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Abstract

Terminology is the most basic information that researchers and literature analysis systems need to understand. Mining
terms and revealing the semantic relationships between terms can help biomedical researchers find solutions to some major
health problems and motivate researchers to explore innovative biomedical research issues. However, how to mine terms
from biomedical literature remains a challenge. At present, the research on text segmentation in natural language pro-
cessing (NLP) technology has not been well applied in the biomedical field. Named entity recognition models usually
require a large amount of training corpus, and the types of entities that the model can recognize are limited. Besides,
dictionary-based methods mainly use pre-established vocabularies to match the text. However, this method can only match
terms in a specific field, and the process of collecting terms is time-consuming and labour-intensive. Many scenarios faced
in the field of biomedical research are unsupervised, i.e. unlabelled corpora, and the system may not have much prior
knowledge. This paper proposes the TermInformer project, which aims to mine the meaning of terms in an open fashion by
calculating terms and find solutions to some of the significant problems in our society. We propose an unsupervised method
that can automatically mine terms in the text without relying on external resources. Our method can generally be applied to
any document data. Combined with the word vector training algorithm, we can obtain reusable term embeddings, which
can be used in any NLP downstream application. This paper compares term embeddings with existing word embeddings.
The results show that our method can better reflect the semantic relationship between terms. Finally, we use the proposed
method to find potential factors and treatments for lung cancer, breast cancer, and coronavirus.

Keywords Term mining - Unsupervised learning - Term embeddings - Sequence labelling - GloVe - Biomedical literature

School of Information Systems, Science and Engineering
Faculty, Queensland University of Technology, Brisbane,
Australia

< Prayag Tiwari
prayag.tiwari @unipd.it
P>< M. Shamim Hossain 4

mshossain@ksu.edu.sa Department of Software Engineering, College of Computer

and Information Sciences, King Saud University,
Sagar Uprety Riyadh 11543, Saudi Arabia
sagar.uprety @open.ac.uk

Shahram Dehdashti

shahram.dehdashti @qut.edu.au

Department of Information Engineering, University of
Padova, Padua, Italy

The Open University, London, UK

Published online: 16 September 2020 @ Springer


http://orcid.org/0000-0002-2851-4260
https://orcid.org/0000-0001-5906-9422
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-020-05335-2&amp;domain=pdf
https://doi.org/10.1007/s00521-020-05335-2

Neural Computing and Applications

1 Introduction

Term mining aims to mine terms from unstructured docu-
ments. Terminology is usually composed of multiple words
and describes concepts in a particular domain that forms
the basis of the domain. Unsupervised term mining aims to
use automated algorithms to mine terms in the literature
without relying on external resources and human inter-
vention. Therefore, the method has a wide range of appli-
cations and can be used to process text data in any field.
Existing research usually uses dictionary-based methods
and supervised machine learning methods to mine terms in
the literature. However, the dictionary-based method’s
limitation is that the method can only match terms in a
specific field, and terms in the vocabulary are often dif-
ferent from expressions in the literature. For example, there
are more than 5 ways in the literature to mention the dis-
ease “ischemic stroke”. Terms in the literature contain
many variants, so dictionary-based methods require con-
stant vocabulary maintenance, which is costly and time-
consuming.

The named entity recognition method has achieved good
results in terms of recognition. However, the named entity
recognition model requires a large number of labelled
corpora for training and can only identify predefined types
of terms, which is not suitable for this open term mining
problem. Corpus annotation in the biomedical field is very
challenging because of the high requirements for the
knowledge background of the annotators, and the labelling
process relies heavily on the knowledge of domain experts
and annotation standards. Therefore, the method of man-
ually labelling the term corpus for named entity recognition
is very time-consuming and costly. In addition, using deep
learning models to identify terms can also lead to increased
computation costs. Based on these problems, this paper
proposes an unsupervised term mining method. This
method can automatically mine terms from the literature
without the need to annotate the corpus manually, so it can
work with word embedding training algorithms to produce
term-level embeddings, not just word embeddings. We
propose a multi-length term mining algorithm. Using this
algorithm, we can fully mine terms from the text without
requiring any external resources.

Existing term representation methods usually represent a
term by average word embeddings [1]. However, this
method cannot obtain the semantics of the term. This
method only represents the term by each compound word.
There are essential differences between terms and words,
so this poses a limitation of term research. Faced with this
problem, we apply the proposed method to train term
embeddings. Based on the existing word embedding algo-
rithm GloVe [2], we trained the mined terms and found that
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the term representation can better represent the semantic
relationship between terms. To evaluate the performance of
the method, we created two datasets of different sizes. We
compared the term representation composed of the original
word embeddings with the term representation obtained
based on our method. We observe that our method
improves the representation of terms, can better charac-
terize the relationships between terms, and better calculate
the similarity between terms. This method can potentially
be applied to any biomedical text mining system. The
proposed method can also be used to build a term corre-
lation graph. Finally, we explore the factors and treatments
for lung and breast cancer using the proposed method. The
results show that our method can find some key informa-
tion for these diseases from the literature.

1.1 Contribution

The main contributions of this paper can be summarized
below:

1. We propose an unsupervised term mining algorithm.
The proposed method can be applied to any biomedical
corpus, and the process can mine terms without manual
annotation and can be used with word embedding
training algorithms, which may become a scheme for
solving term representation problems.

2. The proposed method improves the existing term
representation based on word embeddings, and the
obtained term embeddings can better characterize the
relationship between terms.

3. This paper creates two-term mining datasets to eval-
uate the performance of the method.

1.2 Organization

The rest of the paper is organized as follows. Related works
are discussed in Sect. 2. Section 3 describes the method
proposed in this paper, followed by the proposed algorithm.
Experiment results are explained in Sect. 4 consisting of
experimental results, including dataset description, evalu-
ation metric, analysis of term similarity, analysis of term
relationship. Finally, we discuss the conclusion and pos-
sible future work in Sect. 5.

2 Related work

Named entity recognition models are widely used for rec-
ognizing biomedical terms. Settles et al. [3] use conditional
random fields (CRF) [4] to recognize the gene and protein
mentions in biomedical abstracts. Leaman et al. [5] pro-
pose the BANNER framework to recognize biomedical
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entities, which aims to improve the generalization ability
for this task. Habibi et al. [6] use the LSTM-CRF model to
recognize genes, chemicals, and diseases mentions. Tang
et al. [7] study three different types of word representation
methods and analyze their performance for biomedical
NER on JNLPBA and BioCreAtIVE II BNER tasks. Yao
et al. [8] propose a deep learning model that consists of
multiple CNN layers and achieves improvement on the
GENIA dataset. Wang et al. [9, 10] propose a multitask
learning approach to recognize biomedical entities by using
training data collectively consisting of distinct types of
entities. Yoon et al. [11] propose CollaboNet to resolve the
issue due to lack of data and entity-type misclassification
by using the integration of multiple NER frameworks. Cho
et al. [12] use BiLSTM and CRF to propose contextual
LSTM networks with CRF to capture all the contextual
information.

Lafferty et al. [13] use conditional random fields (CRF)
to build probabilistic models for sequence labelling prob-
lem. Nadeau et al. [14] investigate the feature engineering-
based NER models and systems. Collobert et al. [15] use
CNN to solve may NLP tasks. Lample et al. [16] adopt
LSTM-CREF to solve the sequence labelling problem. Chiu
et al. [17] propose to use bidirectional LSTM-CNNs to
resolve the sequence labelling problem. Ma et al. [18] use
Istm-cnns-crf model to recognize entities. Akbik et al. [19]
propose to use character-level language modelling to
improve performance.

Pre-trained language models, such as ELMo [20] and
BERT [21], have also been applied in the clinical NLP
field. Beltagy et al. [22] train the SciBERT to enhance
downstream NLP tasks. Alsentzer et al. [23] train the
BERT model based on both clinical notes and discharge
summaries. Lee et al. [24] proposed BioBERT, a model
that retrains BERT on PubMed and PMC corpora, which
can improve the results of downstream BioBLP tasks.
These studies focus on word-level representations without
considering the term representation. Context-dependent
representations make the same word have different repre-
sentations in different sentences. However, this paper aims
to obtain context-independent representations, so we do not
adopt these methods.

3 Methods
3.1 Multi-length term mining algorithm

This section explains this algorithm. After statistical anal-
ysis, we found that terms composed of 2, 3, 4, and 5 words
are the more common, so we mainly mine terms of the
above length. Word vectors can directly represent terms
with only one word. The input of the algorithm is the

original text, and the output is the mined terms. We do not
need to use any external resources to apply it to any corpus
in this process. We first perform word segmentation and
part-of-speech tagging on the original text and then mine
the terms.

As shown in Algorithm 1, the first line of the algorithm
is mainly to initialize 4 dictionaries for storing terms of
different lengths and input the corpora. The method then
starts processing each sample, that is, each article. The
fourth line performs word segmentation for these articles.
Word segmentation is to divide these articles into a
sequence of words and identify the punctuations, which can
prevent the words and punctuations from being connected,
resulting in an irregular vocabulary and inaccurate words.

Algorithm 1 Multi-length term mining algorithm

Require: The corpus D
Ensure: The mined terms

1: Initialize dictionary d2, d3, d4, d5 and corpus D
2: Initialize the word segmentation and pos tagging modules
3: for ¢+ 0,D.length —1 do

tokens = Tokenize(D[i])
pos = POSTagging(D]i])
Extract(tokens,pos,d2,2)
Extract(tokens,pos,d3,3)
Extract(tokens,pos,d4,4)
9: Extract(tokens,pos,d5,5)
10: end for
11: return d2, d3, d4, d5

The fifth line is mainly used for part-of-speech (POS)
tagging of words. We adopt the LSTM-CRF neural net-
work for POS tagging. The detailed mechanism of this
model will be introduced in Sect. 3.2. The POS features
help in improving the term mining in the algorithm. Lines 6
to 9 are used to mine terms of different lengths. We mainly
focus on terms composed of 2, 3, 4, and 5 words.

The term extraction algorithm is described in Algorithm
2. The second line splits the input word sequence into
phrases of a certain length. The third line is to extract the
POS tags of the phrase from the recognized POS tag
sequence. Inline 4, this algorithm matches the POS of the
target phrase with our predefined rule. This rule considers
the extraction of medical terms where the first two words
are adjective, and noun, respectively, and the last term is
also a noun. If the phrase matches successfully, the phrase
will be treated as a potential term and added to the dic-
tionary. Then, this algorithm counts how often the term
appears. If the term has appeared in the dictionary, increase
the term frequency by 1. If the term does not appear in the
dictionary, the term has a frequency of 1. The purpose of
counting term frequency is to extract meaningful terms. By
setting thresholds, we have the flexibility to mine a certain
number of terms. Terms are often repeated in the literature,
and if a phrase appears only once, we do not consider it as a
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term. If we set a higher threshold, it means that we can get
more confident terms, which also demonstrates that these
terms are more common.

Algorithm 2 Term extraction function

Require: word segmentation tokens, POS tags pos, Term
dictionary dict, term length leng

Ensure: The updated dictionary

1: for i« 0,tokens.length —1 do

2 term = tokens[i:i+leng]

3 tag = pos[i:i+leng]

4 if matched(tag) then

5: if term in dict then

6

7

8

dict[term]++
else
: dict[term]=1
9: end if
10: end if
11: end for

In the following, we briefly discuss the asymptotic
complexity of our approach. The algorithm describes the
processing of a large number of samples, where the number
of samples is related to the corpus’s size. Therefore, we
analyze the term mining process for only one sample. The
algorithm first performs word segmentation and then per-
forms part-of-speech tagging and then calls Algorithm 2.
Since the complexity of Algorithm 2 is O(n), the com-
plexity of Algorithm 1 mainly depends on the two steps of
word segmentation and part-of-speech tagging. Therefore,
our algorithm is approximately equal to the complexity of
segmentation and part-of-speech tagging. The proposed
method does not significantly increase computational costs.

3.2 LSTM-CRF

This subsection introduces the LSTM-CRF sequence
labelling model for POS tagging, as shown in Fig. 1. This
model does not depend on feature engineering; instead, it
adopts the words and characters as input. This design can
increase the generality for processing any dataset. Then,
textual input is projected to the word embeddings, which is
a way to encode the prior knowledge of semantics into a
dense vector representation [25-27].

3.2.1 Long short-term memory

The long short-term memory (LSTM) network is a kind of
recurrent neural network (RNN). It uses the LSTM unit
[28] to solve the exploding and vanishing gradient prob-
lems encountered in the traditional RNNs. The formula-
tions of LSTM unit are as follows.

iy = o(Wihy_y + Uix, + b;) (1)
fir = a(Wrhi—y + Upx; + by) (2)
¢ = tanh(Weh_y + Uex, + b,) (3)
a=f0c1+iO¢ 4)
0y = o(Wohy—1 + Upx; + b,) (5)
h, = 0, © tanh(c;) (6)

where o(-) is a sigmoid activation function. x, represents
the input vector at time step t, and 4, denotes the hidden
state containing the context information in the former time

CRF
] —
Bi-LSTM
le—] —
Word embedding
Character representation
Guidelines for early breast cancer :diagnosis, treatment and follow-up

Fig. 1 LSTM-CRF network overview
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steps. W and b are weight and bias parameters. i, f;, ¢; and
o, are the input gate vector, forget gate vector, cell state,
and output gate vector, respectively. However, the hidden
state in a forward LSTM can only capture the context
information in the left side of current step [13, 16, 18].
Bidirectional LSTM (Bi-LSTM) has an operation to
reverse the order of input sequence and concatenate the
hidden state in each time step, which can capture the
context information from the left and right side of the
current step.

3.2.2 Conditional random field

The conditional random field (CRF) layer performs the
label sequence prediction [16, 18]. This model can be more
effective than classifying each word independently because
the word label is determined not only by itself but also by
the context.

H?zl exp(W;,l)r;Zi +b i—lyi)

p(lz W, b) = 7 7

Ey’EY(z) [T eXp(WyTL]y;Zi + by;,lyﬁ) )

L(W,b) =Y logp(ylz; W,b) (8)
= W, b

y" = arg max p(ylz; W, b) (9)

where {[z;,y:]},i = 1,2...n denotes a set of words z with a
label sequence y. W and b are weight and bias parameters.
p(ylz; W, b) is the probability of label sequence y over all
possible sequences Y(z) on the input z. In training stage, the
objective is to maximize the log-likelihood L(W, b). In
prediction, the decoder will find the optimal label sequence
as Eq. 9 by Viterbi algorithm [29].

3.3 Term embedding

Word vector approaches aim to project a large vector
space of words into a much lower-dimensional space and
generate dense representations. It has made significant
contributions to enhance various NLP techniques and has
been widely used in various downstream NLP tasks like
sentiment analysis, document classification, etc., to
achieve improved results. The word representations are
computable and have actively promoted the development
of deep learning NLP. Existing word vector training
methods mainly embed words into a fixed-length vector,
but cannot be directly used to learn term vector in sen-
tences. For terms, the word embeddings are not enough
to represent the overall meaning of the term. Existing
methods have limitations on the problem of term
representation.

Existing methods usually use average or max pooling of
all word vectors to represent a multi-word term. The

problem is that the term representation obtained by this
method will make the term most similar to each composed
word. This method cannot reflect the relationship between
different terms, but only the relationship between words
contained in the term. This method belongs to a word-level
learning method and cannot be used in the term level.
Based on the above problems, we use the multi-length term
mining algorithm proposed in Sect. 3.1 together with the
word vector learning algorithm to fundamentally alleviate
the problem of term representation and learn term
embeddings. We use the GloVe algorithm to train term
embeddings. However, the major difference is that our
vocabulary consists of terms mined using the algorithms
described above. This enables the GloVe algorithm to learn
vectors for terms rather than individual words. For exam-
ple, it will learn one single vector for the compound term
“lung cancer”. GloVe will learn vectors for the two terms
“lung” and “cancer”, and then one has to average them to
obtain the vector for “lung cancer”. The training objective
for GloVe embeddings is shown in equation (10).

v
J =Y fXi)) W) + bi + b; — log X;)? (10)
ij=1
where X;; represents the co-occurrence frequency of the
word; and word;. w; and w; denote vector representations of
the word; and word;, respectively. b; and b; are the bias
value for the word; and word;, respectively. f(X;;) is the
weighting factor defined in equation (11).

(x/xmax)“a

1, otherwise

if X <Xmax
70 ={ " (1)
where xy.x and o are hyperparameters. These two param-
eters are set to xpax = 100 and o« = 0.75.

4 Results

In this section, we conduct experiments on two datasets.
We first introduce the datasets, evaluation methods. Then,
we compare the mined term-based embeddings with the
word embedding-based method. Finally, we analyze the
experimental results.

Table 1 Number of terms mined on different datasets

Term length 2 words 3 words 4 words 5 words Total
PubMed-10K 34,362 7304 1090 129 42,885
PubMed-100K 268,890 72,612 11,267 1,545 354,314
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4.1 Experimental settings
4.1.1 Dataset

PubMed-10K We randomly sampled 10k abstracts from
PubMed. This dataset contains 91k sentences. We mine
more than 42k potential terms from this dataset. The term
statistics can be found in the first row in Table 1.

PubMed-100K We randomly sampled 100k abstracts
from PubMed. This dataset contains 0.94M sentences,
which is larger than the first dataset, so we can compare the
performance on different data scales, and we can mine
0.35M potential terms from this dataset. The term statistics
can be found in the second row in Table 1.

4.2 Evaluation

We mainly analyze the mined terms and their semantic
representation capacity through manual evaluation and
visualization. We use cosine similarity to calculate similar
terms for each term, thereby reflecting the learned term
embeddings’ performance.

4.3 Analysis of term similarity

We compared with the word vector-based method, as
shown in Figs. 2, 3, 4 and 5. For the baseline method, we
used the most common way to represent a term. That is, for
each word contained in the term, we averaged their
embeddings to represent the term. Different from this
method, the proposed method directly learns the term
embeddings.

As shown in Figs 6 and 7, the first column is our
method, and the second column is the baseline method. We
observe the proposed method can find closely related

terms. The word vector-based method finds mainly
insignificant words or phrases related to only one word of
the term. This limitation is because the word-vector-based
method can only find other words similar to a word in this
phrase, and the computing process is to maintain the
semantics of each word instead of the entire phrase. Each
word that makes up a term is used to represent the term, so
the most similar representation is usually a word in the
term. However, this kind of information does not generate
much value, so we removed the words contained in the
term. Unlike word vector-based methods, our models can
find abbreviations of some terms.

As shown in Fig. 6, we observe that “chronic obstruc-
tive pulmonary disease” is closely related to the abbrevi-
ation “copd”. “liquid chromatography-tandem mass
spectrometry” is closely related to the abbreviation “Is-
ms”. As shown in Fig. 7, “toll-like receptor” is closely
related to different types of “tlr”. For “human immunod-
eficiency virus”, we find the abbreviation “hiv”. Abbre-
viations can be found for almost all the terms based on our
method, while the baseline method does not find abbrevi-
ations. This shows that our model has achieved better
results in expressing the true semantics of terms, and we
have performed experiments on two datasets, respectively.
We found that when the dataset is larger, there are more
term names contained in the dataset. Due to many candi-
date terms, each term is more likely to find related terms.
When a corpus contains fewer samples, this corpus also
contains fewer terms, so each term may not find similar
terms. However, some phrases related to the term can be
founded. It can be seen that our algorithm achieves better
results on corpora of different sizes.

(a)

(b)

Fig. 2 Visualization of term embeddings where each term consists of 2 words, and a and b are based on our method and word embeddings
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Fig. 4 Visualization of term embeddings where each term consists of 3 words, and a and b are based on our method and word embeddings

gpidermal growth factor receptor
15
10
gvide chucwicrobstentige pulmonary disease
vascular endothelial growth factor
insulin-like growth factor-binding protein yascular endathelial growth actor
05 anti-epidermal growth factor receptor
pnti-
iman epidermal \mhl‘nm".{
pardiovasculdf dracase/coronary heant disease
on o ERETEAR B
uman epldermal gr " pactular endothelial growth factor-a
ppderR PRt b canc
0 B AT
VRN ARG IO S|
sponalcoholic fatty liver disease-liver
-0s

chronic obstruct

pon-small c

ponalcd

pon-alcoholic fatty liver disd

r endothelial &

e pulmonary di

1l lung cancer

olic fatty liver

pwth factor

pidermal growth factor receptor

pnti-epidermal growth factor receptor

wrsthma—chronic ohpeF-LaK A, A A¥nary heart disease

¢vascular endothelial growth factor
Fascular

human epidef

ponalcoholic fatty liver disease-liver

dnsulin-1ike growth factor-bingtdemtetgrowth factor receptor-2
#pidermal

growth hormoneinsulin-like growth factor-1

Ll TR T T ——

ponalcoholic fatphkkecibeanective pulmonary flisease

pon-alcoholic fatty liver discase:
pascular endothelial growth factor

fact
on-smil cell lung cancer

human epiderpmal growth factor

al growth factor—2

fuciotive sk bl s

ascular endothelial growth facto

Fig. 5

o8

(b)

Visualization of term embeddings where each term consists of 4 words, and a and b are based on our method and word embeddings

@ Springer



Neural Computing and Applications
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Fig. 6 The most closely related terms base on the PubMed-10k dataset

4.4 Analysis of term relationship

In this subsection, we analyze the difference between terms
of various lengths for learning term embeddings. The
baseline is the most commonly used term representation
method based on word vectors. We apply principal com-
ponent analysis (PCA) [30] to reduce the dimension of the
learned term, which is convenient for a visualization based
on low dimensions to observe and measure the semantic
similarity between terms. As shown in Figs. 8 and 9, we
found that term embeddings learned by our method can
better reflect the relationship between terms. For example,
disease-related terms are relatively close, but the word

@ Springer

vector-based term representation does not reveal the
semantic relationship between terms well. The baseline
method mainly retains the words’ similarity, so this method
cannot get the term similarity very well. We further find
that the longer the term, the less accurate the term rela-
tionship based on the word vector method, and the more
obvious the need for term embedding. So the proposed
method can learn a reasonable representation for the longer
term.

We analyze the performance of the proposed method on
different types of terms. As shown in Fig. 8, for cancer
terms, our method can achieve a more accurate semantic
distribution, so that semantically related terms are closer.
For example, we found “non-small cell lung cancer” is
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closely related to “colorectal cancer”. There is potential
relation between “epithelial ovarian cancer” and ‘“neck
cancer”, “early breast cancer” and “head-and-neck can-
cer”. This characteristic helps find related treatment
schemes from other terms. However, the word vector-based
method makes the terms mixed.

Figure 10 shows the terms related to chronic diseases.
Our method brings together similar diseases. We find some
potential links between chronic diseases, such as “chronic
pancreatitis” and “chronic heart failure”, “chronic rhi-
nosinusitis” and “chronic lymphocytic leukemia”. The

method’s advantage is that it can compare similar chronic
diseases to find treatment options.

Terms related to drugs and treatments are shown in
Fig. 11. Our method can put related drugs and treatment
methods together, which helps medical researchers choose
the corresponding treatment plan and recommend more
treatment plans. We observe “neoadjuvant chemotherapy”
and “cancer immunotherapy” are closely related. The
baseline method has no obvious semantic characteristics.

Figure 9 shows the terms related to lung diseases. Our
method reveals the relationship between lung diseases. The

baseline method does not generate this effect, so our  baseline method does not reveal this relationship.
Fig. 12 Visualization of factors 18
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Therefore, our method can be further used to find drugs to
treat lung diseases.

We visualize factors and treatments closely related to
lung cancer, breast cancer, and coronavirus, as shown in
Figs. 12, 13, and 14, respectively. We observe the lung
cancer is closely related to “antiretroviral therapy, radia-
tion therapy, gene therapy, adjuvant chemotherapy, prog-
nostic factor, nuclear factor, targeted therapy,
photodynamic therapy”. The breast cancer is closely

@ Springer

related to “prognostic factor, antiretroviral therapy, adju-
vant chemotherapy, radiation therapy, gene therapy, pho-
todynamic therapy”. “tumour necrosis factor, epidermal
growth factor receptor, nuclear factor, targeted therapy,
combination therapy” has more inspiration for the treat-
ment of breast cancer. The coronavirus is closely related to
“vascular endothelial growth factor”, “cell therapy”, “re-
placement therapy”, “neoadjuvant chemotherapy”, “drug
development”, “combination therapy”, “photodynamic
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therapy”, etc. These results show that our method can learn
term embeddings from a large-scale corpus to generate
inspiration for diseases’ treatment.

5 Conclusion

In this paper, an unsupervised term mining method has
been proposed for mining terms from a biomedical corpus.
We have combined the term mining method with existing
word vector training methods to learn term embeddings to
capture the semantic similarity between terms. The pro-
posed method can identify term variations and improve
term representations. It is to be noted that the proposed
method can be applied across domains without the need for
external resources. We also analyzed the distribution of
diseases and treatments based on the learned term
embeddings, which can be used to explore treatment
schemes for some challenging diseases. Extensive com-
puter simulations were conducted to determine the effec-
tiveness of the proposed method. PubMed—10K and
PubMed—100K datasets were used for experimentation
(see Table 1). A comprehensive evaluation was carried out
through visualization of term embeddings, which used
cosine similarity to determine similar terms to each term.
The visualization helped to demonstrate the performance of
the proposed method and serve as a way to explore treat-
ments for novel diseases. The application of the proposed
model can be applicable in several domains [31-54] for the
future work.
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