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Abstract
Terminology is the most basic information that researchers and literature analysis systems need to understand. Mining

terms and revealing the semantic relationships between terms can help biomedical researchers find solutions to some major

health problems and motivate researchers to explore innovative biomedical research issues. However, how to mine terms

from biomedical literature remains a challenge. At present, the research on text segmentation in natural language pro-

cessing (NLP) technology has not been well applied in the biomedical field. Named entity recognition models usually

require a large amount of training corpus, and the types of entities that the model can recognize are limited. Besides,

dictionary-based methods mainly use pre-established vocabularies to match the text. However, this method can only match

terms in a specific field, and the process of collecting terms is time-consuming and labour-intensive. Many scenarios faced

in the field of biomedical research are unsupervised, i.e. unlabelled corpora, and the system may not have much prior

knowledge. This paper proposes the TermInformer project, which aims to mine the meaning of terms in an open fashion by

calculating terms and find solutions to some of the significant problems in our society. We propose an unsupervised method

that can automatically mine terms in the text without relying on external resources. Our method can generally be applied to

any document data. Combined with the word vector training algorithm, we can obtain reusable term embeddings, which

can be used in any NLP downstream application. This paper compares term embeddings with existing word embeddings.

The results show that our method can better reflect the semantic relationship between terms. Finally, we use the proposed

method to find potential factors and treatments for lung cancer, breast cancer, and coronavirus.
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1 Introduction

Term mining aims to mine terms from unstructured docu-

ments. Terminology is usually composed of multiple words

and describes concepts in a particular domain that forms

the basis of the domain. Unsupervised term mining aims to

use automated algorithms to mine terms in the literature

without relying on external resources and human inter-

vention. Therefore, the method has a wide range of appli-

cations and can be used to process text data in any field.

Existing research usually uses dictionary-based methods

and supervised machine learning methods to mine terms in

the literature. However, the dictionary-based method’s

limitation is that the method can only match terms in a

specific field, and terms in the vocabulary are often dif-

ferent from expressions in the literature. For example, there

are more than 5 ways in the literature to mention the dis-

ease ‘‘ischemic stroke’’. Terms in the literature contain

many variants, so dictionary-based methods require con-

stant vocabulary maintenance, which is costly and time-

consuming.

The named entity recognition method has achieved good

results in terms of recognition. However, the named entity

recognition model requires a large number of labelled

corpora for training and can only identify predefined types

of terms, which is not suitable for this open term mining

problem. Corpus annotation in the biomedical field is very

challenging because of the high requirements for the

knowledge background of the annotators, and the labelling

process relies heavily on the knowledge of domain experts

and annotation standards. Therefore, the method of man-

ually labelling the term corpus for named entity recognition

is very time-consuming and costly. In addition, using deep

learning models to identify terms can also lead to increased

computation costs. Based on these problems, this paper

proposes an unsupervised term mining method. This

method can automatically mine terms from the literature

without the need to annotate the corpus manually, so it can

work with word embedding training algorithms to produce

term-level embeddings, not just word embeddings. We

propose a multi-length term mining algorithm. Using this

algorithm, we can fully mine terms from the text without

requiring any external resources.

Existing term representation methods usually represent a

term by average word embeddings [1]. However, this

method cannot obtain the semantics of the term. This

method only represents the term by each compound word.

There are essential differences between terms and words,

so this poses a limitation of term research. Faced with this

problem, we apply the proposed method to train term

embeddings. Based on the existing word embedding algo-

rithm GloVe [2], we trained the mined terms and found that

the term representation can better represent the semantic

relationship between terms. To evaluate the performance of

the method, we created two datasets of different sizes. We

compared the term representation composed of the original

word embeddings with the term representation obtained

based on our method. We observe that our method

improves the representation of terms, can better charac-

terize the relationships between terms, and better calculate

the similarity between terms. This method can potentially

be applied to any biomedical text mining system. The

proposed method can also be used to build a term corre-

lation graph. Finally, we explore the factors and treatments

for lung and breast cancer using the proposed method. The

results show that our method can find some key informa-

tion for these diseases from the literature.

1.1 Contribution

The main contributions of this paper can be summarized

below:

1. We propose an unsupervised term mining algorithm.

The proposed method can be applied to any biomedical

corpus, and the process can mine terms without manual

annotation and can be used with word embedding

training algorithms, which may become a scheme for

solving term representation problems.

2. The proposed method improves the existing term

representation based on word embeddings, and the

obtained term embeddings can better characterize the

relationship between terms.

3. This paper creates two-term mining datasets to eval-

uate the performance of the method.

1.2 Organization

The rest of the paper is organized as follows. Related works

are discussed in Sect. 2. Section 3 describes the method

proposed in this paper, followed by the proposed algorithm.

Experiment results are explained in Sect. 4 consisting of

experimental results, including dataset description, evalu-

ation metric, analysis of term similarity, analysis of term

relationship. Finally, we discuss the conclusion and pos-

sible future work in Sect. 5.

2 Related work

Named entity recognition models are widely used for rec-

ognizing biomedical terms. Settles et al. [3] use conditional

random fields (CRF) [4] to recognize the gene and protein

mentions in biomedical abstracts. Leaman et al. [5] pro-

pose the BANNER framework to recognize biomedical
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entities, which aims to improve the generalization ability

for this task. Habibi et al. [6] use the LSTM-CRF model to

recognize genes, chemicals, and diseases mentions. Tang

et al. [7] study three different types of word representation

methods and analyze their performance for biomedical

NER on JNLPBA and BioCreAtIvE II BNER tasks. Yao

et al. [8] propose a deep learning model that consists of

multiple CNN layers and achieves improvement on the

GENIA dataset. Wang et al. [9, 10] propose a multitask

learning approach to recognize biomedical entities by using

training data collectively consisting of distinct types of

entities. Yoon et al. [11] propose CollaboNet to resolve the

issue due to lack of data and entity-type misclassification

by using the integration of multiple NER frameworks. Cho

et al. [12] use BiLSTM and CRF to propose contextual

LSTM networks with CRF to capture all the contextual

information.

Lafferty et al. [13] use conditional random fields (CRF)

to build probabilistic models for sequence labelling prob-

lem. Nadeau et al. [14] investigate the feature engineering-

based NER models and systems. Collobert et al. [15] use

CNN to solve may NLP tasks. Lample et al. [16] adopt

LSTM-CRF to solve the sequence labelling problem. Chiu

et al. [17] propose to use bidirectional LSTM-CNNs to

resolve the sequence labelling problem. Ma et al. [18] use

lstm-cnns-crf model to recognize entities. Akbik et al. [19]

propose to use character-level language modelling to

improve performance.

Pre-trained language models, such as ELMo [20] and

BERT [21], have also been applied in the clinical NLP

field. Beltagy et al. [22] train the SciBERT to enhance

downstream NLP tasks. Alsentzer et al. [23] train the

BERT model based on both clinical notes and discharge

summaries. Lee et al. [24] proposed BioBERT, a model

that retrains BERT on PubMed and PMC corpora, which

can improve the results of downstream BioBLP tasks.

These studies focus on word-level representations without

considering the term representation. Context-dependent

representations make the same word have different repre-

sentations in different sentences. However, this paper aims

to obtain context-independent representations, so we do not

adopt these methods.

3 Methods

3.1 Multi-length term mining algorithm

This section explains this algorithm. After statistical anal-

ysis, we found that terms composed of 2, 3, 4, and 5 words

are the more common, so we mainly mine terms of the

above length. Word vectors can directly represent terms

with only one word. The input of the algorithm is the

original text, and the output is the mined terms. We do not

need to use any external resources to apply it to any corpus

in this process. We first perform word segmentation and

part-of-speech tagging on the original text and then mine

the terms.

As shown in Algorithm 1, the first line of the algorithm

is mainly to initialize 4 dictionaries for storing terms of

different lengths and input the corpora. The method then

starts processing each sample, that is, each article. The

fourth line performs word segmentation for these articles.

Word segmentation is to divide these articles into a

sequence of words and identify the punctuations, which can

prevent the words and punctuations from being connected,

resulting in an irregular vocabulary and inaccurate words.

Algorithm 1 Multi-length term mining algorithm
Require: The corpus D
Ensure: The mined terms
1: Initialize dictionary d2, d3, d4, d5 and corpus D
2: Initialize the word segmentation and pos tagging modules
3: for i ← 0, D.length − 1 do
4: tokens = Tokenize(D[i])
5: pos = POSTagging(D[i])
6: Extract(tokens,pos,d2,2)
7: Extract(tokens,pos,d3,3)
8: Extract(tokens,pos,d4,4)
9: Extract(tokens,pos,d5,5)
10: end for
11: return d2, d3, d4, d5

The fifth line is mainly used for part-of-speech (POS)

tagging of words. We adopt the LSTM-CRF neural net-

work for POS tagging. The detailed mechanism of this

model will be introduced in Sect. 3.2. The POS features

help in improving the term mining in the algorithm. Lines 6

to 9 are used to mine terms of different lengths. We mainly

focus on terms composed of 2, 3, 4, and 5 words.

The term extraction algorithm is described in Algorithm

2. The second line splits the input word sequence into

phrases of a certain length. The third line is to extract the

POS tags of the phrase from the recognized POS tag

sequence. Inline 4, this algorithm matches the POS of the

target phrase with our predefined rule. This rule considers

the extraction of medical terms where the first two words

are adjective, and noun, respectively, and the last term is

also a noun. If the phrase matches successfully, the phrase

will be treated as a potential term and added to the dic-

tionary. Then, this algorithm counts how often the term

appears. If the term has appeared in the dictionary, increase

the term frequency by 1. If the term does not appear in the

dictionary, the term has a frequency of 1. The purpose of

counting term frequency is to extract meaningful terms. By

setting thresholds, we have the flexibility to mine a certain

number of terms. Terms are often repeated in the literature,

and if a phrase appears only once, we do not consider it as a
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term. If we set a higher threshold, it means that we can get

more confident terms, which also demonstrates that these

terms are more common.

Algorithm 2 Term extraction function
Require: word segmentation tokens, POS tags pos, Term

dictionary dict, term length leng
Ensure: The updated dictionary
1: for i ← 0, tokens.length − 1 do
2: term = tokens[i:i+leng]
3: tag = pos[i:i+leng]
4: if matched(tag) then
5: if term in dict then
6: dict[term]++
7: else
8: dict[term]=1
9: end if
10: end if
11: end for

In the following, we briefly discuss the asymptotic

complexity of our approach. The algorithm describes the

processing of a large number of samples, where the number

of samples is related to the corpus’s size. Therefore, we

analyze the term mining process for only one sample. The

algorithm first performs word segmentation and then per-

forms part-of-speech tagging and then calls Algorithm 2.

Since the complexity of Algorithm 2 is OðnÞ, the com-

plexity of Algorithm 1 mainly depends on the two steps of

word segmentation and part-of-speech tagging. Therefore,

our algorithm is approximately equal to the complexity of

segmentation and part-of-speech tagging. The proposed

method does not significantly increase computational costs.

3.2 LSTM-CRF

This subsection introduces the LSTM-CRF sequence

labelling model for POS tagging, as shown in Fig. 1. This

model does not depend on feature engineering; instead, it

adopts the words and characters as input. This design can

increase the generality for processing any dataset. Then,

textual input is projected to the word embeddings, which is

a way to encode the prior knowledge of semantics into a

dense vector representation [25–27].

3.2.1 Long short-term memory

The long short-term memory (LSTM) network is a kind of

recurrent neural network (RNN). It uses the LSTM unit

[28] to solve the exploding and vanishing gradient prob-

lems encountered in the traditional RNNs. The formula-

tions of LSTM unit are as follows.

it ¼ rðWiht�1 þ Uixt þ biÞ ð1Þ

ft ¼ rðWfht�1 þ Uf xt þ bf Þ ð2Þ

~ct ¼ tanhðWcht�1 þ Ucxt þ bcÞ ð3Þ

ct ¼ ft � ct�1 þ it � ~ct ð4Þ

ot ¼ rðWoht�1 þ Uoxt þ boÞ ð5Þ

ht ¼ ot � tanhðctÞ ð6Þ

where rð�Þ is a sigmoid activation function. xt represents

the input vector at time step t, and ht denotes the hidden

state containing the context information in the former time

Fig. 1 LSTM-CRF network overview
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steps. W and b are weight and bias parameters. it, ft, ct and

ot are the input gate vector, forget gate vector, cell state,

and output gate vector, respectively. However, the hidden

state in a forward LSTM can only capture the context

information in the left side of current step [13, 16, 18].

Bidirectional LSTM (Bi-LSTM) has an operation to

reverse the order of input sequence and concatenate the

hidden state in each time step, which can capture the

context information from the left and right side of the

current step.

3.2.2 Conditional random field

The conditional random field (CRF) layer performs the

label sequence prediction [16, 18]. This model can be more

effective than classifying each word independently because

the word label is determined not only by itself but also by

the context.

pðyjz;W ; bÞ ¼
Qn

i¼1 expðWT
yi�1yi

zi þ byi�1yiÞP
y02YðzÞ

Qn
i¼1 expðWT

y0
i�1

y0i
zi þ by0

i�1
y0i
Þ ð7Þ

LðW ; bÞ ¼
X

i

log pðyjz;W ; bÞ ð8Þ

y� ¼ arg max
y2YðzÞ

pðyjz;W ; bÞ ð9Þ

where f½zi; yi�g; i ¼ 1; 2:::n denotes a set of words z with a

label sequence y. W and b are weight and bias parameters.

p(y|z; W, b) is the probability of label sequence y over all

possible sequences Y(z) on the input z. In training stage, the

objective is to maximize the log-likelihood L(W, b). In

prediction, the decoder will find the optimal label sequence

as Eq. 9 by Viterbi algorithm [29].

3.3 Term embedding

Word vector approaches aim to project a large vector

space of words into a much lower-dimensional space and

generate dense representations. It has made significant

contributions to enhance various NLP techniques and has

been widely used in various downstream NLP tasks like

sentiment analysis, document classification, etc., to

achieve improved results. The word representations are

computable and have actively promoted the development

of deep learning NLP. Existing word vector training

methods mainly embed words into a fixed-length vector,

but cannot be directly used to learn term vector in sen-

tences. For terms, the word embeddings are not enough

to represent the overall meaning of the term. Existing

methods have limitations on the problem of term

representation.

Existing methods usually use average or max pooling of

all word vectors to represent a multi-word term. The

problem is that the term representation obtained by this

method will make the term most similar to each composed

word. This method cannot reflect the relationship between

different terms, but only the relationship between words

contained in the term. This method belongs to a word-level

learning method and cannot be used in the term level.

Based on the above problems, we use the multi-length term

mining algorithm proposed in Sect. 3.1 together with the

word vector learning algorithm to fundamentally alleviate

the problem of term representation and learn term

embeddings. We use the GloVe algorithm to train term

embeddings. However, the major difference is that our

vocabulary consists of terms mined using the algorithms

described above. This enables the GloVe algorithm to learn

vectors for terms rather than individual words. For exam-

ple, it will learn one single vector for the compound term

‘‘lung cancer’’. GloVe will learn vectors for the two terms

‘‘lung’’ and ‘‘cancer’’, and then one has to average them to

obtain the vector for ‘‘lung cancer’’. The training objective

for GloVe embeddings is shown in equation (10).

J ¼
XV

i;j¼1

f ðXi;jÞðwT
i ~wj þ bi þ ~bj � logXijÞ2 ð10Þ

where Xij represents the co-occurrence frequency of the

wordi and wordj. wi and wj denote vector representations of

the wordi and wordj, respectively. bi and bj are the bias

value for the wordi and wordj, respectively. f ðXi;jÞ is the

weighting factor defined in equation (11).

f ðxÞ ¼
ðx=xmaxÞa; if x\xmax

1; otherwise

�

ð11Þ

where xmax and a are hyperparameters. These two param-

eters are set to xmax ¼ 100 and a ¼ 0:75.

4 Results

In this section, we conduct experiments on two datasets.

We first introduce the datasets, evaluation methods. Then,

we compare the mined term-based embeddings with the

word embedding-based method. Finally, we analyze the

experimental results.

Table 1 Number of terms mined on different datasets

Term length 2 words 3 words 4 words 5 words Total

PubMed-10K 34,362 7304 1090 129 42,885

PubMed-100K 268,890 72,612 11,267 1,545 354,314
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4.1 Experimental settings

4.1.1 Dataset

PubMed-10K We randomly sampled 10k abstracts from

PubMed. This dataset contains 91k sentences. We mine

more than 42k potential terms from this dataset. The term

statistics can be found in the first row in Table 1.

PubMed-100K We randomly sampled 100k abstracts

from PubMed. This dataset contains 0.94M sentences,

which is larger than the first dataset, so we can compare the

performance on different data scales, and we can mine

0.35M potential terms from this dataset. The term statistics

can be found in the second row in Table 1.

4.2 Evaluation

We mainly analyze the mined terms and their semantic

representation capacity through manual evaluation and

visualization. We use cosine similarity to calculate similar

terms for each term, thereby reflecting the learned term

embeddings’ performance.

4.3 Analysis of term similarity

We compared with the word vector-based method, as

shown in Figs. 2, 3, 4 and 5. For the baseline method, we

used the most common way to represent a term. That is, for

each word contained in the term, we averaged their

embeddings to represent the term. Different from this

method, the proposed method directly learns the term

embeddings.

As shown in Figs 6 and 7, the first column is our

method, and the second column is the baseline method. We

observe the proposed method can find closely related

terms. The word vector-based method finds mainly

insignificant words or phrases related to only one word of

the term. This limitation is because the word-vector-based

method can only find other words similar to a word in this

phrase, and the computing process is to maintain the

semantics of each word instead of the entire phrase. Each

word that makes up a term is used to represent the term, so

the most similar representation is usually a word in the

term. However, this kind of information does not generate

much value, so we removed the words contained in the

term. Unlike word vector-based methods, our models can

find abbreviations of some terms.

As shown in Fig. 6, we observe that ‘‘chronic obstruc-

tive pulmonary disease’’ is closely related to the abbrevi-

ation ‘‘copd’’. ‘‘liquid chromatography-tandem mass

spectrometry’’ is closely related to the abbreviation ‘‘ls-

ms’’. As shown in Fig. 7, ‘‘toll-like receptor’’ is closely

related to different types of ‘‘tlr’’. For ‘‘human immunod-

eficiency virus’’, we find the abbreviation ‘‘hiv’’. Abbre-

viations can be found for almost all the terms based on our

method, while the baseline method does not find abbrevi-

ations. This shows that our model has achieved better

results in expressing the true semantics of terms, and we

have performed experiments on two datasets, respectively.

We found that when the dataset is larger, there are more

term names contained in the dataset. Due to many candi-

date terms, each term is more likely to find related terms.

When a corpus contains fewer samples, this corpus also

contains fewer terms, so each term may not find similar

terms. However, some phrases related to the term can be

founded. It can be seen that our algorithm achieves better

results on corpora of different sizes.

Fig. 2 Visualization of term embeddings where each term consists of 2 words, and a and b are based on our method and word embeddings
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Fig. 3 Visualization of term embeddings where each term consists of 5 words, and a and b are based on our method and word embeddings

Fig. 4 Visualization of term embeddings where each term consists of 3 words, and a and b are based on our method and word embeddings

Fig. 5 Visualization of term embeddings where each term consists of 4 words, and a and b are based on our method and word embeddings
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4.4 Analysis of term relationship

In this subsection, we analyze the difference between terms

of various lengths for learning term embeddings. The

baseline is the most commonly used term representation

method based on word vectors. We apply principal com-

ponent analysis (PCA) [30] to reduce the dimension of the

learned term, which is convenient for a visualization based

on low dimensions to observe and measure the semantic

similarity between terms. As shown in Figs. 8 and 9, we

found that term embeddings learned by our method can

better reflect the relationship between terms. For example,

disease-related terms are relatively close, but the word

vector-based term representation does not reveal the

semantic relationship between terms well. The baseline

method mainly retains the words’ similarity, so this method

cannot get the term similarity very well. We further find

that the longer the term, the less accurate the term rela-

tionship based on the word vector method, and the more

obvious the need for term embedding. So the proposed

method can learn a reasonable representation for the longer

term.

We analyze the performance of the proposed method on

different types of terms. As shown in Fig. 8, for cancer

terms, our method can achieve a more accurate semantic

distribution, so that semantically related terms are closer.

For example, we found ‘‘non-small cell lung cancer’’ is

Fig. 6 The most closely related terms base on the PubMed-10k dataset
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Fig. 7 The most closely related terms base on the PubMed-100k dataset

Neural Computing and Applications

123



Fig. 8 Visualization of cancer and a and b are based on our method and word embeddings

Fig. 9 Visualization of lung disease and a and b are based on our method and word embeddings

Fig. 10 Visualization of chronic diseases and a and b are based on our method and word embeddings
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closely related to ‘‘colorectal cancer’’. There is potential

relation between ‘‘epithelial ovarian cancer’’ and ‘‘neck

cancer’’, ‘‘early breast cancer’’ and ‘‘head-and-neck can-

cer’’. This characteristic helps find related treatment

schemes from other terms. However, the word vector-based

method makes the terms mixed.

Figure 10 shows the terms related to chronic diseases.

Our method brings together similar diseases. We find some

potential links between chronic diseases, such as ‘‘chronic

pancreatitis’’ and ‘‘chronic heart failure’’, ‘‘chronic rhi-

nosinusitis’’ and ‘‘chronic lymphocytic leukemia’’. The

baseline method does not generate this effect, so our

method’s advantage is that it can compare similar chronic

diseases to find treatment options.

Terms related to drugs and treatments are shown in

Fig. 11. Our method can put related drugs and treatment

methods together, which helps medical researchers choose

the corresponding treatment plan and recommend more

treatment plans. We observe ‘‘neoadjuvant chemotherapy’’

and ‘‘cancer immunotherapy’’ are closely related. The

baseline method has no obvious semantic characteristics.

Figure 9 shows the terms related to lung diseases. Our

method reveals the relationship between lung diseases. The

baseline method does not reveal this relationship.

Fig. 11 Visualization of drug and therapy, and a and b are based on our method and word embeddings

Fig. 12 Visualization of factors

for breast cancer (blue dot)

(color figure online)
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Therefore, our method can be further used to find drugs to

treat lung diseases.

We visualize factors and treatments closely related to

lung cancer, breast cancer, and coronavirus, as shown in

Figs. 12, 13, and 14, respectively. We observe the lung

cancer is closely related to ‘‘antiretroviral therapy, radia-

tion therapy, gene therapy, adjuvant chemotherapy, prog-

nostic factor, nuclear factor, targeted therapy,

photodynamic therapy’’. The breast cancer is closely

related to ‘‘prognostic factor, antiretroviral therapy, adju-

vant chemotherapy, radiation therapy, gene therapy, pho-

todynamic therapy’’. ‘‘tumour necrosis factor, epidermal

growth factor receptor, nuclear factor, targeted therapy,

combination therapy’’ has more inspiration for the treat-

ment of breast cancer. The coronavirus is closely related to

‘‘vascular endothelial growth factor’’, ‘‘cell therapy’’, ‘‘re-

placement therapy’’, ‘‘neoadjuvant chemotherapy’’, ‘‘drug

development’’, ‘‘combination therapy’’, ‘‘photodynamic

Fig. 13 Visualization of factors

for lung cancer (blue dot) (color

figure online)

Fig. 14 Visualization of factors

for coronavirus (blue dot) (color

figure online)
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therapy’’, etc. These results show that our method can learn

term embeddings from a large-scale corpus to generate

inspiration for diseases’ treatment.

5 Conclusion

In this paper, an unsupervised term mining method has

been proposed for mining terms from a biomedical corpus.

We have combined the term mining method with existing

word vector training methods to learn term embeddings to

capture the semantic similarity between terms. The pro-

posed method can identify term variations and improve

term representations. It is to be noted that the proposed

method can be applied across domains without the need for

external resources. We also analyzed the distribution of

diseases and treatments based on the learned term

embeddings, which can be used to explore treatment

schemes for some challenging diseases. Extensive com-

puter simulations were conducted to determine the effec-

tiveness of the proposed method. PubMed—10K and

PubMed—100K datasets were used for experimentation

(see Table 1). A comprehensive evaluation was carried out

through visualization of term embeddings, which used

cosine similarity to determine similar terms to each term.

The visualization helped to demonstrate the performance of

the proposed method and serve as a way to explore treat-

ments for novel diseases. The application of the proposed

model can be applicable in several domains [31–54] for the

future work.
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