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Abstract: Entropy makes it possible to measure the uncertainty about an information source from
the distribution of its output symbols. It is known that the maximum Shannon’s entropy of a discrete
source of information is reached when its symbols follow a Uniform distribution. In cryptography,
these sources have great applications since they allow for the highest security standards to be reached.
In this work, the most effective estimator is selected to estimate entropy in short samples of bytes
and bits with maximum entropy. For this, 18 estimators were compared. Results concerning the
comparisons published in the literature between these estimators are discussed. The most suitable
estimator is determined experimentally, based on its bias, the mean square error short samples of
bytes and bits.

Keywords: entropy; estimation; cryptography; randomness; undersample

1. Introduction

Entropy allows the measurement of the uncertainty about an information source from
the distribution of its output symbols [1]. The Shannon’s entropy of a discrete source
of information will be maximum if the source transmits symbols that follow a Uniform
distribution; that is, the highest level of uncertainty.

In most cases, the data for the measurements are obtained but the distribution is
unknown, so it is necessary to estimate the parameters. Even knowing the data
distribution, it is necessary to determine which is the best performing entropy estimator
since there is no single ideal estimator for all the distributions that may occur. On the other
hand, on many situations, there are not enough samples with sufficient sizes compared to
the source alphabet, in certain scenarios called undersample regime, where many estimators
underestimate the real entropy [2,3]. It is well known that there is not an unbiased
estimator [4], and the convergence rate of a consistent estimator can be arbitrarily slow [5].
However, there are many estimators, but deciding which estimator to use depending on
the scenario turns out to be a practical problem [6].

Estimating a random variable’s entropy is of great importance and with many
applications, having received much attention in recent years [7-11]. Most of the known
estimators are generally applied for the estimation of mutual information [12], but in this
scenario entropy estimators will perform similarly, and thus the selection between
different estimators is less of an issue. However, entropy has great application in
cryptography as a vital tool for designing and analyzing encryption methods [13-17].
Generally, in cryptography, one usually deals with large sample volumes [18-22], so the
estimation of entropy is often useless, as a very similar behavior is obtained for all
estimators. However, it is possible to find scenarios in cryptography where the estimation
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of entropy is vital since it works with smaller samples [23,24]. In these cases, it is necessary
to have the estimator with the highest convergence rate and the lowest mean square error
to increase the result’s precision.

There is a wide variety of entropy estimators [3,5,25-45] tested in dissimilar scenarios.
However, it is not easy to find results of applying or selecting entropy estimators in
samples uniformly distributed composed of bytes and bits. In this work, the most suitable
method to estimate entropy in short samples of bytes and bits uniformly distributed is
determined experimentally from the bias and mean square error characteristics. For this,
18 estimators reported in the literature were compared, and the results are discussed
concerning the literature found. The structure of the paper is as follows: Section 2 presents
some preliminaries about entropy and comparison criteria for the estimators; Section 3
discusses some of the entropy estimators from the literature; Section 4 presents the main
results, which have to do with the selection of the entropy estimators; finally, Section 5
presents some conclusions and possible future lines of work.

2. Preliminaries
2.1. Shannon Entropy

Shannon’s entropy is a measure of a random variable’s uncertainty. Let X be a discrete
random variable with the alphabet K and the probability function p, = Pr{X = x}, x € K,
then we have the following

Definition 1. The entropy H(X) of a discrete random variable X is defined as [1]:

H(X) = — 2 px log, px.

xeK

A discrete source (source with a finite alphabet) with alphabet K reaches its maximum
entropy Hmax if its output symbols follow a uniform distribution. In this case, any discrete
random variable on this alphabet has an entropy no greater than log, |K| [1]. On the other
hand, the lowest value of the entropy Hpin, = 0 is reached when, for some x € K one has
that p, = 1. The maximum possible value for the entropy of a discrete random variable
with k different values (where |K| = k) Hyax = log, k is reached when the random variable
has a uniform probability distribution. Thus, since the objective is to select an effective
estimator of entropy for sequences of bytes and bits with maximum entropy, the selected
estimator’s results will be compared with the expected value of entropy for uniformly
distributed samples, Hmax-

In [46], a lower bound on the convergence rate of an optimal estimator is provided.
In there, they theoretically demonstrated that with a sample of size k/ log, k the entropy
can be estimated, where k is the alphabet’s size. The undersample regime happens when
the size n of the samples is less than the size k of the alphabet and is denoted: n < k [47].
The size of the alphabet for the case of byte samples is 256 and for the case of samples of
2-bit. Thus, the entropy value can vary from Hpin =0 to Hmax = 8 and from Hpin =0
to Hmax = 1, for byte and bit samples, respectively. This work focuses on samples with
sizes greater than or equal to n = 8 bytes and bits, respectively. In the case of bit samples,
it was decided to work with 8 bits because this constitutes the smallest value of n most
frequent in current encryption algorithms.

2.2. Comparison Criterion between the Estimators of H

As mentioned before, it is well known that there is not an unbiased estimator [4]
and of minimum variance, while the convergence rate of a consistent estimators can be
arbitrarily slow [5]. Two well-known statistical tools of estimation theory will be used to
experimentally evaluate the selected estimators, bias and mean square error [48]. The bias
S(H) of an estimator H measures the deviation of the estimate with respect to the expected
real value and is calculated from the difference S(H) = E(H) — H, where E(H) is the
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expected value of H. In our scenario, we will work with uniformly distributed samples of
bytes and bits so the data follows a uniform distribution and we have that E (H ) = Hmax.

The mean square error (MSE) of an estimator measures the average of the squared
errors, that is, the difference between the estimator and what is estimated. The difference
occurs by two possible reasons—by randomness or because the estimator does not consider
the information that could produce a more accurate estimate. The MSE is a measure to
determine the quality of an estimator with a non-negative value. If the value of the MSE
is close to zero, then it implies that the quality of the estimator is better. For an unbiased
estimator, the MSE is the variance of the estimator. That is, if the variance of an estimator is
smaller among all the estimators, then it will be considered as the best unbiased estimator.
The MSE is equal to the sum of the variance and the square of the estimator bias,

MSE(H) = Var(H) + S(H)*.

Thus, the MSE assesses an estimator’s quality in terms of its variance and the degree
of bias.

3. Entropy Estimators

Various entropy estimators have been proposed in the literature with the aim of
approaching its theoretical value in practice. This section briefly describes 18 entropy
estimators present in several works published in the literature. The empirical approach
estimates entropy from the observed individual and joint frequencies for each bit.
The maximum likelihood estimator (ML) of entropy is defined as follows

ML ML ML
AML = — Z Py~ log, Py
xeK

The probability of appearance in the sample with respect to the observed frequencies
yy for each x € K is specified as pML = y, /n, where n is the sample size. Table 1 describes
the others 17 entropy estimators that will be used.

Apart from the entropy estimators described, there are many others in the literature,
such as the KDE [36], KNN [39], B-Spline [35], Edgeworth [37], Polynomial [38] and the
Bayesian PYM and DPM [6]. This shows that entropy is a very well studied information

theory tool in the current literature.

Table 1. Description of entropy estimators.

Known as

Notation Estimator

Miller-Madow
correction [25]

TMM _ ML —1
MM H. = hatH ==,
with m the number of x € K such that y; > 0

Jackknife [44]

AN = ML 1ML

. n -1/
Unveil] donde HM! is the entropy of the sample original without
the i-th symbol

Best Upper Bound [4]

AP =~ 1 qai
where h; = Y _, Lye=i]

BUB ,,
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Table 1. Cont.

Known as Notation Estimator
GSB _ _1lyk yo 1t
Grassberger [41] GSB HE =logn Z"Zl Yx (l/J(yx) (=™ Jo dt)
, where ¢(-) is the digamma function
~ 11
Schiirmann [42] SHU ASHU — P(n) — %Z’;Zl Yx <l[](yx) +(=1)% fog tLtl dt)
S ACS
NCS _ 10gz
Chao-Chen [28] S A = — Do {2 1- (1S5
where 55 = (1 )
HSHR - ZXEK prR longﬁ;SCHRr
' where p3HR = At 4+ (1 — A)pME
James-Stein [32] SHR with 4 — zx 1(@/&); -
(}’l 1) x 1 (tx Px )
and fy =1/k
_ 1 k 2
Bonachela [40] BN HN = 5 ¥5 [(yx +1) Z7+yx+2 ]}
HZhang _ Zn 11 Zo,
Zhang [34 Zhan, o=l B 4
g[ ] g WhereZv_szeK[pr 11_px_%:|
AW =y, o (Do) 1)+
Ba—ay " {-loga-m ta-ay}
with
Chao-Wang-Jost [43] CWJ W% iff, >0
A=V mooger =0 A#0
if = hHh=0,
where f; denote the number of singletons and
f2 denote the number of doubletons in the sample.
]effrey [30] JEF [yBayes :B . erK pfayes IOg ABayes a,=1/2
ayes v +ay =
Laplace [29] LAP where py > = yn+A ay =1
Schiirmann- with A = YX_, a, _
Grassberger [27] 5G ax =17k
Minimax prior [31] MIN ay = /n/k
HNSB _ / p(é,n)Hg’(n)d@
I ) Clyet (2)
— _TkB@)] Ty + (8]
Wbire P(&n) = mhrgen ek ~Ter -
wit
NSB [26] NSB
&= to(kp+1) —go(B+1), ym(x) = (d/dx)""" log, T()
and H/’S”(n) is the expectation value
of the m-th entropy moment at fixed ;
exact expression for m = 1,2 is given in [49].
Hafly A
CDM [45] CDM HEDM = go(N +a+1) = Fy 5750 (s + ot + 1)
where iy = py
Unseen [33] Unseen The authors propose to compute its value

algorithmically.

3.1. Theoretical Approximations between Estimators of Entropy

It is well known that there are relationships between various estimators depending
on the scenarios that are being worked on. These can coincide based on their formulation
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and on the values of their parameters, such as the probability distribution, the size of
the alphabet, or eigenvalues used in the formulation of the estimator. There is a relation
between the SHR and Bayes estimators [32]. Using f; = ay/Aand A = A/(n+ A), then

pIHR — ﬁfﬂy *. This show that the SHR estimator is an empirical Bayes estimator based
on the t; and A selected values. For a choice with no shrinkage (A = 0), p3l'R = pME
is obtained and ML estimator is achieved. On the other hand, if a; = 0 is selected for
Bayes estimator, then ﬁfay ® = pML and again ML estimator is achieved. In addition,
for bit samples the SG estimator must coincide with the JEFF estimator because in this case
k = 2. In [50], the Zhang estimator was classified within the family of entropy estimators
originally introduced in [42]. Also, in the asymptotic regime y, >> 1, the estimator given for
the choice ¢ = 1 within the family of entropy estimators in [42] leads to the MM estimator
using the asymptotic relation 1(x) ~ log(x) — 1/2x. The BUB estimator leads exactly to a
version of the Miller-Madow correction and gives another angle on why this correction

fails in the N ~ m regime [4]. In this perspective, the MLE estimator can be expressed as
N n
AMLE Y o,
i=0

where a; = — 1 log .

3.2. Previous Work on Comparison of Entropy Estimators

Many of the entropy estimators were thought for specific contexts, so there has been
a tendency to compare which estimator would be the most suitable to be used in each
scenario. The following reports present various comparisons between entropy estimators
described in the literature. This allows a vision of the best behavior estimators even when
the used scenarios do not coincide with those of this paper. In [4], four different estimators
were analyzed from various statistical points of view, such as the central limit theorem’s
consistency, bias, and variance. In samples of real and simulated spike trains, it was
obtained that the behavior of the estimation with the BUB approach is better than with the
use of the ML, MM, and Jackknife methods.

In [32], nine estimators (MM, ML, NSB, CS, Shrink, MIN, SG, JEFF and LAP) on the
Dirichlet distribution, with different structures and values of the parameter 4, and the
Zipf-type power law were compared. In summary, the three best-performing estimators are
the NSB, CS and Shrink estimators, with very similar behavior in the scenarios presented.
However, in his simulations, he emphasizes that the Shrink estimator is the only one that
estimates probabilities with high precision for the use of Shannon entropy, even for small
samples. On the other hand, the rest of the estimators can be considered with similar
behavior in several scenarios. Specifying that the Bayesian estimators can have better or
worse behavior than the ML estimator, depends on selecting the prior and the sample
scenario but without a marked difference. In the case of Bayesian estimators, there is no
general agreement on which allocation of a is better a priori. However, as discussed in [32],
choosing an inappropriate a can cause the resulting estimator to perform worse than the
ML estimator, influencing the practical results.

In [33], six entropy estimators—ML, MM, Jackknifed, CS, BUB and Unseen—were
compared. The samples were drawn from six different classes of distributions—the
uniform distribution, a mixture of two uniform distributions; the Zipf distribution, which
is commonly used to model naturally occurring "power law" distributions, particularly in
natural language processing, a modified Zipf distribution with 0.6 power-law exponent,
the geometric distribution, and finally, a uniform mixture of Geometric and Zipf. For each
distribution, three configurations of the size k of the alphabet were considered: 1000,
10,000, and 100,000. The sample size, 1, varied in the interval [k0.6, k1.25]. It was found, as
a result, that the three best-performing estimators were the Unseen, the CS, and the BUB,
where the Unseen estimator being ranked above these three estimators. Specifically for
larger sample sizes and in samples from the Zipf distribution with respect to the CS
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estimator and for the uniform and Zipf distributions with respect to the BUB estimator.
The Unseen estimator performance on all classes of distributions is significant since the
algorithm proposed for its computation is designed to compute a representation of the
distributions rather than specifically adapted to estimate entropy.

In [51], the effects of entropy estimation on mutual information and data
discretization in the inference of gene regulatory networks were investigated. Here, they
evaluated the performance of the MM, ML, SG, and Shrink estimators with three different
discretization approaches (equal frequency, equal amplitude, equal global amplitude) and
stated that changing the discretization approach influences the result more than changing
the estimators. They indicated that using the MM estimator with the discretizations of
equal amplitude and equal global amplitude achieves the best inference result. Samples of
size 50, 100, 200, 500, 1000 were used in the experiments. In [34], some experiments were
run with 6 estimators ML, Jackknife, NSB, Zhang, and two corrections of the Zhang
estimator (correction proposed in [33]) and (Jackknife correction). The comparison of the
estimators was made in three categories: finite alphabets with known cardinalities, finite
alphabets with unknown cardinalities, and infinite alphabets. For each case in the
simulation, the bias reported was based on the average of 5000 simulated samples.
The sample size varied from ten to several hundred. The jackknifing was done using all
subsamples of sizes m, where 5 < m < n. The experiments were carried out on six
distributions, Zipf, Poisson, Gauss and variations of these.

The ML estimator is dominated by the Zhang estimator and the Jackknife estimator
by the correction of the Zhang estimator with the Jackknife. The NSB estimator has a
better behavior but very similar to the Zhang estimator with the Jackknife correction. It
is highlighted that in this case the Jackknife correction provides a better performance
to the Zhang estimator than with its proposed correction. It is reported that the NSB
has a tendency to overestimate the entropy value and they expose it in cases with the
Poisson distribution and the Gaussian distribution with certain characteristics. In [43], five
estimators (Jackknife, Zhang with correction, CS, CWJ and GSB) were compared, modeling
species abundance distributions. The number of species was fixed to be 100, 500 or 1000 and
seven species abundance models were considered, a homogeneous model, the log-normal
model, the Zipf-Mandelbrot model, the broken-stick model, power-decay model, Poisson
model and exponential-decay model. For each fixed model, considered a range of sample
sizes (n = 25 — 500 in an increment of 25 if S < 500, and # = 50 — 1000 in an increment of
50if S > 500). For each combination of abundance model and sample size, 5000 simulated
data sets were generated from the model. As results, the GSB, Jackknife and Zhang’s
estimators are biased downwards and the three estimators have similar trends. The GSB
estimator is less biased than the Jackknife, which is less biased than the Zhang’s estimator.
The RMSE shows the same pattern. On the other hand, CW] estimator in nearly all cases
is better than the GSB, Jackknife and Zhang’s estimators based on the criteria of bias and
RMSE. The CS estimator generally has smaller bias and RMSE than the GSB estimator.

The results described in this section corroborate the problem of selecting the ideal
entropy estimator for a particular practical case. In summary, these results highlight
how factors such as sample size, sample distribution, alphabet size, sample discretization
method, and optimal selection of distribution parameters can influence the behavior of the
estimators or the optimal selection of parameters in the calculation of the estimator. The
comparison of entropy estimators presented in this work differs from the previous ones in
several respects. First, 18 estimators are compared, a figure much higher than in previous
studies. Second, it is limited to discrete samples, specifically of bits and bytes from the
uniform distribution, which are of great cryptographic importance, so discretization is
unnecessary. Third, the greatest interest is in the short sample regime for byte samples
when the sample size is less than the alphabet’s size. However, for the bit case, it has also
experimented with short samples. Fourth, of the 17 compared estimators, 15 are present in
previous works, while 2 (CDM and BN) provide new comparisons. Fifth, an experimental
correlation study between entropy estimators in this scenario is presented for the first time.
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4. Selecting an Effective Entropy Estimator through Experimental Evaluation

In this section, the 18 estimators were applied to short uniformly distributed samples
of bytes and bits obtained using the Linux urandom random number generator [52]. Then,
the results obtained through their bias and their mean square error were compared,
illustrating the behavior of their characteristics using some plots. Also, the selection of the
most effective estimator as a result of the comparison made is discussed. To carry out the
experiments, 1000 samples of uniformly distributed sequences of bytes and bits were
generated for each of the sizes 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, and 16,384.
In [53], it shows how the output sequences of random number generators must follow a
uniform distribution. Thus, the values of the estimators will be compared with the
expected theoretical value for this distribution (for uniformly distributed samples in bytes,
k = 256 and H;;sx = 8, and for the case of uniformly distributed bit samples k = 2 and
Hyuax = 1). Cases in the regime of short samples were analyzed, and situations when the
sample size exceeds the size of the alphabet, that is, n > k, managing to visualize the
convergence of the estimators.

4.1. Implementation of Entropy Estimators

The estimators ML, MM, JEF, LAP, SG, MIN, CS, SHR are available in the R software
package Entropy [53]. The entropy function of that package allows estimating entropy from
observed counts. The Zhang estimator’s estimates were made with the EntropyEstimation
package [54] of the R software. The Matlab implementation of the BUB estimator provided
by the author [4] was used, and its numerical adjustment parameters were left. Likewise,
for the Unseen estimator, the author’s Matlab implementation in [33] was used. For the
NSB estimator, the Python implementation proposed in [55] was used. The SHU, Unveil],
GSB, CWJ, and BON estimators can be found in the package Entropart [56] for R. While
the CDM estimator is part of the CDMEntropy project implemented in Matlab [57].

4.2. Analysis of Bias between Estimators

In this section, the bias behavior of the 18 estimators is analyzed. Figure 1 shows
the behavior of the estimated mean of the estimators for each sample size for uniformly
distributed samples of bytes. The straight red line represents the expected theoretical value,
thatis, Hy;,x = 8.

The behavior of the 18 estimators in the uniformly distributed samples of bytes is
similar in terms of convergence towards the expected theoretical value. However, there
are differences between them in terms of the speed at which they converge. When the
size n of the samples is less than the alphabet’s size k = 256, there is a deviation in many
of the estimates from the expected theoretical value. Figure 1 shows three estimators
(SHR, LAP, JEF) that are considerably close, when n < k, to the expected theoretical value
Hyax = 8. In this group, the SHR estimator stands out for reaching values very close to
Hyax = 8 for all sample sizes, as corresponds to a uniformly distributed sample with a
uniform distribution. Table 2 shows the average value of H for each estimator in all the
sizes used. The LAP and JEF estimators show values very close to Hy;sx up to n = 32,
however, for n = 256, their value decreases a little.
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NSB
Unseen
Zhang
CJ
Unveild
BN
GSB
SHU
CDM
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8 16 32 64 128 256 512 1024 2048 4096 8192 16,384

Entropy estimation values
4
1
&’
III:IIIIIIIEIEII:IEIIIIJ
L
2%

Sample size

Figure 1. Behavior of the estimated mean of the 18 entropy estimators for different uniformly
distributed sample sizes of bytes.

Table 2. Estimated mean of estimates for byte samples.

Sample Sizes

Estimators
8 16 32 64 128 256 512 1024 2048 4096 8192 16,384
Cs 6.142 7.635 8251 8.126 8.064 8.099 8116 8.003 7914 7940 7.963 7.974
ML 2969 3943 4880 5768 6550 7178 7591 7809 7908 7955 7.977 7.989
MM 3590 4598 5536 6397 7113 7633 7902 7985 7998 7999  8.000 8.000
SG 3999 4470 5136 5884 6598 7194 7595 7809 7908 7955 7.977 7.989
SHR 7940 7971 7982 7991 7995 7998 7999 7999 8000 8.000 8.000 8.000
JEF 7947 7902 7834 7751 7.690 769 7.767 7854 7919 7957 7978 7.989
LAP 7983 7969 7943 7904 7859 7832 7842 7883 7928 7960 7.979 7.989
MIN 5.048 5385 5835 6357 6875 7326 7.643 7823 7912 7956 7.978 7.989
BUB 7008 7.021 7476 7732 7.868 8.061 7.896 7971 7983 7985 7985 7.985
NSB 6.427 7.065 7474 7726 7855 7922 7953 7969 7977 7981 7.983 7.984

Unseen 5202 6751 7739 7925 7945 7957 7950 7948 7953 7960 7.966 7971
Zhang 3.690 4.69 5627 6478 7178 7674 7916 7979 7985 7985  7.985 7.985

dJ 5349 7.028 8.089 8.093 8004 799 7987 7985 7985 7985  7.985 7.985
Unveil] 3.036 4124 5316 6.645 7.749 7.95 7855 7832 7894 7940 7.963 7.974
BN 2963 4433 5815 6981 7726  7.889 7.41 6.662 6115 5829  5.686 5.616
GSB 4646 5613 6464 7182 7670 7921 7981 7985 7985 7985 7.985 7.985
SHU 4347 5329 6210 6978 7541 7868 7972 7985 7985 7985 7985 7.985
CDM 6.165 6908 7391 7.689 7844 7922 7961 7981 7990 7.995 7.998 7.999

The rest of the estimators show a similar trend towards the expected Hy,y value.
However, the behavior of the second group of estimators (CS, CJ, BUB, NSB, Unseen, CDM)
stands out in terms of the speed of convergence towards Hysx. On the other hand, the BN
estimator’s unusual behavior is highlighted from n > k = 256, coincidentally the size of
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the alphabet, which confirms that the estimator was constructed for short samples [40].
Furthermore, the CS and CJ estimator show a tendency to overestimate the expected
theoretical value in some sample sizes. Starting from n = 2048 approximately, the values
of all estimators adjust to the expected theoretical value Hyx = 8. Table 3 shows the
difference (Hyax — H) that represents an estimate of the bias in each of the estimators for
byte samples. This measure gives the deviation of the expected value of an estimator
concerning the real value.

Table 3. The bias of the estimates for the byte samples.

Estimator 8 16 32 64 128 256 512 1024 2048 4096 8192 16,384
CS 1.858 0365 —0.251 0126 —0.064 —-0.099 —-0.116 —0.003 0.086 0.060 0.037 0.026
ML 5.031 4.057 3.120 2.232 1.450 0.822 0.409 0191 0.092 0.045 0.023 0.011
MM 4410 3402 2464 1.603 0.887 0.367 0.098 0.015 0.002 0.001 0.000 0.000
SG 4001 3.530 2.864 2.116 1.402 0.806 0.405 0.191 0.092 0.045 0.023 0.011
SHR 0.060 0.029 0.018 0.009 0.005 0.002 0.001 0.001 0.000 0.000 0.000 0.000
JEF 0.053 0.098  0.166 0.249 0.310 0.304 0.233 0.146 0.081 0.043 0.022 0.011
LAP 0.017 0.031  0.057 0.096 0.141 0.168 0.158 0.117 0.072 0.040 0.021 0.011
MIN 2952 2615 2165 1.643 1.125 0.674 0.357 0177 0.088 0.044 0.022 0.011
BUB 0992 0979 0.524 0.268 0.132 -0.061 0.104 0.029 0.017 0.015 0.015 0.015
NSB 1.573 0935 0.526 0.274 0.145 0.078 0.047 0.031 0.023 0.019 0.017 0.016
Unseen  2.798 1249 0.261 0.075 0.055 0.043 0.050 0.052 0.047 0.040 0.034 0.029
Zhang 4310 3304 2373 1.522 0.822 0.326 0.084 0.021 0.015 0.015 0.015 0.015
dJ 2651 0972 —-0.089 —0.093 —-0.004 0.004 0.013 0.015 0.015 0.015 0.015 0.015
Unveil] 4964 3876 2.684 1.355 0.251 0.050 0.145 0.168 0.106 0.060 0.037 0.026
BN 5.037 3.567 2185 1.019 0.274 0.111 0.590 1338 1885 2171 2314 2384
GSB 3354 2387 1.536 0.818 0.330 0.079 0.019 0.015 0.015 0.015 0.015 0.015
SHU 3.653 2.671 1.79 1.022 0.459 0.132 0.028 0.015 0.015 0.015 0.015 0.015
CDM 1.835 1.092  0.609 0.311 0.156 0.078 0.039 0.019 0.010 0.005 0.002 0.001

Table 3 confirms the SHR estimator as the one with the best performance in this
scenario, with almost zero bias for all sizes. In bit samples, a very similar convergence
speed is observed for all estimators (see Figure 2). However, a group of estimators stands
out, the cases of Zhang, CJ, GSB, SHU, and MM, with values very close to the expected
value and faster convergence to it.

To accompany Figure 2 in the visual description of each estimator’s behavior, Table 4
presents the average H value of each of the estimators for all sample sizes.

This group is followed by the SHR and BUB estimators, highlighting the BUB estimator
with a very fast convergence towards Hy;y. Approximately, starting at n = 512, the values
of all estimators adjust to the expected theoretical value Hyyx = 1. Table 5 shows the
difference (Hyax — H ) that represents an estimate of the bias in each of the estimators for
bit samples.
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Figure 2. Behavior of the estimated mean of the 18 entropy estimators for different uniformly
distributed sample sizes of bits.

Table 4. Estimated mean of the estimates for the bit samples.

Sample Sizes

Estimator

8 16 32 64 128 256 512 1024 2048 4096 8192 16,384

CS 0.935 0.95 0975 0987 0993 0995 0997 0997 0998 0.998  0.998 0.998
ML 0.895 0951 0977 0989 0995 0997 0998 0.999 1.000 1.000  1.000 1.000
MM 0984 099% 0999 1.000 1.000 1.000 1.000 1.000 1.000  1.000  1.000 1.000
SG 0919 0956 0978 0989 0995 0997 0998 0999 1.000 1.000  1.000 1.000
SHR 0952 0981 0992 0996 0998 0999 0999 1.000 1.000 1.000 1.000 1.000
JEF 0919 0956 0978 0989 0995 0997 0998 0.999 1.000 1.000 1.000 1.000
LAP 0935 0961 0.979 0.99 0995 0997 0998 0.999 1.000 1.000 1.000 1.000
MIN 0945 0969 0983 0991 0995 0998 0999 0.999 1.000 1.000 1.000 1.000
BUB 0934 0978 0997 0998 0998 0998 0998 0.998 0998 0998  0.998 0.998
NSB 0.872 0929 0962 0979 0988 0993 0995 0997 0997 0998 0.998 0.998

Unseen 0894 0949 0975 0987 0993 0995 0997 0997 0998 0998  0.998 0.998
Zhang 0989 0995 0998 0998 0998 0.998 0998 0998 0998 0.998  0.998 0.998

dJ 0989 0995 0998 0998 0998 0998 0998 0.998 0998 0998  0.998 0.998
Unveil] 0.893 0949 0975 0987 0993 0995 0997 0997 0998 0998  0.998 0.998
BN 0862 0921 0957 0977 0987 0993 0995 0997 0997 0998  0.998 0.998
GSB 0990 0993 1.000 0998 0998 0998 0998 0.998 0998 0998  0.998 0.998

SHU 0990 0995 0998 0998 0998 0998 0998 0998 0998 0.998  0.998 0.998
CDM 0847 0919 0959 0979 0990 0995 0.997 0999 0999 1.000  1.000 1.000

Table 5 shows the good behavior of all estimators in this scenario. Unlike byte samples
in this case, as mentioned above, the estimators show very similar behavior. It is known
that the estimated mean can hide behaviors. For this reason, it is necessary to perform an
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analysis of the variance of these estimators to confirm that the average value of H correctly
describes the behavior of the estimator in each scenario.

Figures 3 and 4 show the dispersion of the estimated values in the samples of uniformly
distributed sequences of bytes and bits, respectively, for each of the chosen sizes. Figure 3
confirms the overestimation of the estimators CS and CJ expected theoretical value for
various sizes of n (see Figure 3c—e). Furthermore, it shows how the Unseen estimator also
has some over estimated values of H that are not visible through the average value of
H. Figure 4 shows how for bit samples, the estimators have greater variance. The SHR
estimator with the lowest variance and with a concentration of its values closer to H,;;x
stands out. On the contrary, the GSB estimator is highlighted as the highest variance with a
very unstable dispersion. Although this estimator performs well on average, the variance
shows a considerable dispersion of its values.

Table 5. Estimation bias for bit samples.

Estimator 8 16 32 64 128 256 512 1024 2048 4096 8192 16,384
Cs 0.065 005 0025 0013 0007 0005 0003 0003 0002 0002 0002 0.002
ML 0105 0049 0023 0011 0005 0003 0002 0001 0000 0000 0.000  0.000
MM 0.016 0004 0001 0000 0000 0.000 0000 0000 0000 0000 0.000  0.000
SG 0.081 0044 0022 0011 0005 0003 0002 0001 0000 0000 0.000  0.000
SHR 0.048 0019 0008 0004 0002 0001 0001 0000 0000 0000 0.000  0.000
JEF 0.081 0044 0022 0011 0005 0003 0002 0001 0000 0000 0.000  0.000
LAP 0.065 0039 0021 001 0005 0003 0002 0001 0000 0000 0.000  0.000
MIN 0.055 0031 0017 0009 0005 0.002 0001 0001 0000 0000 0.000  0.000
BUB 0.066 0022 0003 0002 0002 0002 0002 0002 0002 0002 0002 0.002
NSB 0128 0071 0038 0021 0012 0007 0005 0003 0003 0002 0002 0.002
Unseen 0106 0051 0025 0013 0007 0005 0003 0003 0002 0002 0002  0.002
Zhang 0011 0.005 0002 0002 0002 0002 0002 0002 0002 0002 0.002  0.002
aJ 0.011 0005 0002 0002 0002 0002 0002 0002 0002 0002 0002  0.002
Unveil] 0107 0051 0025 0013 0007 0005 0003 0003 0002 0002 0002  0.002
BN 0138 0079 0043 0023 0013 0007 0005 0003 0003 0002 0.002  0.002
GSB 001 0007 0000 0002 0002 0002 0002 0002 0002 0002 0002  0.002
SHU 001 0005 0002 0002 0002 0002 0002 0002 0002 0002 0002  0.002
CDM 0153 0081 0041 0021 001 0005 0003 0001 0001 0000 0.000 0.000
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Figure 4. Behavior of the mean and the observed variance of the estimators in bit samples using box plots for all sizes. Figure 4 (a)
corresponds to the sample size n = 8, so on until Figure 4 (1) for n = 16,384.

4.3. Comparison of Estimators in Terms of Mean Square Error

Another of the most used tools to measure an estimator’s quality is the mean square
error (MSE). Figure 5 illustrates the estimate’s mean square error in uniformly distributed
samples of bytes and bits for each size.

Figure 5a shows a group of seven estimators (LAP, JEF, BUB, NSB, SHR, CS and CDM)
with a greater tendency towards MSE = 0. Table 6 shows the MSE values for each of the
sample sizes.
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Figure 5. Mean Square Error of Entropy Estimates in Byte (a) and Bit (b) Samples.

Table 6. MSE estimates for byte samples.

Estimator 8 16 32 64 128 256 512 1024 2048 4096 8192 16,384
CSs 3.722 0.716 1.024 0312 0.054 0.022 0.017 0.001 0.007 0.004 0.001 0.001
ML 25315 16469 9.744 4989 2106 0.678 0168 0.037 0.009 0.002 0.001 0.000
MM 19.466 11583 6.085 2581 0793 0.139 0.011 0.001 0.000 0.000 0.000 0.000
SG 16.012 12465 8208 4483 1971 0.653 0165 0.037 0.009 0.002 0.001 0.000

SHR 0.041 0.005 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
JEF 0.003 0.01 0.028 0.062 0.097 0.093 0.055 0.021 0.007 0.002 0.000 0.000
LAP 0.000 0.001 0.003  0.009 0.02 0.028 0.025 0.014 0.005 0.002 0.000 0.000
MIN 8.719 6.841 4693 2704 1268 0456 0.129 0.032 0.008 0.002  0.000 0.000
BUB 1.100 1.043 0.39 0.125 0.036 0.013 0.012 0.001 0.000 0.000 0.000 0.000
NSB 2.622 0.944 0315 0.087 0.025 0.007 0.002 0.001 0.001 0.000 0.000 0.000
Unseen 8.000 1.859 0.71 0328 0.079 0.018 0.006 0.004 0.003 0.002 0.001 0.001
Zhang 18.595 10.93 5.645 2329 0684 0.111 0.009 0.001 0.000 0.000 0.000 0.000
dJ 7.134 1.129 0.68 0349 0061 0.012 0.002 0.001 0.000 0.000 0.000 0.000
Unveil] 24658 15.051 7.246 1929 0.092 0.023 0.024 0.028 0.011 0.004 0.001 0.001
BN 25391 12.744 4811 1.08 0.11 0.033 0354 1789 3554 4715 5.353 5.685
GSB 11.309 5.745 2406 0706 0.131 0.015 0.003 0.001 0.000 0.000 0.000 0.000
SHU 13.386 7.164 3.233 1.07 0.227 0.025 0.003 0.001 0.000 0.000 0.000 0.000
CDM 3.498 1.255 0404 0.108 0.027 0.007 0.002 0.000 0.000 0.000 0.000 0.000

The SHR estimator has the best behavior, with an MSE very close to 0 for all sizes. This
result establishes the SHR estimator as the most suitable, lowest bias, and lowest MSE for
uniformly distributed samples of bytes. On the other hand, in Figure 5b, a clear difference
is not observed, but 5 estimators can be distinguished (LAP, JEF, CS, MIN, SHR) with better
convergence (see Table 7).
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Table 7. MSE estimates for bit samples.

Estimator 8 16 32 64 128 256 512 1024 2048 4096 8192 16,384
CS 0.016 0.007 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ML 0.033 0.008 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MM 0.024 0.005 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5G 0.019 0.006 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SHR 0.019 0.003 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
JEF 0.019 0.006 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LAP 0.012 0.005 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MIN 0.008 0.003 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BUB 0.026 0.007 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NSB 0.028 0.008 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Unseen 0.033 0.008 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Zhang 0.024 0.005 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
] 0.024 0005 0.001 0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Unveil] 0.034 0.008 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BN 0.032 0.009 0.003 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GSB 0.063 0.015 0.003 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SHU 0.024 0.005 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CDM 0.041 0.011 0.003 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

It is more difficult to select a suitable single estimator in bit samples since all
estimators show good results in terms of bias and MSE value. However, the MM and SHR
estimators stand out in both. Therefore, in this scenario, the use of either of these two
estimators is suggested, specifying that MM has less bias and SHR has less MSE. In this
case, the estimators have similar efficiency. It would be of interest to compare its efficiency
since looking for a balance between effectiveness and efficiency, it would be possible to
define which estimator to select.

4.4. Correlation between Estimators of Entropy Using Bias

Figure 1 suggests a trend or approach in the distribution of the estimated means of
various estimators, which could suggest the existence of a correlation between them. Thus,
in this section, the correlation between the estimators will be measured using Kendall’s
correlation coefficient. In Figure 6, the Kendall correlation coefficient values between the
estimators for random samples of bytes can be observed.
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Figure 6. Correlation matrix between the estimators for random samples of bytes. The correlation is represented based on

its numerical value (a) and the intensity of the color (b).

The size of the circles and the intensity of the color are in correspondence with the
correlation value existing between the estimators. From the results shown in Figure 6,
groups of estimators with higher correlation can be analytically determined. Considering
the values of Kendall’s correlation coefficient (CCK) [58], the following four groups are
obtained, grouping them by having a correlation value greater than 0.6 or less than —0.6.

1. {JEF, LAP, BN},

2 { MM, BUB, ML, SG, MIN, Zhang, NSB, CDM, Unveil], GSB, SHU},
3. {CS, Unseen, CJ}.

4. {SHR}.

The third and fourth group’s estimators stand out for their rapid convergence in byte
samples; therefore, it is suggested in terms of bias to use one of these estimators in this
scenario. However, the SHR estimator stands out for its excellent behavior for all sample
sizes. This grouping of the estimators was corroborated using the hierarchical grouping
method to determine the highest correlation groups. Hierarchical grouping algorithms
are used for grouping patterns whose internal organization is unknown; that is, there
is no knowledge about the class label to which they belong. In data mining, these data
groups are called clusters. Figure 7 shows the clustering performed using the full link
agglomerative method [59,60] with the distance based on the correlation, in this case,
the Kendall correlation.

The BN estimator is in a different group, possibly because its correlation with the JEF
and LAP estimators is in the opposite direction, that is, negative. Furthermore, some of
these groups can be divided consecutively into subsets such that the value of the coefficient
has less variation within each subset. Figure 8 shows the dendrogram corresponding to the
hierarchical grouping of the estimators where this characteristic is displayed.
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Figure 7. Clustering of estimators in uniformly distributed byte samples using the full-link

agglomerative method.
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Figure 8. Dendrogram corresponding to the hierarchical grouping of the estimators for uniformly
distributed samples of bytes.

For bit samples, the behavior between all estimators is much more similar. However,
a similar correlation analysis was performed. In Figure 9, the Kendall correlation coefficient
values between the estimates for uniformly distributed samples of bits can be observed.
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Figure 9. Correlation matrix between the estimators for random samples of bytes. The correlation is represented based on

its numerical value (a) and the intensity of the color (b).

Figure 9 shows a division into fewer subgroups than for byte samples; this confirms
no significant distinction in terms of bias in this scenario between the estimators. However,
when applying the full link agglomerative method with correlation-based distance, it is
obtained that it identifies four groups of estimators:

1. {NSB,CDM, BN},

2. {ML, SG, MIN, JEF, LAP, Unveil], CS, Unseen},
3. {GSB}.

4.  {SHU, MM, CJ, Zhang, BUB, SHR}.

Figure 10 confirms the discussion raised about four of the estimators (CJ, SHU, MM,
Zhang) with less bias in uniformly distributed samples of bits and, in turn, shows that
although the average of H for the GSB estimator has satisfactory behavior, the values of this
estimator are far from the behavior of the estimators of this group. This is the consequence
of its high variance value. This case illustrates how the observation’s average can hide
inappropriate behaviors and the need to use various statistical tools together.

The SHR and BUB estimators are not displayed in Figure 1 within the estimator’s
group with the best bias behavior. However, the agglomerative method detects that these
two estimator’s values have a trajectory more similar to this group and superior to the
other estimators. The relationship between the Bayesian estimators JEF, SG, MIN, and LAP
is highlighted, which can be seen in Figure 11. Highlighting the relationship mentioned on
the SG and JEF estimators in this scenario in Section 3.1.

The estimators {SHU, MM, CJ, Zhang, BUB, SHR} have similar behavior. It would
be of interest to compare their efficiency because, in applications that require an extensive
estimation of entropy, it is possible to evaluate using the most efficient of all of them,
seeking a balance between effectiveness and efficiency. This comparison is left as an open
problem for future work as it requires a unique own implementation that includes all
these estimators.
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Figure 11. Dendrogram corresponding to the hierarchical grouping of the estimators for uniformly
distributed samples of bits.

5. Conclusions

In this work, a comparison was made between 18 estimators of entropy in short
uniformly distributed samples of bytes and bits, based on their bias, variance, and mean
square error. It was concluded that to estimate entropy in short uniformly distributed
samples of bytes, the SHR estimator will be the most effective, while for bit samples, it is
proposed to use the MM and SHR estimators. To estimate the entropy of random samples
of bytes and bits, even considering the regime in short samples, based on the results
obtained in this work, it is recommended to use the SHR estimator. The SHR estimator
was the estimator with the least bias in random samples of bytes and the one with the
highest convergence towards a mean square error equal to 0. For random samples of bits,
it is within the set with the least bias, and within these, it is the estimator with the lowest
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dispersion in the values of the estimates with greater convergence towards an MSE = 0. It
is noteworthy that the estimator is effective even for samples with the smallest sizes in both
scenarios. This result is of great importance in cryptographic applications where scenarios
with tiny samples often arise.

Additionally, the 18 estimators were grouped in clusters (different for each scenario)
such that all the estimators of a cluster have similar effectiveness. This suggests that in
applications that require intensive estimation of entropy, a selected estimator could be
substituted for another correlated one, but of higher efficiency, which suggests comparing
the efficiency of the estimators {CS, Unseen, C} U {SHR} in uniformly distributed samples
of bytes and the estimators {SHU, MM, C], Zhang, BUB, SHR} in uniformly distributed
samples of bits, which will be addressed in future works.
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