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INTRODUCTION 

Prostate cancer (PCa) is one of the leading urogenital 

malignancies worldwide. PCa ranked first in incidence 

and, following lung cancer, had the second highest 
mortality rate in American men accounting for 

approximately 1 in 5 newly diagnosed cases in 2019 

[1]. Numerous men with metastatic PCa who receive 

androgen deprivation therapy develop castration 

resistance, which is associated with a 5-year mortality 

rate of over 80% [2, 3]. The pathogenesis of PCa is 

complex and involves copious genetic aberrations [4]. 

Therefore, further understanding of the molecular 

dysfunction and identification of significant bio-

markers are critical for early diagnosis and better 

prognosis in PCa. 
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ABSTRACT 

Prostate cancer is one of the deadliest cancers in men. RNA-binding proteins play a critical role in human 
cancers; however, whether they have a significant effect on the prognosis of prostate cancer has yet to be 
elucidated. In the present study, we performed a comprehensive analysis of RNA sequencing and clinical 
data from the Cancer Genome Atlas dataset and obtained differentially expressed RNA-binding proteins 
between prostate cancer and benign tissues. We constructed a protein-protein interaction network and Cox 
regression analyses were conducted to identify prognostic hub RNA-binding proteins. SNRPA1 was 
associated with the highest risk of poor prognosis and was therefore selected for further analysis. SNRPA1 
expression was positively correlated with Gleason score and pathological TNM stage in prostate cancer 
patients. Furthermore, the expression profile of SNRPA1 was validated using the Oncomine, Human Protein 
Atlas, and Cancer Cell Line Encyclopedia databases. Meanwhile, the prognostic profile of SNRPA1 was 
successfully verified in GSE70769. Additionally, the results of molecular experiments revealed the 
proliferative role of SNRPA1 in prostate cancer cells. In summary, our findings evidenced a relationship 
between RNA-binding proteins and prostate cancer and indicated the prognostic significance of SNRPA1 in 
prostate cancer. 
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RNA-binding proteins (RBPs) mediate the interactions 

of various RNAs and the formation of ribo-

nucleoproteins to control post-transcriptional 

regulation of gene expression [5]. Additionally, they 

play an essential role in regulating the metabolism of 

RNA, such as splicing, translation, and localization 

[6]. To date, over 1500 RBPs have been identified in 

humans [7]. However, the specific biological functions 

of most RBPs have yet to be fully elucidated. Due to 

the regulatory roles of RBPs, recent studies have 

focused on RBP dysfunction in cancer initiation and 

progression [8, 9]. Reports suggest that Musashi RNA 

Binding Protein 1 (MSI1) was overexpressed in 

several tumors of the central nervous system by 

regulating the Notch signaling pathway [10, 11]. 

Moreover, the overexpression of RNA-binding motif 

protein 3 (RBM3) facilitated proliferation and drug 

resistance via the β-catenin pathway in colon cancer 

cells [12, 13]; however, it indicated a favorable 

prognosis in breast cancer [14]. Additionally, 

eukaryotic translation initiation factor 4E (eIF4E) 

overexpression led to the development of B cell 

lymphomas and facilitated lymphomagenesis [15, 16]. 

Moreover, the inhibition of eIF4E in human tumor 

xenografts significantly induced apoptosis and 

suppressed tumor growth [17]. Based on these 

findings, it is important to conduct systematic research 

on the role of RBPs in carcinogenesis. 
 

Whether specific RBPs play a critical role in the 

pathogenesis of PCa has yet to be elucidated. In this 

study, we performed an integrated analysis of RNA 

sequencing data from The Cancer Genome Atlas 

(TCGA) database and identified hub RBP genes related 

to PCa prognosis. The biological functions and clinical 

traits of RBPs have been successfully identified and 

validated in multiple databases and molecular 

experiments. Therefore, the aim of this study was to 

enhance the current knowledge by providing novel 

information regarding PCa-related RBPs and potential 

biomarkers to better predict the development and 

prognosis of PCa. 

 

RESULTS 
 

Analysis of differentially expressed RBPs in PCa 
 

A flow diagram of the procedure undertaken in this 

study is illustrated in Figure 1. After screening for 

duplicate entries, 495 tumor and 52 normal samples 

including the mRNA expression profiles of 1472 RBPs 

were selected from TCGA for further analysis. After 

processing using the R package, a total of  
186 significantly differentially expressed RBPs, 

including 82 downregulated and 104 upregulated genes, 

were identified (|log2FC| > 0.5 and adjusted p value  

< 0.0001). A heatmap presenting the expression profiles 

of RBPs is depicted in Figure 2. 

 

Identification of biological functions of RBPs 

 

Gene Ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) enrichment analyses 

were conducted to reveal the biological roles of RBPs. 

The GO and KEGG profiles are presented in Figure 

3A, 3B. RBPs were mainly involved in biological 

processes including RNA splicing via multiple 

pathways and mRNA metabolism (Figure 3C). In 

addition, cellular components significantly associated 

with RBPs were ribonucleoprotein granules and 

ribosomes. Moreover, RBPs were significantly 

enriched in molecular function related to the catalytic 

and binding activity of RNA. KEGG pathway analysis 

revealed that RBPs mainly participate in RNA 

transport, surveillance, degradation, and ribosome 

activities (Figure 3D). 

 

PPI network and identification of hub RBPs 

 

To expound RBPs that play a key role during the 

pathogenesis of PCa, significant RBPs were analyzed 

using the STRING database. Figure 4A visualizes the 

protein-protein interaction (PPI) network including 160 

nodes and 599 interactions. Significant RBPs were 

ranked according to degree using Cytoscape plugin 

cytoHubba. Finally, a gene module comprising 45 hub 

RBPs was identified (Figure 4B). RRS1, SNRPA1, 

ELAVL2, and BOP1 were involved in this module. 

 

Prognostic analysis of hub RBPs 

 

Of the 45 hub RBPs, 7 candidate genes were related to 

prognosis with regards to disease-free survival (DFS) 

in 489 patients, determined by both the log-rank test 

and univariate Cox regression methods (p value < 

0.05). After stepwise multivariate Cox regression 

analysis, SNRPA1, DDX39B, and ESRP2 remained 

significant in the model and were regarded as 

prognosis-related RBPs (p value < 0.05; Supplementary 

Table 1). The survival curves demonstrated that a 

higher expression of SNRPA1 and DDX39B and lower 

expression of ESRP2 were significantly related to 

worse DFS (p = 0.00551, 0.00011, and 0.0194, 

respectively; Figure 5A–5C). Furthermore, the 

expression profiles of SNRPA1 and DDX39B remained 

significantly associated with overall survival (OS) (p = 

0.00955 and 0.0022, respectively; Figure 5D, 5E). This 

suggests that the abovementioned RBPs are suitable 

prognostic markers of PCa. SNRPA1 had the highest 
hazard ratio (HR) value and has not previously been 

reported in PCa. Based on this, SNRPA1 was selected 

for further analysis. 
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Clinical significance of SNRPA1 

 

To reveal the clinical relevance of SNRPA1, we first 

compared its mRNA expression levels in tumor and 

normal samples. SNRPA1 was highly expressed in 

PCa (p < 0.0001; Figure 6A). Additionally, SNRPA1 

expression was positively associated with Gleason 

score (p < 0.0001; Figure 6B). It appeared that 

SNRPA1 expression increased as the Gleason score 

increased from 6 to 10. Thereafter, the relationship 

between pathological TNM stage and SNRPA1 was 

explored. As depicted in Figure 6C, the T stage 

demonstrated a similar trend to that of the Gleason 

score; the higher expression of SNRPA1 corresponded 

with the advanced T stage (p = 0.033). Finally, 

samples in the N1 stage had higher expression of 

SNRPA1 compared with those in the N0 stage (p = 

0.011; Figure 6D). Since less than 5 samples exhibited 

distant metastasis, the correlation between SNRPA1 

and M stage was not evaluated. Based on these 

findings, SNRPA1 evidenced clinicopathological 

significance in PCa. 

 

External validation of SNRPA1 across multiple 

databases 

 

To further verify the effect of SNRPA1 in PCa, the 

expression and prognostic profiles of SNRPA1 were 

evaluated using the Oncomine, Human Protein Atlas 

(HPA), Gene Expression Omnibus (GEO), and Cancer 

Cell Line Encyclopedia (CCLE) databases. The 

Oncomine database contained 4 studies where SNRPA1 

expression was significantly higher in PCa tissue 

compared to that of normal prostate gland tissue (2.2-

fold to 2.4-fold increase; p < 0.05; Figure 7A). 

Similarly, the HPA database demonstrated that 

SNRPA1 was strongly positive in PCa tissue and 

moderately positive in normal tissue (antibody 

HPA045622; Figure 7B). Moreover, the clinical data of 

94 patients in GSE70769 were analyzed. Consistent with 

 

 
 

Figure 1. The flow diagram of the stud. TCGA: The Cancer Genome Atlas; RBPs: RNA-binding proteins; PCa: Prostate cancer; GO: Gene 

Ontology; PPI: protein-protein interaction; KEGG: Kyoto Encyclopedia of Genes and Genomes; GSEA: Gene Set Enrichment Analysis; HPA: 
Human Protein Atlas; CCLE: Cancer Cell Line Encyclopedia; GEO: Gene Expression Omnibus. 
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the prognostic results of DFS and OS from TCGA, 

increased expression of SNRPA1 in the GSE70769 

cohort was significantly associated with worse DFS (p = 

0.0137; Figure 7C). Finally, the CCLE database revealed 

that SNRPA1 was highly expressed in PCa compared to 

other solid tumor types, except for hematological 

malignancy, and it was not differentially expressed in 

various PCa cell lines (Supplementary Figure 1A, 1B). 

 

External validation of SNRPA1 using clinical 

specimens and molecular experiments 

 

In addition to verifying the effects of SNRPA1 across 

multiple datasets, the expression levels of SNRPA1 in 

four pairs of PCa and normal samples were detected by 

western blotting. Consistent with the results from other 

datasets, the expression of SNRPA1 at protein level was 

significantly higher in the tumor group compared to that 

of the normal group (Figure 8A, 8B).  

Next, we conducted molecular experiments in vitro. 

After shRNA transfection targeting SNRPA1, the 

expression levels of SNRPA1 significantly decreased in 

both CWR22Rv1 and C4–2b cells (Figure 8C, 8D). 

SNRPA1 inhibition also decreased tumor cell migration 

and colony formation (Figure 8E–8H). Finally, cell 

proliferation was significantly inhibited when SNRPA1 

was downregulated in CWR22Rv1 and C4–2b cells 

(Figure 8I). These results reveal SNRPA1 indicates 

poor prognosis in PCa. 

 

GSEA of SNRPA1 

 

Gene Set Enrichment Analysis (GSEA) was conducted 

using samples with high and low expression levels of 

SNRPA1 to examine enriched pathways (Figure 9). In 

the hallmark gene set, the upregulation of SNRPA1 was 

significantly involved in pathways associated with DNA 

repair, mTORC1 signaling, MYC, and E2F targets.

 

 

 

 

Figure 2. A heat map of the differentially expressed RBPs between PCa and normal samples. RBPs: RNA-binding proteins; PCa: 
Prostate cancer; N: normal issue; T: tumor issue. 
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Figure 3. Functional enrichment analysis of differentially expressed RBPs. (A) GO cluster. (B) KEGG cluster. (C) GO analysis of 

representative RBPs including BP, CC and MF. (D) KEGG analysis of representative RBPs. For (A, B) the innermost part shows the hierarchical 
clustering of the RBPs. The middle part represents the expression profiles of RBPs, in which the color layout from blue to red indicates the 
expression level of RBPs from down-regulation to up-regulation. And the outermost part represents the GO terms (A) and KEGG pathways (B) 
associated with RBPs. The y-axis shows enriched GO terms. RBPs: RNA-binding proteins; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of 
Genes and Genomes; BP: biological process; CC: cellular component; MF: molecular function. 
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Figure 4. Screening of differentially expressed RBPs based on PPI network. (A) PPI network of differentially expressed RBPs.  

(B) Gene module based on cytocubba. For A, red circles represent up-regulated RBPs and green circles for down-regulated RBPs. For B, the 
color layout varying from yellow to red indicates increasing significance of RBPs based on cytocubba. RBPs: RNA-binding proteins; PPI: 
protein-protein interaction. 

 

 
 

Figure 5. The survival curves of hub prognostic RBPs. Prognosis analysis in training and validation datasets. Association between 

expression of SNRPA1 (A), DDX29B (B), ESRP2 (C) and DFS in TCGA. Association between expression of SNRPA1 (D), DDX29B (E) and OS in 
TCGA. RBPs: RNA-binding proteins; DFS: disease-free survival; OS: overall survival; TCGA: The Cancer Genome Atlas. 
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Figure 6. Clinical significance of SNRPA1. (A) SNRPA1 expression between PCa and normal samples. Association between SNRPA1 
expression and Gleason score (B), T stage (C) and N stage (D), respectively. PCa: Prostate cancer. 

 

 

 

Figure 7. External validation of SNRPA1 in multiple databases. (A) SNRPA1 expression between PCa and normal samples in four 

studies of Oncomine. (B) The immunohistochemical results of SNRPA1 in HPA. (C) The prognostic profile of SNRPA1 with DFS in an 
independent external cohort GSE70769. PCa: Prostate cancer; HPA: Human Protein Atlas; DFS: disease-free survival; N: normal sample;  
T: tumor sample. 
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However, the downregulation of SNRPA1 significantly 

corresponded to signaling pathways related to TGF-β 

signaling, Notch signaling, epithelial-mesenchymal 

transition, and KRAS signaling, which are mainly 

involved in tumorigenesis. 

 

DISCUSSION 
 

Globally, PCa is one of the deadliest urogenital tumors 

in men [18]. Therefore, identifying key genes that can 

be used as biomarkers is necessary for early diagnosis 

and prognosis, especially in castration resistance. Many 

studies have evaluated gene expression profiles in PCa, 

such as miRNAs, lncRNAs, and autophagy-related 

genes [19, 20]. However, the systematic evaluation of 

the role of RBPs in PCa has yet to be reported. 

Additionally, only a few RBPs have been explored in 

depth in relation to the pathogenesis of cancer. In this 

study, we first examined differentially expressed RBPs 

between PCa and normal samples using RNA 

sequencing data from TCGA. After analyzing the 

biological functions of significant RBPs, survival 

analyses were used to identify prognosis-related RBPs, 

after which SNRPA1 was selected for further study. 

The clinical traits of TCGA data demonstrated that 

SNRPA1 had a positive correlation with Gleason score 

and TNM stage; higher SNRPA1 expression was related 

to worse prognosis. Additionally, the expression and 

 

 
 

Figure 8. External validation of SNRPA1 in molecular experiments. Representative immunoblot (A) and quantification (B) of SNRPA1 

expression between PCa and normal clinical samples. Representative immunoblot (C) and quantification (D) of SNRPA1 expression after 
shRNA transfection in CWR22Rv1 and C4-2b cells. Representative results of scratch assay (E) and quantification (F) of CWR22Rv1 and C4-2b 
cells. Representative results of colony formation (G) and quantification (H) of CWR22Rv1 and C4-2b cells. (I) The results of cell proliferation 
using cell counting kit-8 of CWR22Rv1 and C4-2b cells after 48 hours. Data are expressed as means ± SD. *P <0.05. PCa: Prostate cancer; N: 
normal sample; T: tumor sample; shRNA: short hairpin RNAs; shNC: negative control shRNA; shSNRPA1: shRNA targeting SNRPA1. 
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prognostic profiles of SNRPA1 were successfully 

validated by GEO, Oncomine, HPA, and CCLE data. 

Finally, molecular experiments that downregulated 

SNRPA1 expression evidenced inhibitory functions in 

PCa cells. These results provide novel information 

thereby enhancing our understanding of the role of 

RBPs in PCa development and prognosis. 

 

Using the threshold of |log2FC| > 0.5, we identified 

differentially expressed RBPs, which were associated 

with GO terms and KEGG pathways. We evidenced 

that RNA splicing was the most significant biological 

process related to RBPs. Changes in mRNA splice 

patterns play a key role in the pathogenesis of PCa [21]. 

Gene function could be altered by mRNA isoform 

switching in PCa through the use of alternative 

promoters via the androgen receptor (AR). For example, 

TSC2, a normal tumor suppressor gene in PCa, 

facilitates cell proliferation under the androgen-driven 

switch in the mRNA isoform [22]. Additionally, the 

alternative splicing pattern of the TMPRSS2–ERG 

fusion gene decreased the skipping of two exons 

associated with more clinically advanced PCa [23]. 

Moreover, AR mRNA splicing has an important effect 

on castration resistance, which could promote PCa cell 

growth when androgen concentrations are low [24]. 

AR-v7, a common AR splice variant, increased 

substantially as patients progressed to castration-

resistant prostate cancer [25]. Moreover, the results of 

cellular component analysis focused on ribo-

nucleoprotein granules, which are involved in 

biosynthesis. RBPs perform functions mainly by 

forming ribonucleoprotein complexes with RNA targets 

as well as transporting, supervising, and degrading 

RNA [26]. Our KEGG pathway analysis revealed that 

all of these functions were enriched  

 

Significant RBPs in the PPI network with a medium 

confidence score were further screened and 45 hub 

genes were identified. The expression of MBNL1 

isoforms lacking exon7 inhibits cell viability and 

induces DNA damage and could be a negative protein 

implicated in PCa [27]. Lee et al. [28] reported that 

GNL3 was associated with low DFS and harbored SNPs 

related to oncogenesis in PCa. Therefore, GNL3 could 

be a novel metastasis susceptibility gene in PCa. Liang 

et al. [29] identified RPL22L1 as a diagnostic and 

prognostic biomarker in PCa as it promoted PCa cell 

proliferation and invasion in vitro. These hub RBPs 

were involved in the log-rank test as well as the 

univariate and multivariate COX regression analyses, 

and SNRPA1, DDX39B, and ESRP2 were identified. 

The survival curves demonstrated that all three of these 

RBPs had significant prognostic profiles with regards to 

DFS. SNRPA1 and DDX39B remained significantly 

correlated with OS, although more than 90% of patients 

 

 
 

Figure 9. Significant SNRPA1-related hallmark pathways by GSEA analysis. (A) The most significant pathways associated with 
up-regulated SNRPA1. (B) The most significant pathways associated with down-regulated SNRPA1. GSEA: Gene Set Enrichment 
Analysis. 
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in this cohort were still alive at the endpoint. Research 

has evidenced that ESRP2 is highly expressed in 

primary PCa and associated with disease progression by 

androgen-dependent splicing switches [30]. 

Additionally, DDX39B contributes to the generation of 

AR-V7 in PCa [31]. Therefore, knockdown of DDX39B 

could lead to dramatically and selectively down-

regulated AR-v7 expression. Compared with ESRP2 

and DDX39B, SNRPA1 indicated a higher chance of 

survival based on Cox regression analysis but had not 

previously been reported in PCa. Thus, we focused on 

SNRPA1 in PCa for further study. 

 

Firstly, we examined the clinical relevance of SNRPA1. 

SNRPA1 was significantly associated with Gleason 

score and pathological TNM stages in PCa patients. 

Furthermore, it appeared that SNRPA1 expression level 

was positively correlated with Gleason score. Similarly, 

higher mRNA expression of SNRPA1 was significantly 

associated with a more advanced TNM stage. Further, 

SNRPA1 profiles were validated across multiple 

databases. Consistent with TCGA data, SNRPA1 was 

highly expressed in PCa samples based on four studies 

from Oncomine and HPA. Meanwhile, SNRPA1 had a 

similar predictive capacity of prognosis as GEO data, 

and the prognostic profile was well validated. 

Moreover, the results of clinical specimens by western 

blotting demonstrated a higher expression level of 

SNRPA1 in PCa tissue. Furthermore, in vitro studies 

revealed that the inhibition of SNRPA1 could 

significantly decrease PCa cell migration, proliferation, 

and colony formation. These results indicate SNRPA1 

plays a proliferative role in PCa. 

 

SNRPA1, known as small nuclear ribonucleoprotein 

polypeptide A, belongs to the spliceosome family and is 

responsible for processing pre-mRNA into RNA [32]. 

Additionally, SNRPA1 is one of the key players in the 

regulation of pluripotency-specific spliceosome 

assembly [33]. Wu et al. [34] evidenced that the loss of 

SNRPA1 caused insufficient mRNA splicing and 

resulted in the failure of spermatocyte differentiation. In 

cancer research, SNRPA1 bound to the insertion allele 

of rs386772267 related to pancreatic cancer and 

influenced gene expression associated with RNA 

processing and decay [35]. Zeng et al. [36] discovered 

that SNRPA1 is widely expressed in colorectal cancer 

cell lines and that downregulation inhibits cell 

proliferation. Similarly, SNRPA1 was highly expressed 

in hepatocellular carcinoma and correlated with the 

clinical stage and OS in hepatocellular carcinoma 

patients [32]. In our study, we conducted GSEA 

analysis of SNRPA1 in PCa. The results indicated that a 
high-risk score was associated with DNA repair, 

mTORC1 signaling, MYC, and E2F targets, which are 

also mainly involved in the pathogenesis of PCa  

[37–39]. Based on these results, we propose that the 

novel RNA-binding protein SNRPA1 plays an essential 

role in the pathology and prognosis of PCa. 

 

There are some limitations of this study. Firstly, the 

study did not explore the specific signaling pathways 

related to SNRPA1 in PCa, although function 

enrichment and GSEA analyses were conducted. 

Furthermore, in-depth molecular experiments need to be 

conducted to reveal more profound profiles of SNRPA1 

as well as clinical data for prognostic analysis in PCa. 

 

In summary, we performed a comprehensive analysis of 

the role of RBPs in PCa based on RNA sequencing and 

clinical data. After screening using interaction and 

survival analysis, SNRPA1 was identified as a 

significant hub gene related to the prognosis of PCa. 

Finally, the expression and prognostic profiles were 

evaluated with clinical traits and well validated across 

multiple databases and molecular experiments. This is 

the first study to examine the role of RBPs in PCa. 

Therefore, our results provide novel information to 

improve our understanding of PCa development and 

prognosis. 

 

MATERIALS AND METHODS 
 

Data acquisition and processing 

 

Transcriptomic data via RNA sequencing of PCa  

were downloaded from TCGA database 

(https://portal.gdc.cancer.gov/), containing 498 tumor 

and 52 adjacent normal tissues as well as clinical 

information in May 2020. This database includes the 

mRNA expression profiles of 1472 RBPs, which were 

used in this research study [7]. Thereafter, differentially 

expressed RBP genes were calculated between tumor 

and normal tissues by “Limma” package [40] in R 

software (Version 3.6.2). Differentially expressed genes 

(DEGs) with thresholds of |log2FC| > 0.5 and adjusted p 

value < 0.0001 were selected for further analysis. 

 

Functional enrichment analysis  
 

To reveal the biological functions of significant RBPs, 

GO, including molecular function, cellular component, 

and biological process, and KEGG pathway enrichment 

analyses were conducted by R package “clusterProfiler” 

[41] with thresholds of adjusted p value < 0.05 and q 

value < 0.05. The results were visualized using R 

package “GOplot” [42]. 
 

Screening of hub RBPs based on PPI network 
 

Significant RBPs were put into the STRING database 

(http://string-db.org) [43] to expound the interactions 

https://portal.gdc.cancer.gov/
http://string-db.org/
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between nodes. After disregarding disconnected nodes 

and screening using an interaction score > 0.4, selected 

RBPs were further visualized by constructing the 

protein-protein interaction (PPI) network using 

Cytoscape software (Version 3.7.1) [44]. RBPs with 

degrees ≥ 10 were identified as hub RBPs using the 

cytoHubba plug-in [45]. 

 

Prognostic analysis 

 

To identify the prognostic value of hub RBPs, log-rank 

tests and univariate Cox regressions were executed for 

survival analysis with clinical data from TCGA [46]. 

Hub RBPs with p values < 0.05 (in both methods) were 

regarded as prognosis-related candidate RBPs and 

included in the multivariate Cox model using stepwise 

regression. Finally, prognosis-related RBPs, with p 

values < 0.05, were identified. Thereafter, Kaplan–

Meier survival curves were plotted between survival 

status and different groups according to the medium 

value or optimal cut-off value for gene expression levels 

of prognosis-related RBPs. The primary endpoint was 

disease-free survival (DFS) and the secondary endpoint 

was the overall survival (OS). P values < 0.05 were 

regarded as statistical significance. 

 

Clinical significance in TCGA 

 

To validate the clinical correlation of prognostic RBPs, 

their expression profiles were compared between tumor 

and adjacent normal tissues. Additionally, the 

relationship between clinical information including 

Gleason score and TNM stage, and expression levels of 

prognostic RBPs were analyzed. The Wilcox test and 

Kruskal-Wallis test were used to make comparisons 

between two groups or multiple groups, respectively. P 

values < 0.05 were regarded as statistical significance.  

 

External validation across multiple databases 

 

To further verify the expression profiles of prognostic 

RBPs, we first used the Oncomine database 

(http://www.oncomine.com) [47] to compare the 

transcriptional expression between PCa and normal 

prostate gland tissues using the Student’s t-test. 

Thereafter, immunohistochemical data were obtained 

from the HPA database (https://www.proteinatlas.org/) 

[48] to compare the levels of protein encoded by genes. 

Immunohistochemistry results of tumor and normal 

tissues were detected by the same antibody. Another 

dataset, GSE70769 [49], including the clinical data of 

94 patients, obtained from the GEO database 

(https://www.ncbi.nlm.nih.gov/geo) was used to 
validate the predictive capability of prognostic RBPs 

with DFS as the endpoint. Finally, the CCLE database 

(http://www.broadinstitute.org/ccle/home) [50] was 

used to reveal the expression of prognosis-related RBPs 

in multiple solid tumors and PCa cell lines. 

 

GSEA analysis 

 

To explore the potential signaling pathways underlying 

the gene signature between different expression levels 

of prognostic RBPs, we conducted GSEA with the 

hallmark (“hallmark.all.symbols.gmt”) gene sets 

collection based on TCGA [51]. The nominal (NOM) p 

values < 0.05 and false discovery rate (FDR) q values < 

0.25 were regarded as statistical significance. 

 

Identification of SNRPA1 in molecular experiments  

 

The PCa cell lines CWR22Rv1 and C4–2b were cultured 

in RPMI1640 medium supplemented with 10% fetal 

bovine serum. Short hairpin RNAs (shRNAs), targeting 

SNRPA1 or the shRNA negative control, were transfected 

into CWR22Rv1 and C4–2b cells. Protein samples were 

extracted from patients with PCa and shRNA-transfected 

cells. After electrophoresis and incubation with primary 

antibodies against SNRPA1 (ab128937; Abcam,) and 

vinculin (#13901, Cell Signaling Technology) as well as 

secondary antibodies, the expression levels of target 

proteins were analyzed with an ECL kit and exposure 

system (Bio-Rad Laboratories). 

 

To reveal the role of SNRPA1 in PCa cells, a colony 

formation assay was conducted with CWR22Rv1 and 

C4–2b cells in 6-well plates. After 2 weeks, cell 

colonies were fixed with 4% paraformaldehyde, stained 

with 0.2% crystal violet, imaged using microscopy, and 

counted using ImageJ software. A scratch assay was 

performed by scratching straight lines with a 200-μm 

pipette tip into the monolayer of CWR22Rv1 and C4-2b 

cells, cultured in 6-well plates. After 48 hours, the cells 

were imaged using microscopy and the scratch widths 

were measured to determine the migration and invasion 

of cells. Finally, cell proliferation was measured by a 

cell counting kit-8 (C0037, Beyotime) according to the 

manufacturer's instructions, and assessed by measuring 

absorbance at 450 nm. 

 

Data analysis was conducted using ImageJ software 

(1.50i) and Statistical Package for Social Science (SPSS 

23.0). P values < 0.05 were regarded as statistically 

significant. Results were visualized as figures using 

GraphPad Prism 8.0. This study was approved by the 

Ethics Committee of Tongji Medical College, 

Huazhong University of Science and Technology. 
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PPI: protein-protein interaction; RBPs: RNA-binding 

proteins; shRNA: short hairpin RNAs; TCGA: The 

Cancer Genome Atlas. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. The expression profile of SNRPA1 in different tumors (A) and PCa cell lines (B) in CCLE. PCa = Prostate cancer;  

CCLE = Cancer Cell Line Encyclopedia. 
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Supplementary Table 
 

Supplementary Table 1. The results of univariate and multivariate Cox regression analyses between RBPs and DFS. 

 Univariate analysis  Multivariate analysis 

RBP HR (95%CI) p value  HR (95%CI) p value 

TRMU 1.113(1.001-1.239) 0.049    

DDX39B 1.072(1.034-1.112) < 0.001  1.067(1.028-1.107) < 0.001 

SNRPF 1.046(1.009-1.084) 0.015    

SNRPA1 1.187(1.079-1.310) < 0.001  1.158(1.041-1.287) 0.006 

SNRNP70 1.013(1.005-1.021) 0.001    

POLR2H 1.050(1.014-1.087) 0.007    

ESRP2 0.958(0.922-0.994) 0.024  0.962(0.927-0.999) 0.042 

RBPs: RNA-binding proteins; HR: hazard ratio; CI: confidential interval; DFS: disease-free survival. 

 


