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ABSTRACT
Soldiers in active military service need optimal physical fitness for successfully carrying
out their operations. Therefore, their health status is regularly checked by army doctors.
These inspections include physical parameters such as the body-mass index (BMI),
functional tests, andbiochemical studies. If amedical exam reveals an individual’s excess
weight, further examinations are made, and corrective actions for weight lowering
are initiated. The collection of urine is non-invasive and therefore attractive for
frequent metabolic screening. We compared the chemical profiles of urinary samples
of 146 normal weight, excess weight, and obese soldiers of the Mexican Army, using
untargetedmetabolomics with liquid chromatography coupled to high-resolutionmass
spectrometry (LC-MS). In combination with data mining, statistical and metabolic
pathway analyses suggest increased S-adenosyl-L-methionine (SAM) levels and changes
of amino acid metabolites as important variables for overfeeding. We will use these
potential biomarkers for the ongoingmetabolic monitoring of soldiers in active service.
In addition, after validation of our results, we will develop biochemical screening tests
that are also suitable for civil applications.

Subjects Global Health, Public Health, Data Mining and Machine Learning, Obesity,
Sports Medicine
Keywords Metabolic status, Metabolomics, Military service, Soldiers, Public health, Obesity,
Data mining

INTRODUCTION
Many professionals require a certain level of physical fitness for their work, particularly
first-line responders such as firefighters, paramedics, and military personnel. To ensure
their operability, they require, in addition to training, good eating habits and periodic
review of their health status.
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Overweight and obesity are present in most populations and are the origin of numerous
metabolic diseases (Kaplan, 1989; Tchernof & Després, 2013; Cirulli et al., 2019). TheWorld
Health Organization (WHO) recognizes obesity as a global epidemic (James, 2008).

In Mexico, the prevalence of overweight and obesity is dramatically high at about
75% (Instituto Nacional de Salud Pública (MX), 2018). Thus, the Mexican official standard
NOM-008-SSA3-2010 for the comprehensive management of obesity defines obesity as
a public health problem in Mexico due to its magnitude and impact. Criteria for health
management should support the early detection, prevention, comprehensive treatment,
and control of the growing number of patients (Secretaría de Gobernación (MX), 2010).

Soldiers of the Mexican Army have regular exams of their health state by a military
doctor. Since overweight and obese soldiers could present risks for their own health and
missions, mainly in the special bodies such as paratroopers, they are sent to lose weight
in particular training camps such as the ‘‘Center for improving lifestyle and health’’ in
Mexico City. Furthermore, the social security institute’s law for the Mexican Armed
Forces considers soldiers with a Body Mass Index (BMI) greater than 30 as incapable of
active service (Cámara de Diputados (MX), 2019 ). This medical assessment of the soldiers
measures vital signs, weight, height, calculating the BMI, clinical history, and a meticulous
clinical examination of the body’s apparatus and systems. Additional laboratory and
cabinet studies are indicated if the doctor identifies alterations or abnormalities in these
clinical analyses. All these studies could reveal possible diseases. However, for the case of
overweight and obesity, the diagnosis is currently only based on the calculation of the BMI
without considering important aspects such as the patient’s physiological and metabolic
status.

Metabolites in body fluids can be analyzed to assess the nutrition and endogenous
changes associated with overweight and obesity, using techniques such as nuclear magnetic
resonance (NMR) and mass spectrometry (MS) (Xie, Waters & Schirra, 2012; Zhang, Sun
& Wang, 2013). Usually, invasive studies such as blood analyses explore the patients’
metabolic changes and monitor corrective actions. On the other hand, non-invasive tests
are generally limited to phenotypic measurements such as body mass index.

Analyzing urine would be more convenient for patients and provide information on
the metabolism and pathways involved in particular conditions (Braga, 2017). Urine is a
biofluid that contains different molecules generated by the organism’s metabolism that
must be eliminated and represents an excellent source of human sample material because
it is available non-invasively. Typically, various molecules are altered simultaneously in
diseased people (Bruzzone et al., 2021).

Artificial intelligence and machine learning algorithms can support medical
diagnosis (Hatwell, Gaber & Azad, 2020). Classification is the most widely implemented
machine learning task in the medical sector, employing, for example, the Adaptive Boost
algorithm (Freund, 2001). Adaptive Boost pre-processing also helps to select the most
important features automatically from high dimensional data and decision trees (Rangini
& Jiji, 2013).

This study used untargeted metabolomics based on mass spectrometry to analyze urine
from military personnel with normal and excess weight (overweight and obesity). Using
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Ada Boost datamining, we created a classificationmodel and identified possible biomarkers
for monitoring the metabolic state of soldiers and the early diagnosis of deviations.

MATERIALS AND METHODS
Participants and sample preparation
Participants were recruited from the Military Medical Sciences Center, Mexico City,
Mexico. Inclusion criteria were: both sexes, active military service, and signed consent to
participate voluntarily. Participants answered a questionnaire to identify risk factors for
obesity; the next day, nutritional status was assessed by bioelectrical impedance.

The Body-Mass-Index (BMI) was calculated using Eq. (1), according to the WHO
definition (World Health Organization (WHO), 2021):

BMI=
mass
height2

(1)

with the person’s weight measured in kilograms (kg) and the person’s height in meters
(m).

Following the WHO system, soldiers with a BMI equal to or higher than 25 were
classified as ‘overweight,’ and those with a BMI equal to or above 30 as ‘obese’ (World
Health Organization (WHO), 2021).

The first urine of the day was collected at 6 am, and the samples were frozen at −60 ◦C
until their processing. Urine samples were thawed and centrifuged at 850 g for 5 min for
metabolomics analysis. Ten L of each sample were diluted in 90 L of chromatography-mass
spectrometry (LC-MS) grade water (1:9 v/v) and transferred to vials for UPLC-MS analysis.

Untargeted metabolomics by HPLC-MS
LC-MS grade acetonitrile, water, and acetic acid were purchased from JT Baker (Brick
Town, NJ, USA). Samples were analyzed with a Dionex UltiMate 3000 HPLC (Thermo
Scientific, Waltham, MA, USA) coupled to an Orbitrap Fusion Tribrid Mass Spectrometer
(Thermo Scientific) with an electrospray ionization source. We used an AccuCore C18
column (4.6 × 150 mm, 2.6 m) to separate metabolites using a binary gradient elution
of solvents A and B, similar to the method described by López-Hernández et al. (2019). In
short, the mobile phase was A: 0.5% acetic acid in water; B: 0.5% acetic acid in acetonitrile.
The mobile phase was delivered at a flow rate of 0.5 mL/min, initially with 1% B, followed
by a linear gradient to 15% B over 3 min. Solvent B was increased to 50% within 3 min.
Over the next 4 min, the gradient was ramped up to 90% B with a plateau for 2 min.
The amount of B was then decreased to 50% in 2 min. 2 min later, the solvent B was
lowered to 15%, and finally, solvent B returned to initial conditions(1%) until the end of
the chromatographic run (18 min). The column temperature was controlled at 40 ◦C. The
injection volume was 20 L.

Data were acquired in positive electrospray ionization (ESI+) mode with the capillary
voltage set to 3.5 kV, the Ion Transfer Tube Temperature to 350 ◦C, and Vaporizer Temp
to 400 ◦C. The desolvation gas was nitrogen with a flow rate of 50 UA (arbitrary units).
The detector type was Orbitrap at a resolution of 120,000. Data were acquired from
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50–2,000 m/z in Full Scan mode with an AGC target of 2.0E5. Before the analysis, the
mass spectrometer was calibrated with LTQ ESI Positive Ion Calibration Solution (Pierce,
Thermo Scientific).

Conversion of raw files to mzML
We used the docker version of the ProteoWizard msconvert tool (https://proteowizard.
sourceforge.io/) (Kessner et al., 2008). To reduce disk space and memory use during file
processing, we downsampled the data to 32-bit, peak picking, and zlib compression:

> docker run -it --privileged=true -v /home/rob/dataspace/SUPEREGO/

raw_data/:/data

chambm/pwiz-skyline-i-agree-to-the-vendor-licenses bash

root@0926785f04fc:/data# wine msconvert *.raw --32 --zlib --filter

"peakPicking true 1-" --filter "zeroSamples removeExtra"

Processing of mzML files with KNIME
For mass spectrometry raw data processing and generation of an aligned feature matrix,
we employed the OpenMS nodes (Sturm et al., 2008; Pfeuffer et al., 2017; Röst et al., 2016)
of the KNIME Analytics Platform (https://www.knime.com) (Berthold et al., 2009; Alka et
al., 2020). Figure 1 represents the KNIME workflow for the raw data processing and matrix
generation. The exact parameters of each step are documented in the workflow.knime
workflow file, provided as Supplementary Files at Zenodo (see ‘Data Availability’ statement
below). For preparing the resulting table of aligned features for the MetaboAnalyst Web
Server (Xia et al., 2009), we edited the .CSV file with vim (https://www.vim.org/), using the
CSV vim plugin (<chrisbra/csv.vim>).

Statistical analyses with MetaboAnalyst
For metabolic classification models, we used the web-based version of MetaboAnalyst
(https://www.metaboanalyst.ca/) (Xia et al., 2009; Chong, Yamamoto & Xia, 2019; Wishart,
2020). We applied the one-factor statistical analysis for peak intensities in a plain text file,
with unpaired samples in columns.

The MetaboAnalyst report for the uploaded data is provided as a Supplemental File.
First, we filtered the raw data by the interquartile range (IQR), normalized it by the

median, and applied a square root transformation. Further, we used auto-scaling, i.e., the
values were mean-centered and divided by the standard deviation of each variable.

Metabolic pathway enrichment and metabolite identification
For identifying metabolic pathway enrichment and likely involved metabolites, we used
the Functional Analysis (MS peaks) tool of MetaboAnalyst (Li et al., 2013). We specified a
mass search against the Human Metabolome Database (HMDB, https://hmdb.ca) (Wishart
et al., 2018;Wishart et al., 2022), with 10 ppm mass tolerance in positive mode. We filtered
raw data by the interquartile range (IQR), normalized by the median, and applied a square
root transformation. Further, we used auto-scaling, i.e., the values were mean-centered
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Figure 1 KMIME-Workflow for processing the urinary metabolomics data. The final result is an
aligned matrix of features.

Full-size DOI: 10.7717/peerj.13754/fig-1

and divided by the standard deviation of each variable (the same data preparation as for
statistics above). For the Mummichog algorithm, we set a p-value cutoff of 0.25 (default
top: 10% peaks). We used the pathway library of Homo sapiens MFN pathway/metabolite
sets (a meta library) with at least five entries.

The chemical structure and function of metabolites and the identifications from the
Mummichog analysis were searched in the KEGG database (https://www.genome.jp/kegg/
compound/) (Kanehisa et al., 2014), BiGG (http://bigg.ucsd.edu/universal/metabolites/)
(King et al., 2016), the Edinburgh human metabolic network reconstruction (Ma et al.,
2007) and the above-mentioned HMDB.

RESULTS
Body-Mass-Index (BMI) and body fat content of participants
Table 1 summarizes statistical data of the 153 participants. Of the 67 women and 86 men,
66 presented normal weight, 62 had overweight, and 25 were obese. Comparing female
and male soldiers, the latter exhibited a higher prevalence of overweight and obesity. As
expected, the groups with higher BMI also presented a higher body fat content, suggesting
metabolic differences between these groups.

Urinary metabolomics raw data processing and filtering
Figure 2 shows the number of features in the different sample groups and blank samples.
We removed data sets of presumably empty samples and technical outliers by comparing
the number of features with blank injections and eliminating all analyses with less than
4,000 features.

After clean-up, 52 samples of healthy, 47 overweight, and 21 obese individuals were left.
We used these 120 data sets for further analysis. The healthy group showed 5,717 to 9,657,
the overweight group 5,559 to 10,447, and the obese group 5,575 to 9,436 features.

Identification of metabolic identities with MetaboAnalyst
First, we applied a cluster analysis with the sparse PLS-DA (sPLS-DA) algorithm (Lê Cao,
Boitard & Besse, 2011), which indicates distinct metabolic identities of healthy, overweight,
and obese individuals. However, the clustering is far from perfect, and especially the group
of overweight individuals does not separate well from the other groups (Fig. 3A). We
discussed the difficulty of clustering metabolic data in an earlier paper (Winkler, 2015).
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Table 1 General characteristics and anthropometric measurements of the soldiers by normal weight,
overweight and obesity (Data are presented as mean± SD).

n Normal weight Overweight Obesity Global
66 62 25 153

Age [years] 27.74± 3.53 29.81± 4.53 37.83± 6.79 30.20± 5.73
Age range 22–45 22–45 29–49 22–49
Gender
Female (% n) 43 (28.1) 18 (11.8) 6 (3.9) 67 (43.8)
Male (% n) 23 (15.0) 44 (28.8) 19 (12.4) 86 (56.2)
Weight [kg] 61.05± 7.32 75.46± 6.18 84.02± 12.29 70.79± 11.77
Height [m] 1.62± 0.05 1.66± 0.06 1.60± 0.05 1.63± 0.06
BMI [kg/m2] 23.02± 1.45 27.08± 1.33 33.33± 2.41 26.39± 3.88
Body fat [%] 25.09± 6.97 27.51± 6.28 34.63± 4.75 27.7.± 7.10

Notes.
BMI, Body Mass Index.

Figure 2 Clean-up of raw data. Sample data sets with less than 4,000 features were removed. (A) Boxplot
of features (A) before clean-up, (B) after removal of samples with less than 4,000 features. A total of 120
data sets of healthy, overweight and obese individuals were used for further analyses.

Full-size DOI: 10.7717/peerj.13754/fig-2

To test if we could distinguish between healthy participants and others, we joined the
overweight and obese groups and applied an orthogonal projection to latent structures
data analysis (OPLS-DA) (Trygg & Wold, 2002). As a result, two clusters were separated
reasonably well, (1) samples of healthy individuals and (2) samples of overweight and obese
soldiers (Fig. 3B).

The classification is imperfect; however, the graphics represent the medical situation of
clearly healthy, obviously sick, and patients in transition. Consequently, we can discriminate
between two metabolic identities of normal-weight and overweight/obese soldiers.

Statistical analysis of fold-changes
Using the same parameters for uploading the data (see ‘Methods’), but only defining two
groups, i.e., healthy and obese-overweight, we created the Volcano plot shown in Fig. 4. We
did this analysis in the one-factor statistical analysis module of MetaboAnalyst. We defined
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Figure 3 Metabolic identity of healthy, overweight and obese groups. (A) The clusters of sPLS-DA
show overlapping of the three sample classes. The healthy and obese group can be more clearly discrimi-
nated, whereas the overweight group is located in between them. (B) OPLS-DA scores separate the sam-
ples of healthy individuals from overweight and obese soldiers.

Full-size DOI: 10.7717/peerj.13754/fig-3

Figure 4 The Volcano plot shows metabolic features with a P-value <0.1 and a fold-change of 1.3.
Full-size DOI: 10.7717/peerj.13754/fig-4

non-parametric Wilcoxon rank-sum tests, a fold-change of 1.3 and a p-value threshold of
0.1 (raw), with equal group variance.
Two hundred twenty-five significant differential variables were detected and subjected

to an Adaptive Boost data mining analysis.
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Table 2 Predictive classification model with the Adaptive Boost algorithm.

Predicted
Actual Healthy Obese-overweight Error [%]

Training Healthy 44 0 0.0
Obese-overweight 0 58 0.0

Validation Healthy 6 3 33.3
Obese-overweight 2 10 16.7

Testing Healthy 9 2 18.2
Obese-overweight 1 11 8.3

Overall Healthy 59 5 7.8
Obese-overweight 3 79 3.7

Adaptive boost analysis
The preselected 225 variables were loaded into R/Rattle (Williams, 2009; Williams, 2011)
for further evaluation and split into three partitions for training, validation, and testing
(70/15/15). Variables with missing values were deleted. The following parameters were
used:

ada(Group ~ ., data = crs$dataset[crs$train, c(crs$input, crs$target)],

control = rpart::rpart.control(maxdepth = 6, cp = 0.01, minsplit = 20,

xval = 10), iter = 500)

Table 2 summarizes the results of the model building process. The overall error of the
model is 5.5%, with an average class error of 5.75%.

Consequently, the classification between healthy and obese-overweight persons based
on urinary metabolomics profiles is highly reliable, considering natural variations.

The important variables that contribute most to correct classification are shown in
Fig. 5.

Biomarker analysis
Table 3 lists important variables from the Ada Boost analysis with at least a 1.3-fold
significant change. Those ions are possible biomarkers for weight-related metabolic
studies.

Mummichog analysis: metabolic pathway enrichment
To explore affected metabolic pathways and facilitate the identification of metabolites, we
performed a Mummichog analysis in MetaboAnalyst (see ‘Methods’).

As indicated in Table 4 and Fig. 6, five pathways demonstrated enrichment above the
defined threshold limits:
• Urea cycle/amino group metabolism
• Alanine and aspartate metabolism
• Drug metabolism—cytochrome P450
• Aspartate and asparagine metabolism
• Ubiquinone biosynthesis.
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Figure 5 Variable importance for the predictive Adaptive Boost classification model.
Full-size DOI: 10.7717/peerj.13754/fig-5

Especially the appearance of urea cycle/amino group metabolism as the first hit gives
confidence to the Mummichog algorithm since no information about the origin of the
samples was given to the MetaboAnalyst platform.

Thus, ions assigned to metabolites of enriched pathways have increased confidence in
our further discussion.

DISCUSSION
Classification of normal weight vs. overweight-obese, based on
metabolic signature
To develop a predictive classification model, we used the untargeted LC-MS features with
at least a 1.3-fold change. The features correspond to ions with a particular retention time.
Although a 30% increased or decreased metabolite level might not be critical for health, it
can indicate a disturbed pathway.

Identifying compounds corresponding to the features is theoretically possible. However,
the reliable assignment of metabolites is tedious (Rathahao-Paris et al., 2015; Jeffryes et
al., 2015; Fuente et al., 2019; Djoumbou-Feunang et al., 2019; Dührkop et al., 2019), and the

Albores-Mendez et al. (2022), PeerJ, DOI 10.7717/peerj.13754 9/23

https://peerj.com
https://doi.org/10.7717/peerj.13754/fig-5
http://dx.doi.org/10.7717/peerj.13754


Table 3 Important variables from the Ada Boost analysis with at least 1.3-fold significant change.

Ada
Boost

m/z FC log2
(FC)

raw.pval −log10
(p)

1 305.096085357725 0.67706 −0.56264 0.000000054252 7.2656
2 176.05534607238 0.76713 −0.38246 0.00081848 3.087
3 114.053383082002 1.3627 0.44649 0.000069642 4.1571
4 258.127823892932 1.4759 0.56159 0.0010258 2.989
5 176.10230666151 1.3729 0.45718 0.022281 1.6521
6 82.9609575200155 0.68689 −0.54184 0.039329 1.4053
7 246.167018958163 1.566 0.64711 0.041643 1.3805
8 153.091303342611 1.4299 0.51588 0.012894 1.8896
9 104.99663756284 0.75266 −0.40993 0.014395 1.8418
10 227.101700473198 1.968 0.97672 0.013038 1.8848
11 208.063674165656 1.4688 0.55469 0.098829 1.0051
12 187.002131945098 0.75863 −0.39852 0.032069 1.4939
13 115.075775049445 0.6563 −0.60758 0.0017274 2.7626
14 192.105233415702 0.60822 −0.71733 0.00025415 3.5949
15 204.121253887635 1.924 0.94407 0.099638 1.0016
16 222.080121719522 1.788 0.83835 0.010779 1.9674
17 80.9549688491325 0.70797 −0.49824 0.04125 1.3846
18 218.134680226487 2.1311 1.0916 0.039707 1.4011
19 211.06880722364 1.3152 0.39528 0.010779 1.9674
20 175.023674939912 0.75944 −0.39698 0.094865 1.0229
21 304.149677463601 1.3526 0.43569 0.0025023 2.6017
22 276.180382062822 0.58665 −0.76942 0.011404 1.9429
23 260.144346264144 1.7745 0.82742 0.034686 1.4598
24 199.096606327732 0.69475 −0.52543 0.00054643 3.2625
25 139.998348382386 0.68953 −0.53631 0.050208 1.2992
26 195.087746674809 1.7269 0.78819 0.017119 1.7665
27 176.066233961146 0.72685 −0.46027 0.00081848 3.087
28 286.128705723401 1.388 0.47301 0.0055271 2.2575
29 174.911397524627 1.4127 0.49845 0.0085721 2.0669
30 211.144964577744 1.322 0.40276 0.016049 1.7946

Notes.
Ada Boost, Ada Boost rank; m/z, mass-to-charge ratio of feature; FC, fold-change; pval, p-value.

data mining models are helpful without knowing the related compounds (Winkler, 2015).
Thus, we limited the identification of compounds to important variables.

The OPLS-DA analysis already indicated distinct metabolic identities (Fig. 3B) for
normal weight and overweight-obese individuals. A predictive model that we developed
with the Adaptive Boost algorithmwas able to classify normal weight and overweight-obese
individuals with an overall error of 5.5% (Table 2). Notably, the highest errors were found
in the validation and testing data of healthy soldiers wrongly classified as overweight or
obese. These assignments could indicate a possible tendency of the soldiers to gain weight.

The Adaptive Boost model demonstrates metabolic differences between normal weight
and overweight-obese individuals, which can be used for classification. Further, the
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Table 4 Enriched pathways from theMummichog analysis.

Pathway Pathway
tot.

Hits
tot.

Hits
sig.

Expected FET EASE Gamma Emp.
Hits

Emp. Pathway
No.

Cpd.
Hits

Urea cycle/amino
group metabolism

85 50 10 3.7797 0.0045702 0.0136 0.039704 0 0 P1 C00062; C04441; C04692;
C00437; C00073; C00019;
C00242; C01449; C01250;
C00547; C00049

Alanine and Aspar-
tate Metabolism

30 20 5 1.334 0.016982 0.065906 0.041654 0 0 P2 C00062; C00940; C01042;
C00402; C00049

Drug metabolism -
cytochrome P450

53 48 7 2.3567 0.079575 0.17018 0.046002 0 0 P3 C16582; C16604; C16550;
C07501; C16609; C16584;
C16586

Aspartate and
asparagine
metabolism

114 77 9 5.0692 0.14967 0.25437 0.050052 0 0 P4 C00437; C01239; CE1938;
C00402; C05932; C00062;
C02571; C04540; C03078;
C03415; CE1943; C00049

Lysine metabolism 52 28 4 2.3123 0.17608 0.38004 0.057276 0 0 P5 C00019; C06157; C03793;
C01259

Ubiquinone
Biosynthesis

10 7 2 0.44467 0.10051 0.43686 0.061142 0 0 P6 C01179; C00019

Vitamin B3
(nicotinate and
nicotinamide)
metabolism

28 19 3 1.2451 0.18615 0.44767 0.061929 0 0 P7 C00062; C00019; C00049

Vitamin B1 (thi-
amin) metabolism

20 9 2 0.88933 0.15545 0.5223 0.067899 0 0 P8 C06157; C16255

Tyrosine
metabolism

160 103 9 7.1147 0.43083 0.57147 0.072443 0 0 P9 C05350; C00019; C05852;
C03758; C02505; C00547;
CE5547; C00642; C00082;
C05576; C07453; C00355;
C01179; C00268; C05584;
C05587; C05588; C04043;
CE2174; CE2176; CE2173

Arginine and Pro-
line Metabolism

45 38 4 2.001 0.35481 0.58556 0.073852 0 0 P10 C00062; C00073; C00019;
C00049; C05933

Biopterin
metabolism

22 14 2 0.97827 0.3058 0.68367 0.085412 2 0.02 P11 C04244; C00268; C00082

Pyrimidine
metabolism

70 45 4 3.1127 0.48368 0.70125 0.08789 0 0 P12 C00214; C00881; C00475;
C00049
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Table 4 (continued)

Pathway Pathway
tot.

Hits
tot.

Hits
sig.

Expected FET EASE Gamma Emp.
Hits

Emp. Pathway
No.

Cpd.
Hits

Tryptophan
metabolism

94 74 6 4.1799 0.54076 0.70613 0.088605 0 0 P13 C05647; C00019; C05651;
C02220; C00078; C00268;
C00328; C04409; C03227;
C00525

Starch and Sucrose
Metabolism

33 15 2 1.4674 0.33598 0.70875 0.088995 0 0 P14 CE2837; C01083; C00208

Vitamin B9 (fo-
late) metabolism

33 16 2 1.4674 0.36578 0.73186 0.092598 0 0 P15 C01045; C00504

Butanoate
metabolism

34 20 2 1.5119 0.47883 0.80744 0.10716 1 0.01 P16 C05548; C02727

Porphyrin
metabolism

43 20 2 1.9121 0.47883 0.80744 0.10716 0 0 P17 C05520; C00931

Xenobiotics
metabolism

110 59 4 4.8913 0.7018 0.8572 0.1204 0 0 P18 C00870; C14853; C06205;
C14871

Histidine
metabolism

33 25 2 1.4674 0.60163 0.87285 0.12555 8 0.08 P19 C00439; C00019

Methionine
and cysteine
metabolism

94 47 3 4.1799 0.73432 0.89655 0.13469 0 0 P20 C08276; C00019; C00073

Sialic acid
metabolism

107 28 2 4.7579 0.66429 0.90095 0.13661 0 0 P21 C00140; C00645; C00243

Purine metabolism 80 53 3 3.5573 0.80598 0.93105 0.15258 0 0 P22 C00499; C00242; C00049
Galactose
metabolism

41 34 2 1.8231 0.7658 0.93997 0.15864 0 0 P23 C00140; C05400; C05402;
C05399; C00243; C00089

Glycine, serine,
alanine and threo-
nine metabolism

88 60 3 3.9131 0.86848 0.95761 0.17378 1 0.01 P24 C00062; C00019; C00073

Androgen and es-
trogen biosynthesis
and metabolism

95 71 3 4.2243 0.93142 0.98074 0.20732 0 0 P25 C02538; C05293; C00019;
C03917; C04373; C04295;
C00523

Glycero-
phospholipid
metabolism

156 49 2 6.9368 0.9118 0.98298 0.21248 1 0.01 P26 C00019; C00670

Leukotriene
metabolism

92 54 2 4.0909 0.93745 0.98885 0.22988 0 0 P27 C03577; CE5140; CE4995
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Table 4 (continued)

Pathway Pathway
tot.

Hits
tot.

Hits
sig.

Expected FET EASE Gamma Emp.
Hits

Emp. Pathway
No.

Cpd.
Hits

C21-steroid hor-
mone biosynthesis
and metabolism

112 81 2 4.9803 0.99121 0.99889 0.31857 0 0 P28 C03917; C02538; C04373;
C00523

Hyaluronan
Metabolism

8 4 1 0.35573 0.28138 1 1 0 0 P29 C00140

Glycolysis and
Gluconeogenesis

49 32 1 2.1789 0.93051 1 1 0 0 P30 C01136

Hexose phospho-
rylation

20 16 1 0.88933 0.73463 1 1 2 0.02 P31 C01083; C00089

Keratan sulfate
degradation

68 6 1 3.0237 0.391 1 1 0 0 P32 C00140

Carnitine shuttle 72 23 1 3.2016 0.8521 1 1 0 0 P33 pcrn
Alkaloid biosyn-
thesis II

10 6 1 0.44467 0.391 1 1 0 0 P34 egme

Parathio degrada-
tion

6 5 1 0.2668 0.33844 1 1 0 0 P35 C00870

Electron transport
chain

7 3 1 0.31127 0.21943 1 1 0 0 P36 C00390

Vitamin H (biotin)
metabolism

5 5 1 0.22233 0.33844 1 1 0 0 P37 C00120

De novo fatty acid
biosynthesis

106 22 1 4.7135 0.83919 1 1 0 0 P38 C06429

Vitamin
A (retinol)
metabolism

67 41 1 2.9793 0.96749 1 1 0 0 P39 C16679; C16677; C16680

Valine, leucine and
isoleucine degrada-
tion

65 26 1 2.8903 0.88497 1 1 14 0.14 P40 C00123; C00407

Fatty Acid
Metabolism

63 15 1 2.8014 0.71158 1 1 0 0 P41 C02571

Heparan sulfate
degradation

34 5 1 1.5119 0.33844 1 1 0 0 P42 C00140

TCA cycle 31 18 1 1.3785 0.77539 1 1 0 0 P43 C00390
Arachidonic acid
metabolism

95 75 1 4.2243 0.99823 1 1 0 0 P44 C04741; C04843; C14782;
C14814; C00639

Phosphatidyl-
inositol phosphate
metabolism

59 29 1 2.6235 0.91057 1 1 0 0 P45 C01235

(continued on next page)
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Table 4 (continued)

Pathway Pathway
tot.

Hits
tot.

Hits
sig.

Expected FET EASE Gamma Emp.
Hits

Emp. Pathway
No.

Cpd.
Hits

Prostaglandin
formation from
arachidonate

78 61 1 3.4684 0.99409 1 1 0 0 P46 C04741; C05959; C00639

Vitamin B6
(pyridoxine)
metabolism

11 8 1 0.48913 0.48401 1 1 3 0.03 P47 C00314

N-Glycan Degra-
dation

16 8 1 0.71147 0.48401 1 1 1 0.01 P48 C00140

Vitamin B12
(cyanocobalamin)
metabolism

9 3 1 0.4002 0.21943 1 1 0 0 P49 C00019

Carbon fixation 10 10 1 0.44467 0.5629 1 1 0 0 P50 C00049
Nitrogen
metabolism

6 4 1 0.2668 0.28138 1 1 4 0.04 P51 C00049

Drug metabolism -
other enzymes

31 22 1 1.3785 0.83919 1 1 5 0.05 P52 C16631

Aminosugars
metabolism

69 25 1 3.0682 0.87491 1 1 3 0.03 P53 C00140; C00645

Beta-Alanine
metabolism

20 15 1 0.88933 0.71158 1 1 11 0.11 P54 C00049

Prostaglandin
formation from
dihomo gama-
linoleic acid

11 8 1 0.48913 0.48401 1 1 0 0 P55 C04741

Notes.
Pathway tot., total number of compounds in this pathway; Hits tot., total of putative hits for this pathway; Hits sig., significant hits; Expected, randomly expected hits; FET, Fisher’s exact test; EASE,
adjusted FET; Gamma, gamma corrected p-value; Emp., empirical compounds, such as adducts; Cpd., compound (with KEGG database identifier).
The compounds corresponding to the database identifiers are provided as a Table S1.
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Figure 6 Enriched pathways from theMummichog analysis.
Full-size DOI: 10.7717/peerj.13754/fig-6

Adaptive Boost could provide a sensitive method to estimate the metabolic state and the
tendency of a person to gain weight. However, additional studies are necessary to evaluate
the performance of Adaptive Boost models with untargeted metabolic data as a predictive
tool in clinical diagnostics and treatment.

Metabolic pathways in obesity-overweight and potential biomarkers
Compiling the biomarker candidate ions with likely metabolite identifications resulted in
Fig. 7.

Several ions and the metabolic pathway integration-derived metabolites hint at S-
adenosyl-L-methionine (SAM). A previous study reported a 42% increase of SAM in
the serum of test persons who were overfed by 1,250 kcal per day and gained weight
above the median (Elshorbagy et al., 2016). SAM is synthesized from methionine and ATP
and is a key metabolite since it donates methyl groups to different molecules, such as
DNA, RNA, proteins, and lipids, in enzymatic reactions. The demethylated S-adenosyl-
homocysteine (SAH) is hydroxylated by adenosylhomocysteinase, resulting in adenosine
and homocysteine. Methionine synthase builds methionine by transferring a methyl group
from 5-methyl-tetrahydrofolate to homocysteine (Finkelstein, 2000).

Several of these reactions have been reported to be altered in obesity. For example, high
serum levels of homocysteine have been correlated with reduced high-density lipoprotein
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Figure 7 Green pathways contain at least one unique putative compound.Green putative compounds
are unique for one pathway.

Full-size DOI: 10.7717/peerj.13754/fig-7

(HDL) levels. The accumulation of homocysteine comes with lower SAM and SAH levels,
leading to a diminished production of phosphatidylcholine, which is essential for the
production of low-density lipoproteins (LDL) and very-low-density lipoproteins (VLDL)
(Obeid & Herrmann, 2009). Hyperlipidemia with increased serum homocysteine increases
the risk of developing an atherosclerotic disease in overweight patients (Glueck et al., 1995).
In addition, elevated serum homocysteine is related to hepatic steatosis. The later effect
was pronounced with low folate intake (Gulsen et al., 2005). Strikingly, we also found the
folate metabolism affected in our present study.

Albores-Mendez et al. (2022), PeerJ, DOI 10.7717/peerj.13754 16/23

https://peerj.com
https://doi.org/10.7717/peerj.13754/fig-7
http://dx.doi.org/10.7717/peerj.13754


Another altered SAM-related pathway, we detected, is related to nicotinamide
metabolism. Nicotinamide-N-methyl transferase (NNMT) methylates nicotinamide,
using SAM as a methyl donor (Ramsden et al., 2017). As a result, NNMT is enriched in
adipose tissue and the liver of patients with obesity and type 2 diabetes mellitus (DM2)
(Kraus et al., 2014).

The possibility of detecting excess food energy intake in urine by measuring SAM would
provide a non-invasive method for monitoring patients during weight-loss diets and
professionals who require high physical fitness, such as soldiers. Thus, the level of SAM
will be assayed in the following study during the treatment of obese military personnel.

In addition, several ions that putatively correspond to compounds from amino acid
metabolism were identified. Changes in amino acid levels and related metabolites in obese
patients have been reported in several studies (Xie, Waters & Schirra, 2012;Maltais-Payette
et al., 2018; Yu et al., 2018). Therefore, our finding is expectable. However, since we found
the alteration of amino acid pathways through a variable importance analysis of untargeted
metabolomics data, we suggest a high relevance of amino acid-related biomarkers compared
to other groups of compounds such as TCA-cycle metabolites.

Therefore, besides the SAM level, we will investigate the role of amino acid metabolism
in obesity and weight reduction in future studies.

CONCLUSIONS
An Ada Boost model based on urinary metabolomics data could discriminate obese and
overweight from healthy military personnel with a low overall error rate of 5.5%, indicating
a metabolic signature related to the excessive ingestion of food.

Important variables from data mining, statistical analyses, and metabolic pathway
enrichment analysis suggest S-adenosyl-methionine (SAM) as a possible urine biomarker
for overfeeding. Increased SAM levels were found for overfed people in plasma, but
monitoring SAM in urine could be used daily for close follow-up of patients, for example,
in the treatment of losing weight or persons that need a high level of physical fitness, such
as soldiers.

As well, the amino acid metabolism showed significant changes.
Therefore, in ongoing studies, we include SAM, amino acid metabolism compounds,

and acylcarnitines for evaluating the metabolic state of military personnel. In the future,
our results will support the design of low-cost biochemical assays for the broad public.

ACKNOWLEDGEMENTS
We thank the Military Graduate School of Health (E.MG.S.), and CINVESTAV Irapuato
for all the support and facilities provided for the materialization of the project.

Albores-Mendez et al. (2022), PeerJ, DOI 10.7717/peerj.13754 17/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.13754


ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This project was supported by The Budget Program A022, Military Research and
Development in Coordination with Public Universities, Public Higher Education
Institutions, and/or other Public Research Centers and the Secretary of National Defense,
Mexico. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The Budget Program A022, Military Research and Development in Coordination with
Public Universities, Public Higher Education Institutions.
Public Research Centers and the Secretary of National Defense, Mexico.

Competing Interests
Robert Winkler is an Academic Editor of PeerJ and Section Editor of PeerJ Plant Biology.

Author Contributions
• Exsal M. Albores-Mendez conceived and designed the experiments, performed the
experiments, analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the article, and approved the final draft.
• Alexis D. Aguilera Hernández conceived and designed the experiments, performed the
experiments, authored or reviewed drafts of the article, and approved the final draft.
• Alejandra Melo-González performed the experiments, authored or reviewed drafts of
the article, and approved the final draft.
• Marco A. Vargas-Hernández conceived and designed the experiments, authored or
reviewed drafts of the article, and approved the final draft.
• Neptalí Gutierrez de la Cruz performed the experiments, authored or reviewed drafts of
the article, and approved the final draft.
• Miguel A. Vazquez-Guzman conceived and designed the experiments, authored or
reviewed drafts of the article, and approved the final draft.
• Melchor Castro-Marín performed the experiments, authored or reviewed drafts of the
article, and approved the final draft.
• Pablo Romero-Morelos performed the experiments, authored or reviewed drafts of the
article, and approved the final draft.
• Robert Winkler analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the article, and approved the final draft.

Human Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

This work was approved by the Research Committee and the Bioethics Committee of
the Escuela Militar de Medicina, Universidad del Ejército y Fuerza Aérea Mexicanos (reg.
0129012020).

Albores-Mendez et al. (2022), PeerJ, DOI 10.7717/peerj.13754 18/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.13754


Data Availability
The following information was supplied regarding data availability:

Themass spectrometry data in .mzML format, KNIMEworkflow for raw data processing,
and data matrices used for MetaboAnalyst analyses are available at Zenodo:

Winkler Robert. (2022). SUPEREGO urinary metabolomics [Data set]. Zenodo.
https://doi.org/10.5281/zenodo.6091674.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.13754#supplemental-information.

REFERENCES
Alka O, Sachsenberg T, Bichmann L, Pfeuffer J, Weisser H,Wein S, Netz E, Rurik

M, Kohlbacher O, Röst H. 2020. CHAPTER 6: OpenMS and KNIME for mass
spectrometry data processing. In: Processing metabolomics and proteomics data with
open software. Cambridge, UK: Royal Society of Chemistry, 201–231.

BertholdMR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Thiel K,
Wiswedel B. 2009. KNIME—the Konstanz information miner: version 2.0 and
beyond. SIGKDD Explorations Newsletter 11(1):26–31
DOI 10.1145/1656274.1656280.

Braga B. 2017.Demasiado gordo para pelear: los principales factores que llevan a las
fuerzas armadas al sobrepeso y a la obesidad. Argentina: Maestrí a en Estudios
Internacionales, Universidad Torcuato De Tella, Ciudad de Buenos Aires.

Bruzzone C, Gil-Redondo R, SecoM, Barragán R, Dela Cruz L, Cannet C, Schäfer
H, Fang F, Diercks T, BizkarguenagaM, González-Valle B, n ALaí, Sanz-
Parra A, Coltell O, De Letona AL, Spraul M, Lu SC, Buguianesi E, Embade N,
Anstee QM, Corella D, Mato JM, Millet O. 2021. A molecular signature for the
metabolic syndrome by urine metabolomics. Cardiovascular Diabetology 20(1):155
DOI 10.1186/s12933-021-01349-9.

Cámara de Diputados (MX). 2019. Ley del Instituto de Seguridad Social para las Fuerzas
Armadas Mexicanas. Available at http://www.diputados.gob.mx/LeyesBiblio/ref/lissfam.
htm.

Chong J, YamamotoM, Xia J. 2019.MetaboAnalystR 2.0: from raw spectra to biological
insights.Metabolites 9(3):57 DOI 10.3390/metabo9030057.

Cirulli ET, Guo L, Swisher CLeon, Shah N, Huang L, Napier LA, Kirkness EF, Spector
TD, Caskey CT, Thorens B, Venter JC, Telenti A. 2019. Profound perturbation
of the metabolome in obesity is associated with health risk. Cell Metabolism
29(2):488–500.e2 DOI 10.1016/j.cmet.2018.09.022.

Djoumbou-Feunang Y, Fiamoncini J, Gil-de-la Fuente A, Greiner R, Manach C,
Wishart DS. 2019. BioTransformer: a comprehensive computational tool for
small molecule metabolism prediction and metabolite identification. Journal of
Cheminformatics 11(1):2 DOI 10.1186/s13321-018-0324-5.

Albores-Mendez et al. (2022), PeerJ, DOI 10.7717/peerj.13754 19/23

https://peerj.com
https://doi.org/10.5281/zenodo.6091674
http://dx.doi.org/10.7717/peerj.13754#supplemental-information
http://dx.doi.org/10.7717/peerj.13754#supplemental-information
http://dx.doi.org/10.1145/1656274.1656280
http://dx.doi.org/10.1186/s12933-021-01349-9
http://www.diputados.gob.mx/LeyesBiblio/ref/lissfam.htm
http://www.diputados.gob.mx/LeyesBiblio/ref/lissfam.htm
http://dx.doi.org/10.3390/metabo9030057
http://dx.doi.org/10.1016/j.cmet.2018.09.022
http://dx.doi.org/10.1186/s13321-018-0324-5
http://dx.doi.org/10.7717/peerj.13754


Dührkop K, Fleischauer M, LudwigM, Aksenov AA, Melnik AV, Meusel M, Dorrestein
PC, Rousu J, Böcker S. 2019. SIRIUS 4: a rapid tool for turning tandem mass
spectra into metabolite structure information. Nature Methods 16(4):299–302
DOI 10.1038/s41592-019-0344-8.

Elshorbagy AK, Jernerén F, Samocha-Bonet D, RefsumH, Heilbronn LK. 2016. Serum
S-adenosylmethionine, but not methionine, increases in response to overfeeding in
humans. Nutrition & Diabetes 6(1):e192–e192.

Finkelstein JAMESD. 2000. Pathways and regulation of homocysteine metabolism in
mammals. Seminars in Thrombosis and Hemostasis 26(03):219–226
DOI 10.1055/s-2000-8466.

Freund Y. 2001. An adaptive version of the boost by majority algorithm.Machine
Learning 43(3):293–318 DOI 10.1023/A:1010852229904.

Fuente AGil-de-la, Godzien J, Saugar S, Garcia-Carmona R, Badran H,Wishart DS,
Barbas C, Otero A. 2019. CEU mass mediator 3.0: a metabolite annotation tool.
Journal of Proteome Research 18(2):797–802
DOI 10.1021/acs.jproteome.8b00720.

Glueck CJ, Shaw P, Lang JE, Tracy T, Sieve-Smith L,Wang Y. 1995. Evidence
that homocysteine is an independent risk factor for atherosclerosis in hy-
perlipidemic patients. The American Journal of Cardiology 75(2):132–136
DOI 10.1016/S0002-9149(00)80061-2.

GulsenM, Yesilova Z, Bagci S, Uygun A, Ozcan A, Ercin CN, Erdil A, Sanisoglu SY,
Cakir E, Ates Y, Erbil MK, Karaeren N, Dagalp K. 2005. Elevated plasma homocys-
teine concentrations as a predictor of steatohepatitis in patients with non-alcoholic
fatty liver disease. Journal of Gastroenterology and Hepatology 20(9):1448–1455
DOI 10.1111/j.1440-1746.2005.03891.x.

Hatwell J, Gaber MM, Azad RMAtif. 2020. Ada-WHIPS: explaining AdaBoost classifica-
tion with applications in the health sciences. BMCMedical Informatics and Decision
Making 20(1):250 DOI 10.1186/s12911-020-01201-2.

Instituto Nacional de Salud Pública (MX). 2018. Encuesta Nacional de Salud y Nu-
trición 2018 (ENSANUT2018). Available at https://ensanut.insp.mx/encuestas/
ensanut2018/.

JamesWPT. 2008.WHO recognition of the global obesity epidemic. International
Journal of Obesity 32:S120–S126 DOI 10.1038/ijo.2008.247.

Jeffryes JG, Colastani RL, Elbadawi-SidhuM, Kind T, Niehaus TD, Broadbelt LJ,
Hanson AD, Fiehn O, Tyo KEJ, Henry CS. 2015.MINEs: open access databases
of computationally predicted enzyme promiscuity products for untargeted
metabolomics. Journal of Cheminformatics 7(1):44
DOI 10.1186/s13321-015-0087-1.

Kanehisa M, Goto S, Sato Y, KawashimaM, Furumichi M, TanabeM. 2014. Data,
information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids
Research 42(Database issue):D199–D205 DOI 10.1093/nar/gkt1076.

Albores-Mendez et al. (2022), PeerJ, DOI 10.7717/peerj.13754 20/23

https://peerj.com
http://dx.doi.org/10.1038/s41592-019-0344-8
http://dx.doi.org/10.1055/s-2000-8466
http://dx.doi.org/10.1023/A:1010852229904
http://dx.doi.org/10.1021/acs.jproteome.8b00720
http://dx.doi.org/10.1016/S0002-9149(00)80061-2
http://dx.doi.org/10.1111/j.1440-1746.2005.03891.x
http://dx.doi.org/10.1186/s12911-020-01201-2
https://ensanut.insp.mx/encuestas/ensanut2018/
https://ensanut.insp.mx/encuestas/ensanut2018/
http://dx.doi.org/10.1038/ijo.2008.247
http://dx.doi.org/10.1186/s13321-015-0087-1
http://dx.doi.org/10.1093/nar/gkt1076
http://dx.doi.org/10.7717/peerj.13754


Kaplan NM. 1989. The deadly quartet, Upper-body obesity, glucose intolerance, hyper-
triglyceridemia, and hypertension. Archives of Internal Medicine 149(7):1514–1520
DOI 10.1001/archinte.1989.00390070054005.

Kessner D, Chambers M, Burke R, Agus D, Mallick P. 2008. ProteoWizard: open source
software for rapid proteomics tools development. Bioinformatics 24(21):2534–2536
DOI 10.1093/bioinformatics/btn323.

King ZA, Lu J, Dräger A, Miller P, Federowicz S, Lerman JA, Ebrahim A, Palsson
BO, Lewis NE. 2016. BiGG models: a platform for integrating, standardizing
and sharing genome-scale models. Nucleic Acids Research 44(D1):D515–D522
DOI 10.1093/nar/gkv1049.

Kraus D, Yang Q, Kong D, Banks AS, Zhang L, Rodgers JT, Pirinen E, Pulinilkunnil
TC, Gong F,Wang Y-C, Cen Y, Sauve AA, Asara JM, Peroni OD, Monia BP, Bhanot
S, Alhonen L, Puigserver P, Kahn BB. 2014. Nicotinamide N-methyltransferase
knockdown protects against diet-induced obesity. Nature 508(7495):258–262
DOI 10.1038/nature13198.

Lê Cao K-A, Boitard S, Besse P. 2011. Sparse PLS discriminant analysis: biologically
relevant feature selection and graphical displays for multiclass problems. BMC
Bioinformatics 12:253 DOI 10.1186/1471-2105-12-253.

Li S, Park Y, Duraisingham S, Strobel FH, Khan N, Soltow QA, Jones DP, Pulendran
B. 2013. Predicting network activity from high throughput metabolomics. PLOS
Computational Biology 9(7):e1003123 DOI 10.1371/journal.pcbi.1003123.

López-Hernández Y, Herrera-Van Oostdam AS, Toro-Ortiz JC, López JA, Salgado-
Bustamante M, MurguM, Torres-Torres LM. 2019. Urinary metabolites altered
during the third trimester in pregnancies complicated by gestational diabetes
mellitus: relationship with potential upcoming metabolic disorders. International
Journal of Molecular Sciences 20(5):1186 DOI 10.3390/ijms20051186.

MaH, Sorokin A, Mazein A, Selkov A, Selkov E, Demin O, Goryanin I. 2007. The
Edinburgh human metabolic network reconstruction and its functional analysis.
Molecular Systems Biology 3:135 DOI 10.1038/msb4100177.

Maltais-Payette I, Boulet M-M, Prehn C, Adamski J, Tchernof A. 2018. Circulating
glutamate concentration as a biomarker of visceral obesity and associated metabolic
alterations. Nutrition & Metabolism 15(1):78 DOI 10.1186/s12986-018-0316-5.

Obeid R, HerrmannW. 2009.Homocysteine and lipids: S-Adenosyl methionine as a key
intermediate. FEBS Letters 583(8):1215–1225
DOI 10.1016/j.febslet.2009.03.038.

Pfeuffer J, Sachsenberg T, Alka O,Walzer M, Fillbrunn A, Nilse L, Schilling
O, Reinert K, Kohlbacher O. 2017. OpenMS—a platform for reproducible
analysis of mass spectrometry data. Journal of Biotechnology 261:142–148
DOI 10.1016/j.jbiotec.2017.05.016.

Ramsden DB,Waring RH, Barlow DJ, Parsons RB. 2017. Nicotinamide N-Methyltransferase
in health and cancer. International Journal of Tryptophan Research 10:1178646917691739
DOI 10.1177/1178646917691739.

Albores-Mendez et al. (2022), PeerJ, DOI 10.7717/peerj.13754 21/23

https://peerj.com
http://dx.doi.org/10.1001/archinte.1989.00390070054005
http://dx.doi.org/10.1093/bioinformatics/btn323
http://dx.doi.org/10.1093/nar/gkv1049
http://dx.doi.org/10.1038/nature13198
http://dx.doi.org/10.1186/1471-2105-12-253
http://dx.doi.org/10.1371/journal.pcbi.1003123
http://dx.doi.org/10.3390/ijms20051186
http://dx.doi.org/10.1038/msb4100177
http://dx.doi.org/10.1186/s12986-018-0316-5
http://dx.doi.org/10.1016/j.febslet.2009.03.038
http://dx.doi.org/10.1016/j.jbiotec.2017.05.016
http://dx.doi.org/10.1177/1178646917691739
http://dx.doi.org/10.7717/peerj.13754


Rangini M, Jiji D. 2013. Identification of Alzheimer’s disease using AdaBoost classifier.
In: Proceedings of the international conference on applied mathematics and theoretical
computer science. Bonfring, Tamilnadu, India, 229–234.

Rathahao-Paris E, Alves S, Junot C, Tabet J-C. 2015.High resolution mass spectrometry
for structural identification of metabolites in metabolomics.Metabolomics 12(1):10
DOI 10.1007/s11306-015-0882-8.

Röst HL, Sachsenberg T, Aiche S, Bielow C,Weisser H, Aicheler F, Andreotti S,
Ehrlich H-C, Gutenbrunner P, Kenar E, Liang X, Nahnsen S, Nilse L, Pfeuffer J,
Rosenberger G, Rurik M, Schmitt U, Veit J, Walzer M,Wojnar D,WolskiWE,
Schilling O, Choudhary JS, Malmström L, Aebersold R, Reinert K, Kohlbacher O.
2016. OpenMS: a flexible open-source software platform for mass spectrometry data
analysis. Nature Methods 13(9):741–748 DOI 10.1038/nmeth.3959.

Secretaría de Gobernación (MX). 2010. NORMA Oficial Mexicana NOM-008-SSA3-
2010, Para el tratamiento integral del sobrepeso y la obesidad. DOF—Diario Oficial
de la Federación. Available at http://www.dof.gob.mx/nota_detalle.php?codigo=
5154226{&}fecha=04/08/2010.

SturmM, Bertsch A, Gröpl C, Hildebrandt A, Hussong R, Lange E, Pfeifer N, Schulz-
Trieglaff O, Zerck A, Reinert K, Kohlbacher O. 2008. OpenMS—an open-
source software framework for mass spectrometry. BMC Bioinformatics 9:163
DOI 10.1186/1471-2105-9-163.

Tchernof A, Després J-P. 2013. Pathophysiology of human visceral obesity: an update.
Physiological Reviews 93(1):359–404 DOI 10.1152/physrev.00033.2011.

Trygg J, Wold S. 2002. Orthogonal projections to latent structures (O-PLS). Journal of
Chemometrics 16(3):119–128 DOI 10.1002/cem.695.

Williams GJ. 2009. Rattle: a data mining GUI for R. The R Journal 1(2):45–55
DOI 10.32614/RJ-2009-016.

Williams G. 2011.Data mining with rattle and R: the art of excavating data for knowledge
discovery (Use R!). 1st Edition. New York: Springer Science Business Media.

Winkler R. 2015. An evolving computational platform for biological mass spectrometry:
workflows, statistics and data mining with MASSyPup64. PeerJ 3(e1401):1–34.

Wishart DS. 2020. CHAPTER 9: statistical evaluation and integration of multi-omics
data with metaboanalyst. In: Processing metabolomics and proteomics data with open
software. Cambridge, UK: Royal Society of Chemistry, 281–301.

Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, Sajed T,
Johnson D, Li C, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal
S, Arndt D, Liang Y, Badran H, Grant J, Serra-Cayuela A, Liu Y, Mandal R,
Neveu V, Pon A, Knox C,WilsonM,Manach C, Scalbert A. 2018.HMDB 4.0: the
human metabolome database for 2018. Nucleic Acids Research 46(D1):D608–D617
DOI 10.1093/nar/gkx1089.

Wishart DS, Guo A, Oler E, Wang F, Anjum A, Peters H, Dizon R, Sayeeda Z, Tian S,
Lee BL, Berjanskii M, Mah R, YamamotoM, Jovel J, Torres-Calzada C, Hiebert-
Giesbrecht M, Lui VW, Varshavi D, Varshavi D, Allen D, Arndt D, Khetarpal N,
Sivakumaran A, Harford K, Sanford S, Yee K, Cao X, Budinski Z, Liigand J, Zhang

Albores-Mendez et al. (2022), PeerJ, DOI 10.7717/peerj.13754 22/23

https://peerj.com
http://dx.doi.org/10.1007/s11306-015-0882-8
http://dx.doi.org/10.1038/nmeth.3959
http://www.dof.gob.mx/nota_detalle.php?codigo=5154226{&}fecha=04/08/2010
http://www.dof.gob.mx/nota_detalle.php?codigo=5154226{&}fecha=04/08/2010
http://dx.doi.org/10.1186/1471-2105-9-163
http://dx.doi.org/10.1152/physrev.00033.2011
http://dx.doi.org/10.1002/cem.695
http://dx.doi.org/10.32614/RJ-2009-016
http://dx.doi.org/10.1093/nar/gkx1089
http://dx.doi.org/10.7717/peerj.13754


L, Zheng J, Mandal R, Karu N, DambrovaM, Schiöth HB, Greiner R, Gautam V.
2022.HMDB 5.0: the human metabolome database for 2022. Nucleic Acids Research
50(D1):D622–D631 DOI 10.1093/nar/gkab1062.

World Health Organization (WHO). 2021. Obesity and overweight. Available at https:
//www.who.int/news-room/fact-sheets/detail/obesity-and-overweight .

Xia J, Psychogios N, Young N,Wishart DS. 2009.MetaboAnalyst: a web server for
metabolomic data analysis and interpretation. Nucleic Acids Research 37(suppl
2):W652–W660 DOI 10.1093/nar/gkp356.

Xie B,Waters MJ, Schirra HJ. 2012. Investigating potential mechanisms of obesity by
metabolomics. Journal of Biomedicine and Biotechnology 2012:805683.

YuH-T, Fu X-Y, Xu B, Zuo L-L, Ma H-B,Wang S-R. 2018. Untargeted metabolomics
approach (UPLC-Q-TOF-MS) explores the biomarkers of serum and urine in over-
weight/obese young men. Asia Pacific Journal of Clinical Nutrition 27(5):1067–1076.

Zhang A, Sun H,Wang X. 2013. Power of metabolomics in biomarker discovery and
mining mechanisms of obesity. Obesity Reviews 14(4):344–349
DOI 10.1111/obr.12011.

Albores-Mendez et al. (2022), PeerJ, DOI 10.7717/peerj.13754 23/23

https://peerj.com
http://dx.doi.org/10.1093/nar/gkab1062
https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
http://dx.doi.org/10.1093/nar/gkp356
http://dx.doi.org/10.1111/obr.12011
http://dx.doi.org/10.7717/peerj.13754

