential
Organ Failure Assessment (SOFA) scores, pancreatic

injury on computed tomography scan, complications,
length of hospital stay, and patient-reported outcomes
(i.e. use EQ-5D-5L questionnaire). Transcriptome, cyto-
kine, and leukocyte subset analyses will all be conducted
to gain mechanistic insight and test for predictive and
prognostic markers of severity and treatment response.
RAPID-I is designed to serve as a model for future acute
pancreatitis trials to accelerate towards the goal of perso-
nalised medicine approaches.

Future personalised medicine trials may require
adaptive trial designs for maximal benefit; we would
suggest including systems medicine approaches as
widely as possible, whether using more traditional or
novel designs. Approaches may include combining
phases (e.g. phases I and II or phases II and III with
appropriate statistical considerations to include go-no
go points) with the first priority to obtain a licensed
medication that has a major impact on mild, moderate,
and/or severe acute pancreatitis. More speculative
approaches might include umbrella trials (to study mul-
tiple targeted therapies in the context of a single dis-
ease), basket trials (to study a single targeted therapy in
the context of multiple diseases or disease subtypes)
and platform trials (to study multiple targeted therapies
in the context of a single disease in a perpetual manner,
with therapies allowed to enter or leave the platform on
the basis of a decision algorithm).46

Conclusion
Precision medicine for acute pancreatitis remains at an
early evolutionary stage, largely hampered by the lack
of targeted drug therapy resulting from previous defi-
cient preclinical research strategies and clinical trial
design. Great opportunity exists to remedy this position
with the results from major omics studies in acute pan-
creatitis awaited, potentially facilitating target identifi-
cation and biomarker discovery, both paving the way
for improved and potentially more successful future
trials. We look forward to the outcomes of the RAPID-I
trial and their applications to precision medicine
approaches for acute pancreatitis in the future.
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