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ABSTRACT

Motivation: Tissue heterogeneity, arising from multiple cell types, is
a major confounding factor in experiments that focus on studying
cell types, e.g. their expression profiles, in isolation. Although
sample heterogeneity can be addressed by manual microdissection,
prior to conducting experiments, computational treatment on
heterogeneous measurements have become a reliable alternative
to perform this microdissection in silico. Favoring computation over
manual purification has its advantages, such as time consumption,
measuring responses of multiple cell types simultaneously, keeping
samples intact of external perturbations and unaltered yield of
molecular content.
Results: We formalize a probabilistic model, DSection, and show
with simulations as well as with real microarray data that DSection
attains increased modeling accuracy in terms of (i) estimating cell-
type proportions of heterogeneous tissue samples, (ii) estimating
replication variance and (iii) identifying differential expression across
cell types under various experimental conditions. As our reference
we use the corresponding linear regression model, which mirrors the
performance of the majority of current non-probabilistic modeling
approaches.
Availability and Software: All codes are written in Matlab, and are
freely available upon request as well as at the project web page
http://www.cs.tut.fi/~erkkila2/. Furthermore, a web-application for
DSection exists at http://informatics.systemsbiology.net/DSection.
Contact: timo.p.erkkila@tut.fi; harri.lahdesmaki@tut.fi
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1 INTRODUCTION
For being able to fully utilize capabilities of high-throughput mea-
surement techniques that often have to deal with physically small
but also heterogeneous tissue samples, attention should be paid as
to how heterogeneity, the presence of multiple cell types in tissue,
is addressed. In many studies the focus of interest hovers around
identifying behavioral differences across cell types, and in such cases
sample heterogeneity clearly has a confounding effect on down-
stream experiments and analysis.

∗To whom correspondence should be addressed.

Although laser-capture microdissection (LCM; Emmert-Buck
et al., 1996) offers a direct way to address tissue heterogeneity by
allowing for isolation of morphologically distinguishable cell types,
there are occasions when it is not feasible. Yield of biological content
(e.g. mRNA) for conducting experiments becomes consequently
lowered, which often needs to be compensated for with either
more sensitive measurement devices or amplification of molecular
quantities (Sooriakumaran et al., 2009). However, amplification of
mRNA from small albeit pure cell samples has its shortcomings,
most notably nonlinearity (Otsuka et al., 2007), obscuring the
underlying profiles for distinct cell types.

Several authors have already studied performing computational
microdissection for heterogeneous tissues, and proposed promising
methods for microarray expression data. Initial attempts stem from
Venet et al. (2001), who proposed a linear model for estimating both
cell-type proportions and cell-type-specific gene expression profiles;
the model assumes that, as prior information, there exist known,
exclusively expressed genes for each cell-type. Subsequent studies
have then demonstrated that the linearity assumption and prior
information on either gene expression profiles, cell-type proportions,
or both, can yield meaningful interpretations for the constituents
of heterogeneous tissues (Abbas et al., 2009; Gosink et al., 2007;
Hoffmann et al., 2006; Jacobsen et al., 2006; Lähdesmäki et al.,
2005; Quon and Morris, 2009; Stuart et al., 2004).

In real experiments, conducted on the basis of heterogeneous
tissue samples, having precise prior information is unrealistic,
even though current models consistently rely on such information.
We incorporate this missing functionality into the already-familiar
linear regression framework through Bayesian prior densities
whose shapes reflect the uncertainties associated with the prior
information, such as cell-type proportions or cell-type-specific
expression profiles.

For all model parameters, an efficient Markov chain Monte
Carlo (MCMC) sampler is proposed. In addition to existing
microdissection models, we further assume that the heterogeneous
tissues have been measured under various experimental conditions,
having a possible impact on cell-type-specific expression profiles.
As cell-type-specific profiles are assumed to be different across both
cell types and experimental conditions, assessment of statistically
significant differential expression is performed with the two-sample
t-test, though other tests for differential expression can be used.

We use simulated and real gene expression data for assessing
the performance of the Bayesian model in contrast to a linear
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regression model that essentially captures properties common to
the aforementioned, deterministic approaches. A series of case
studies are used for demonstrating that the proposed method
is capable of (i) de-noising uncertain prior information about
cell-type proportions, (ii) more accurate estimation of replication
variance, consequently leading to (iii) more accurate identification of
differential expression across cell types and experimental conditions.

2 METHODS

2.1 Experimental design
We denote the tissue sample index with j and assume that there are J tissue
samples in total. The number of cell types represented in the J samples needs
to be known, and it is crucial that each of the J samples have the same cell
types represented. We denote the cell type index by t and assume that there
are T cell types in total. Lastly, we denote the number of probes (a generic
term, e.g. a gene or miRNA) in an experiment by I so that the modeled data,
which we denote by D, consists of I ∗J probe measurements,1 yij , one for
each probe i and tissue sample j.

In the simplest form this is all that is required. In addition, samples
are often prepared under various experimental conditions, say, under ‘No
treatment’, ‘Treatment 1’, ‘Treatment 2’, etc. and the analysis may be
focused on finding differences in probe measurements across experimental
conditions. Therefore, we incorporate the condition information into the
model with variable c(j) that takes on values 1,2,...,C, being linked to
the C different experimental conditions. For instance, if tissue samples 2
and 4 were measured under experimental condition ‘No treatment’, that
information could be encoded by assigning c(2)=c(4)=1; thus, condition
‘No treatment’ would be associated with index 1, and so on.

2.2 Data likelihood
For tissue sample j under experimental condition c(j), the data point for probe
i, yij , is modeled as a sum of pure probe readings of all cell types, xic(j) =
(x1ic(j),x2ic(j),...,xTic(j)), weighted by the respective cell type proportions,
pj = (p1j,p2j,...,pTj), plus an additive, normally distributed noise term, εij ,
reflecting replication noise with variance 1/λi:

yij =
T∑

t=1

ptjxtic(j) +εij, (1)

so that the likelihood of data point yij ∈D becomes yij|pj,xi,λi ∼
Normal(

∑T
t=1 ptjxtic(j),1/λi). Thus, we model the replication variance, 1/λi,

as heteroscedastic across probes and homoscedastic across cell types and
experimental conditions. Assuming independent and identically distributed
(IID) measurements (elements in D), a factorized form for the joint data
likelihood can then be written as f (D|θ )=∏I

i=1
∏J

j=1 f (yij|pj,xi,λi), where
θ is a collection of all model parameters, i.e. ptj’s, xtic’s, and λi’s. The
assumptions of additive, normally distributed noise and IID measurements
is standard practice, although there is statistical evidence that at least the IID
assumption may not always be valid (Efron, 2009).

2.3 Prior specifications
The model is next extended to account for parameter priors, so that the
posterior distribution of all unknown model parameters required for sampling
could be formulated. The prior assignments are done in a way that allows for
easy sampling, and the shapes of the prior distributions are chosen to reflect
the assumed variability of parameters.

1Data in linear form is preferred as modeling assumptions may otherwise
become violated; see Section 4 for further discussion.

We impose a normal prior xtic ∼N(µtic,ν) for the cell type and condition-
specific probe measurement i, where the prior expression means and
precision, µtic and ν, are extracted from the least-squares solution to the
corresponding linear regression model assuming cell-type proportions known
(see Supplementary Material for details). Normality is preferred so as to
make use of the property of conjugate priors (posterior for xtic will be a
normal density, given that the prior and likelihood densities are also normal).
Furthermore, a shared Gamma prior, Gamma(α,β), is placed on the inverses
of replication variances, i.e. precisions, λ1,...,λi,...,λI . Positive support and
flexibility of Gamma(·,·) make it useful in modeling precision parameters
in a Bayesian framework (Gelman, 2006). Furthermore, the shared prior
shrinks posterior estimates of λi’s toward their common prior mean, α/β,
regularizing estimates especially when dealing with small sample sizes
(Smyth, 2004).

The mixing proportions for tissue sample j, pj = (p1j,...,pTj), are limited
to a T -simplex; all elements in pj’s are non-negative and, vector-wise,
sum up to one. A natural prior density for such vectors is the Dirichlet
density, which we parameterize with w0 and p0j as pj ∼Dirichlet(w0p0j).
The parametrization is done in a way that allows for prior knowledge on
ptj’s to be plugged into the model in a straightforward manner. Namely,
we assume that a user has obtained prior information on the cell-type
proportion in the J samples (e.g. by looking at the histology slides of
the samples and making rough estimates or in an automated manner using
digital microscopy images of the samples, or with flow cytometry, etc.),
and these prior proportions are stored in p0j . Moreover, the belief of the
correctness of prior proportions is specified by the multiplicative weight
w0. This way the user can tune the peakedness of the prior density around
the prior guess, p0j ; increasing w0 increases the peakedness and vice versa.
For compactness, we encapsulate the aforementioned parameters in a vector
ξ = (α,β,µ111,...,µTIC,w0,p01,...,p0J ).

2.4 Posterior sampling
Unknown parameters, i.e. θ , in our model are estimated in an MCMC
fashion, which means we first must devise a sampling scheme under which
samples from the posterior density of our parameters, given data and fixed
parameters, f (θ |D,ξ )∝ f (D|θ )f (θ |ξ ), are drawn. Assuming S samples drawn
from the posterior, the samples are subsequently used for summarization,
i.e. approximating the expected value of the parameters with Monte Carlo
integration (Gelman et al., 2004), E[θ |D,ξ ]≈1/S

∑S
s=1θ (s). Gibbs sampling

(Gelman et al., 2004) is one such sampling method, employing the idea of
drawing a value from a conditional posterior for the respective parameters
one at a time, while conditioning on all other model parameters, being set to
previously sampled values, and data.

Next, we will construct a hybrid Gibbs and Metropolis–Hastings (M–H)
sampler for all the model parameters; detailed derivations are shown in the
Supplementary Material. The posterior for xtic is

xtic|·∼Normal

(
Ptic

Qtic
,

1

Qtic

)
, (2)

where the parameters of that distribution are Ptic =
λi

∑
j:c(j)=c (yijptj −ptj

∑
t′ �=t pt′jxt′ic)+νµtic and Qtic =λi

∑
j:c(j)=c p2

tj +ν. In
a similar fashion, one finds the posterior for λi to be

λi|·∼Gamma

⎛
⎝α+ J

2
,β+ 1

2

J∑
j=1

e2
ij

⎞
⎠, (3)

where eij is the model residual eij =yij −∑T
t=1 ptjxtic(j). However, one cannot

find such a density for the cell-type proportions since the normalizing
constant for that posterior is computationally infeasible to solve. Thus, we
cannot proceed with Gibbs sampling in this particular case but make use of
M–H sampling (Gelman et al., 2004) instead; Gibbs sampling is a special
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case of M–H, thus, both Gibbs and M–H sampling can be utilized in the
same framework (Andrieu et al., 2003).

For employing M–H sampling, one needs an un-normalized posterior of
pj and a transition kernel. The un-normalized posterior is

f (pj|·)∝exp

{
− 1

2

I∑
i=1

λie
2
ij +sj

}
, (4)

where eij is, again, the model residual and sj =∑T
t=1 (w0p0tj −1)ln(ptj).

Dirichlet density as the transition kernel for M–H works well in our case
since the sampler for the posterior of pj must stay within the T -simplex,
as previously explained. Now, if the previous value in the Markov chain
is denoted by p∗

j , a proposal value, denoted by pj , will be drawn from
Dirichlet(wp∗

j ), and the corresponding kernel, i.e. Dirichlet density function,
is denoted by K(p∗

j →pj). The role of w is analogous to that of w0, as w is
used to control the peakedness of the transition kernel around the previously
sampled value, p∗

j . The acceptance of the proposed, newly sampled value
then depends on the factor

ρj(p∗
j →pj)=

f (pj|·)K(p∗
j →pj)

f (p∗
j |·)K(pj →p∗

j )
, (5)

and the probability of acceptance is determined by P[accept]=
min{1,ρj(p∗

j →pj)}.

3 RESULTS
In computing the forthcoming results with DSection, we used
the following values for controlling parameters of our model.
Namely, we set peakedness around prior cell-type proportions
to w0 =10, peakedness of transition kernel to w=100, burn-
in period to B=2000 iterations, and chain length to S =500
iterations. Along sampling, we also computed and visualized
estimates of autocovariance functions of the sampled parameters,
which indicated that our choice for the chain length was reasonable,
i.e. covariance diminished relatively rapidly as lag was increased
(data not shown) (Cowles and Carlin, 1996; Rasmussen, 2000).

3.1 Simulation
In order to demonstrate full functionality of DSection, we designed
a simulation experiment containing both multiple cell types and
experimental conditions; an analysis of simpler, real data will
follow. Expression profiles of 700 genes of three cell types under
two experimental conditions were created. The expressions, xtic,
were chosen so that there existed probes for which expression
profiles were either identical across cell types and conditions,
differed only across cell types, differed only across conditions,
or both, and expressions were set to vary within the range
100...1600; thus, the theoretically maximum, achievable fold-
change is log2(1600/100)=4. Next, for each gene, a precision,
λi, was drawn from Gamma(5,1/0.0003) (mean precision 0.0015);
justification for using the Gamma density is the same as with prior
densities. In total, 14 samples, 7 per experimental condition, were
created and normally distributed noise with variance 1/λi was added.

Performance of the models is assessed on the basis of their ability
to identify differential expression across cell types and experimental
conditions—that is, probe i may be differentially expressed across
some cell types and experimental conditions, at most in

(6
2
)=15

different ways, which are tested separately with the two-sample t-test
(see Supplementary Material for more details).

The data are analyzed with the two models, linear regression
and DSection, where the latter is utilized both with fixed cell-type

proportions and by sampling from posterior of cell-type proportions.
Simulation results (Fig. 1) show an increase in identification
accuracy of differential expression for DSection, in contrast to
our reference, the linear regression model. Thus, the analysis
results indicate that our method with uncertainty in proportions
incorporated actually attains an accuracy comparable with the ‘best-
case’ scenario, i.e. cell-type proportions are known precisely and a
linear regression model is used.

The methods differ mostly in estimation of replication variance,
1/λi.Actually the discrepancy between ground-truth and estimates is
sometimes so high that we visualize replication standard deviation
(SD),

√
1/λi, instead. As the visuals suggest, only those models

assuming fixed and precisely known cell-type proportions suffer
from these high biases (Fig. 1c–e), whereas for DSection, which
assumes noisy cell-type proportion priors, this bias is absent
(Fig. 1f). Importantly, the bias is most strongly present in probes
for which differential expression across cell types and experimental
conditions is high; to elucidate this, we labeled each SD estimate
with a color, and the intensity of that color increased along with
average differential expression.

3.2 Affymetrix data
Next, we analyzed a publicly available dataset from Affymetrix
oligonucleotide arrays [data downloaded from Affymetrix (2009)],
consisting of over 15000 genes whose heterogeneous expressions
comprising of human brain and heart cells were summarized using
robust multi-array averaging (RMA) procedure (Irizarry et al.,
2003). There are 33 samples in the dataset in total, each sample being
designed to contain specific proportions of the distinct cell types.
Table 1 contains all the samples provided within the Affymetrix
dataset, but we only use those that contain cell types with ratio
25% : 75% and vice versa. Other samples—especially the ones with
pure samples that we used for reference—were discarded from the
analysis, for better reflecting the scarcity of repeated measurements
and heterogeneity within samples, which is usually the case.
Moreover, we use the procedure described in the Supplementary
Material for deriving noisy estimates for cell-type proportions, in
turn reflecting inaccurate prior proportion predictions.

Although no ground-truth for replication variances of Affymetrix
data truly exists, we can exploit the samples for each mixture
experiment to at least derive good estimates (see Supplementary
Material for details). Using these derived ground-truth estimates,
Figure 2 shows, again, a similar bias pattern to what is observable
with simulated data (Fig. 1). Bias in SD estimation accuracy for
most highly differentially expressed genes is visible for the linear
regression model that assumes fixed cell-type proportions, whereas
DSection, which accounts for noisy cell-type proportion priors,
reduces such biases.

Moreover, no ground-truth for truly differentially and non-
differentially expressed genes exist for Affymetrix data. However,
as we have samples representing pure cell types, they can be derived
as well (see Supplementary Material for details). As can be seen in
Figure 2b, the receiver operating characteristic (ROC) curves clearly
have a similar pattern to what we observed with simulated data.
DSection not only outperforms the linear regression model in terms
of ROC, but also the performance of DSection is comparable with
the ‘best-case’, which we computed by plugging the true cell-type
proportions into the linear regression model, as described earlier.
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Analysis results with simulated data—3 cell types, 2 experimental conditions, 700 genes and 14 samples (seven for each experimental condition). (a)
Estimation of cell-type proportions (bright spots), given noisy priors (faint spots). (b) ROC curves of the compared methods (solid lines). As a reference, best
performance, obtained by plugging the true cell-type proportions into the linear regression model and performing the analysis, along with the worst performance
(diagonal in ROC plots) are visualized as dashed lines. (c) Estimation of measurement SD (given as

√
1/λi). Estimation of measurement SD for (d) The linear

regression model with fixed cell-type proportions, (e) DSection with fixed cell-type proportions and (f) DSection with varying cell-type proportions, where
estimates are colored depending on true, average differential expressions of probes—higher color intensity means higher average differential expression.
Clearly, SD estimation accuracy for highly differentially expressed genes is poor when uncertainty in cell-type proportions are not properly accounted for [(d)
and (e) versus (f)].

Table 1. Known cell-type proportions for each sample in Affymetrix data

Sample (j) 1−3 4−6 7−9 10−12 13−21 22−24 25−27 28−30 31−33
Brain (p1j) 0.00 0.05 0.10 0.25 0.50 0.75 0.90 0.95 1.00
Heart (p2j) 1.00 0.95 0.90 0.75 0.50 0.25 0.10 0.05 0.00

For each mixing experiment (one column of the table), a triplet of measurements have been conducted except for samples 13–21, which all have 50%/50% mixing ratio. Samples
10–12 and 22–24 were used for estimating cell-type-specific gene expression profiles, and the expression estimates were then compared with the pure cell-type-specific gene
expressions (samples 1–3 and 31–33). Furthermore, we included samples 7–9 and 25–27 when testing how increasing the number of heterogeneous samples for analysis with
DSection affects the model performance.

3.2.1 Increasing sample size Additionally, we assessed the effect
an increase in sample size has on both cell-type proportion
estimation and expression profiling. In addition to the six samples
(25%/75% and vice versa) we already used in the previous case
study, we augment that data by the ones which contain cell types
with ratio 10%/90% and vice versa—that is, 6 more samples making
12 samples in total.

The assessment of improvement was made in the following
manner. The six samples of 25%/75% etc. purity were augmented by
(i) a subset of 0,1,...,6 samples of 10%/90%, etc. purity, (ii) noise
was added to the ground-truth cell-type proportions of the selected
samples with the previously used method, (iii) linear regression
model and DSection was fitted to the data and (iv) this was repeated
10 times.

For each iteration, mean absolute differences (MAD) between
the estimates and ground-truth cell-type proportions and expression
profiles were computed, followed by computing a sample mean over
the 10 iterations. MAD was preferred as it essentially captures both
bias and variance into single quantity. As we increased the number
of samples from 6 to 12, MAD was consistently lower for DSection
than that for the noisy estimates of cell-type proportions (those used
directly with the linear regression model) (Fig. 3).Adecreasing trend
for MAD is observable while more samples were added, however,
that is due to our way of adding noise to cell-type proportions.
Namely, the closer the true cell-type proportions are to 1/T , i.e.
as heterogeneous sample as possible, the more noise is added. And
since the augmented samples were less heterogeneous in contrast
to 25%/75% ones, increasing sample size in turn decreased the
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Fig. 2. Analysis results with Affymetrix data—2 cell types, 1 experimental condition, ∼15000 genes and 6 samples (25%/75% and vice versa). (a) Estimation
of cell-type proportions (bright spots), given noisy priors (faint spots). (b) ROC curves of the compared methods. Estimation of measurement STD for (c) The
linear regression model with fixed cell-type proportions and (d) DSection with varying cell-type proportions, where estimates are colored depending on true,
average differential expressions of probes. Again, as with simulated data, STD estimation accuracy for highly differentially expressed genes is poor when
uncertainty in cell type proportions are not properly accounted for [(c) versus (d)].

average MAD of noisy cell-type proportions, in turn decreasing the
MAD of DSection estimates. We did not observe any significant
difference of MAD for expression profiling between the two models
(data not shown), indicating that DSection relies heavily upon the
priors derived using the deterministic linear regression counterpart.

4 DISCUSSION
Previous studies, including this, have almost exclusively been
considering microarray gene expression data. However, due to
recent revolutionizing improvements in sequencing techniques,
gene expression measurements by sequencing, or RNA-seq (Wang
et al., 2009; Wilhelm and Landry, 2009), has become a serious
competitor to standard probe-based microarray alternatives, not
only due to increased genome coverage offered by RNA-seq,
but also due to increased measurement reproducibility (Marioni
et al., 2008). Although data preprocessing and normalization steps

between microarray and RNA-seq data are different, there are no
fundamental factors that would directly make current modeling
approaches obsolete. In fact, since a strong linear relationship
between RNA concentrations and sequence reads has been reported
(Mortazavi et al., 2008), in contrast to not-so-linear microarrays
(Quackenbush, 2002), one would expect the modeling transition
from array-based analysis to RNA-seq to be rather effortless for
any model, including ours.

We propose a framework under which measurements, arising from
heterogeneous tissues, can be analyzed without having to rely upon
manual—and possibly time consuming—sample preprocessing
steps such as LCM. Instead, DSection assumes that measurements
contain profiles of all cell types of interest with varying proportions
in the tissue samples. Furthermore, as without constraints this task
would contain no unique solution for expression profiles and cell-
type proportions, uncertain information is assumed to be available
on the cell-type proportions. In realistic situations where information
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Fig. 3. MAD for cell-type proportion estimates (referenced against the
ground-truth). MAD for the linear regression model basically stands for the
baseline, i.e. cell-type proportion estimation was not supported by the model,
and anything below that (black bars) is considered as improvement. In terms
of MAD, DSection (gray bars) is able to recover true cell-type proportions
under noisy estimates.

about cell-type proportions is extracted on the basis of, say,
microscopy or flow cytometry, it is evident that such estimates are
prone to inaccuracy. We showed that, under the Bayesian framework,
not only the passing of uncertain information to our model is
straightforward due to the notion of prior information, but also that
our model is capable of ‘de-noising’ that uncertain information, thus
resulting in more accurate overall modeling performance in contrast
to traditional models without this functionality implemented.

The extraction of information about cell-type proportions was not
addressed in this article, although it is a crucial part required to make
the model work as intended. In real experiments, i.e. those including
real tissue samples with unknown cell-type proportions, as opposed
to data we used, such precise information as cell-type proportions
does not exist. However, as our results suggest, prior information
about the proportions of different cell types can be exploited in
modeling even though the estimates of proportions would include
uncertainty. Thus, including image-based prior estimation could
provide a valuable addition into the current analysis framework,
but in order to be useful the image analysis needs to be done in
an automated manner. Numerous tissue image analysis methods
have been presented in the literature, such as those in Kleiner et al.
(2009); Newberg and Murphy (2008) and Strömberg et al. (2007),
and incorporating similar methods as a part of the analysis pipeline
is one of our main objectives.

Imposing w0 =10 results in a lightly concentrated density surface
around the prior cell-type proportions, p0j , which along with
the results suggest that having strong prior information, at least
on cell-type proportions, is not required. However, constraining
model parameters albeit vaguely is required as the model would
otherwise become unidentifiable. If proportions for some cell types
are missing, due to morphological indistinguishability, for instance,
one could consider pooling those cell types together and model
them as one; this approximation would be accurate only in cases
where pooled cell types share similar expression profiles. On the

other hand, if the precise value for T is debatable but now cell-
type proportions for different values of T existed, cross-validation,
reversible-jump MCMC (Green, 1995), etc., for determining most
suitable T could be utilized.

Although the assumed linearity may not strictly hold for some or
even most of the genes being considered, it is still expected that such
a linear model can, to some extent, capture nearly linear responses
with sufficient accuracy (Hoffmann et al., 2006). In fact, during
parameter estimation, we usedAffymetrix data with and without log-
transform (results shown here are for non-log data) with comparable
accuracy in terms of ROC, suggesting that the linearity assumption
indeed is fairly robust. Furthermore, Gaussian processes (Rasmussen
and Williams, 2006) are currently under investigation as part of
incorporating nonlinear responses into the model.
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