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ABSTRACT: The COVID-19 pandemic has killed millions of people worldwide
since its outbreak in December 2019. The pandemic is caused by the SARS-CoV-2
virus whose main protease (Mpro) is a promising drug target since it plays a key
role in viral proliferation and replication. Currently, developing an effective therapy
is an urgent task, which requires accurately estimating the ligand-binding free
energy to SARS-CoV-2 Mpro. However, it should be noted that the accuracy of a
free energy method probably depends on the protein target. A highly accurate
approach for some targets may fail to produce a reasonable correlation with the
experiment when a novel enzyme is considered as a drug target. Therefore, in this
context, the ligand-binding affinity to SARS-CoV-2 Mpro was calculated via
various approaches. The molecular docking approach was manipulated using Autodock Vina (Vina) and Autodock4 (AD4)
protocols to preliminarily investigate the ligand-binding affinity and pose to SARS-CoV-2 Mpro. The binding free energy was then
refined using the fast pulling of ligand (FPL), linear interaction energy (LIE), molecular mechanics-Poisson−Boltzmann surface area
(MM-PBSA), and free energy perturbation (FEP) methods. The benchmark results indicated that for docking calculations, Vina is
more accurate than AD4, and for free energy methods, FEP is the most accurate method, followed by LIE, FPL, and MM-PBSA
(FEP > LIE ≈ FPL > MM-PBSA). Moreover, atomistic simulations revealed that the van der Waals interaction is the dominant
factor. The residues Thr26, His41, Ser46, Asn142, Gly143, Cys145, His164, Glu166, and Gln189 are essential elements affecting the
binding process. Our benchmark provides guidelines for further investigations using computational approaches.

■ INTRODUCTION
SARS-CoV-2, a novel coronavirus, causes severe acute
respiratory syndromes and is responsible for millions of deaths
worldwide since its first outbreak in December 2019 in Wuhan,
Hubei Province, China.1−4 The virus has been thought to
originate from bats and can quickly transfect between
humans.5 The spreading speed is high since it is able to exist
in aerosol especially.6 Despite the efforts to limit the spread of
the virus, more than 80 million people were infected within a
year. The outbreak of the virus effectuates the COVID-19
pandemic. Therefore, the development of an effective therapy
is thus much more urgent for community health. Although
remdesivir was first approved as the anti-viral drug for treating
COVID-19,7 it is probably considered a controversial decision8

since the drug showed disappointing trials.9,10 Searching an
appropriate treatment for COVID-19 is accordingly a matter of
great urgency.
The coronavirus genome sequence, encoding more than 20

different proteins, is known as the largest RNA virus sequence,
which is approximately 26−32 kb in length.11,12 The SARS-
CoV-2 virus forms >82% homologous RNA genomes to SARS-
CoV.1 The SARS-CoV-2 main protease (Mpro), being more
than 96% identical to SARS-CoV Mpro, is one of the most
pivotal proteins because of its direct involvement with viral
replication and proliferation.12,13 In particular, SARS-CoV-2
Mpro splits 11 polyproteins into polypeptides, which are used

for replication and to encapsulate a new virus.12 Several probes
in both computational and experimental studies were used to
develop an effective therapy and preliminary results were
acquired;14−18 however, as mentioned above, it was a
controversial decision,8 and moreover, an effective drug
inhibiting SARS-CoV-2 Mpro is still unattainable.
Currently, computer-aided drug design (CADD) is routinely

employed to rapidly screen probable inhibitors for preventing
the biological function of a specific enzyme.19,20 The time and
cost for the development of a therapy thus decrease. In
particular, the Gibbs free energy difference of the noncovalent
chemical reaction between SARS-CoV-2 Mpro and its
inhibitors, ΔG, can commonly be computed using molecular
dynamics (MD) simulations because it connects with the
inhibition constant, Ki, an important metric disclosing the
binding process among biomolecules. Reliable calculation of
ΔG is one of the most pivotal issues in CADD.21−23 Therefore,
numerous approaches have been developed to resolve the
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problem.23 In order to screen a large number of candidates,
which can be up to several million compounds, the
computational probe is usually operated via two steps: initial
screening of thousands/millions of compounds via rapid
protocols such as quantitative structure−activity relationship,24
molecular docking,25 and machine learning;26 ΔG was then
realized using MD simulations, in which the popular free
energy estimation approaches include the linear interaction
energy (LIE),27 fast pulling of ligand (FPL),28 molecular
mechanism-Poisson−Boltzmann (generalized Born) surface
area (MM-PB(GB)SA),29,30 nonequilibrium molecular dynam-
ics (NEMD),31 thermodynamic integration,32 free energy
perturbation (FEP) approaches,33 and so forth. However, it
should be noted that the precision and accuracy of the ligand-
binding affinity approaches somehow depend on the enzyme
targets.34−40 Therefore, in this work, we benchmarked the
performance of docking protocols involving Vina25 and AD441

applying on the SARS-CoV-2 target. Consequently, MD
simulations were then performed to investigate the dynamics
of the SARS-CoV-2 + inhibitor complexes. The relaxed
complexes were then used as initial conformations for probing
ligand-binding affinity using four free energy schemes including
FPL,28 LIE,27 molecular mechanics-Poisson−Boltzmann sur-
face area (MM-PBSA),32,33 and FEP.33 The obtained
observations probably guide for further investigations using
computational approaches.

■ MATERIALS AND METHODS
Structure of the Receptor and Ligands. The X-ray

diffraction structure of SARS-CoV-2 Mpro was obtained from
the Protein Data Bank (PDB) with the PDB ID 7JYC.42 The
structure of 34 ligands was taken from the PubChem
database43 referring to the previous work,44−51 and their 2D
structure is reported in Table S1 in the Supporting
Information.
Molecular Docking Simulations. Vina25 and AD441 were

manipulated to dock the available inhibitors to the binding
cleft of SARS-CoV-2 Mpro. The binding cleft was selected as
the binding region of the compound named narlaprevir.42 In
particular, the grid size for docking was chosen as 24 × 24 × 24
Å according to the previous work.16,17 The modeling of
docking simulations is described in Figure 1A.
Autodock Vina (Vina).25 The performance of Vina depends

on the parameter’s exhaustiveness, which was chosen to be
8.34,52 The largest energy difference between docking shapes
was set to 7 kcal mol−1. The largest ligand-binding affinity was
selected as the best docking structure.
Autodock4 (AD4).41 AD4 was used with a grid size of 72 ×

72 × 72 Å and with a spacing of 0.333 Å. Autogrid4 was
selected to perform the docking. The inhibitor was docked to
SARS-CoV-2 Mpro with a genetic algorithm (GA) run of 10, a
population size of 150, and a number of 27 000 generations.
The GA number of evaluations was 250 000. The lowest
binding free energy cluster was selected as the best docking
conformation.
MD Simulations. MD simulations were performed to

improve the docking results of the available inhibitors to
SARS-CoV-2 Mpro by using GROMACS version 5.1.5.53 In
particular, SARS-CoV-2 Mpro and neutralized ions were
described via the Amber99SB-iLDN force field.54 The TIP3P
water model was simultaneously used to represent water
molecules.55 The protonation states of the protein were
predicted by GROMACS using canonical pKa values in a

neutral solution since it probably adjusts the ligand-binding
free energy,56 in which the protonation state of the catalytic
dyad including His41 and Cys145 was also predicted (cf.
Figure S1 in the Supporting Information). The most possible
distance between the His41Hε atom and Cys145Sγ is ca. 0.44
nm (Figure S1A), which is in good agreement with the
experimental data.42 Consequently, the inhibitor was illustrated
using a general Amber force field57 with the help of
AmberTools18 and ACPYPE packages.58,59 It should be
noted that before parameterizing the ligand, the quantum
chemical calculation using the B3LYP functional at the 6-
31G(d,p) level of theory was performed to obtain chemical
information of the inhibitor during which the restrained
electrostatic potential (RESP) approach was used to assign
atomic charges upon quantum simulations using an implicit
solvent environment, ε = 78.4.57 Moreover, the SARS-CoV-2
Mpro + inhibitor complex was placed into a rectangular or
dodecahedron periodic boundary (PBC) condition box with a
volume of 506 or 820 nm3 corresponding to SMD (Figure 1B)
or unbiased MD (Figure 1C) simulations, respectively. The
soluble system hence encompasses ca. 50,000 or 80,000 atoms,
respectively, involving SARS-CoV-2 Mpro, ligands, water
molecules, and neutralized Na+ ions. Moreover, in order to
carry out the perturbation simulations, the ligand was
individually simulated in a dodecahedron PBC box with a
volume of ca. 85 nm3 (Figure 1D). The soluble ligand system
consists of ca. 8000 atoms, involving ligands, water molecules,
and counterbalanced ions.
The parameters for operating MD simulations were

described in previous works.16,17 In particular, the integral
was attempted every 2 fs. A nonbonded pair was enumerated
within a radius of 0.9 nm. The van der Waals (vdW)
interaction was assessed using the cutoff scheme, while the
electrostatic (cou) interaction was determined via the fast

Figure 1. Computational scheme via molecular docking, steered
molecular dynamics (SMD), and MD simulations. (A) Modeling of
molecular docking simulations. Inhibitors were docked to the binding
cleft of SARS-CoV-2 Mpro, which was limited in the docking box with
a volume of ca. 13.82 nm3. (B) Starting structure of the SARS-CoV-2
Mpro + inhibitor complex for estimating the ligand-binding affinity
via the FPL scheme. (C) Initial shape of the SARS-CoV-2 Mpro +
inhibitor complex for MD simulations. (D) Starting conformation of
the solvated inhibitor. The cyan balls describe the neutralized Na+

ions.
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particle mesh Ewald electrostatics scheme.60 The solvated
system was initially minimalized via the steepest descent
approach. The canonical (NVT) and isobaric−isothermal
(NPT) simulations, with lengths of 0.1 and 2.0 ns, respectively,
were then followed to equilibrate the system. The final
conformations of NPT simulations of the solvated complex
were operated as the initial structure of SMD or MD
simulations, a length of 0.5 or 20.0 ns, respectively. Moreover,
the solvated inhibitor system was run for 5.0 ns. Each system
was imitated two times for getting better samples.
Free Energy Calculations. FPL Scheme. An externally

harmonic force was applied to dissociate the inhibitor from the
SARS-CoV-2 Mpro binding cleft as mentioned in the
Supporting Information. In particular, cantilever spring
constant, v = 600 kJ mol−1 nm−2, and pulling velocity, k =
0.005 nm ps−1, were selected as forced parameters.28 During
SMD simulations, the pulling work, W, was recorded to be
used as a critical factor to estimate the ligand-binding affinity28

since it correlates with the binding free energy, ΔG, via the
isobaric−isothermal Jarzynski equality.61 The pulling work W
is calculated as follows

∫=W v F t t( )d
t

0 (1)

LIE Calculation. The ligand-binding free energy, ΔGLIE, was
computed as the mean of vdW and cou interaction differences
of the inhibitor with its neighboring atoms upon incorporation,
that is, the individual ligand in the solvent (unbound state
denoted as subscript u) and the inhibitor in the binding mode
with SARS-CoV-2 Mpro (bound statedenoted as subscript
b). The formula of the LIE approach can be expressed as
follows

α β

γ

Δ = ⟨ ⟩ − ⟨ ⟩ + ⟨ ⟩ − ⟨ ⟩

+
− − − −G V V V V( ) ( )LIE l s
vdW

b l s
vdW

u l s
cou

b l s
cou

u

(2)

The coefficient γ, a constant, is associated with the alteration
of the hydrophobic nature of the binding cleft conceding to
various species of inhibitors, whereas the coefficients α and β
are rating parameters for nonpolar and polar interactions,
respectively.62 Additional information about the LIE approach
is described in the Supporting Information.

MM-PBSA Analysis. The ligand-binding affinity, ΔGMM‑PBSA,
can be assessed using MD simulations via the MM-PBSA
approach29,30 as follows

Δ = Δ + Δ + Δ + Δ − Δ‐G E E G G T SMM PBSA cou vdW sur PB
(3)

where ΔEcou, ΔEvdW, ΔGsur, and ΔGPB correspond to the
energetic changes in cou, vdW, nonpolar, and polar
interactions, respectively; TΔS is the entropic contribution to
ΔGMM‑PBSA. In particular, ΔEcou and ΔEvdW were computed
using GROMACS tools “gmx energy”. The nonpolar metrics,
ΔGsur, was determined via the Shrake−Rupley formula,63

which is ΔGsur = γSASA + β, where γ = 0.0072 kcal mol−1 Å−2

and β = 0.64 The polar component, ΔGPB, was assessed by
numerically resolving the Poisson−Boltzmann equation using
an implicit solvent model.65,66 Finally, the entropic term can be
probed via normal mode approximation.67 Additional
information about the MM-PBSA approach is described in
the Supporting Information.

Double-Annihilation Binding Free Energy Investigation.
The inhibitor was changed from bound state to unbound state
by using λ-alteration simulations,68 which concur at λ = 0 and
λ = 1. Several values of the coupling parameter λ were used to
complete this task. The free energy change, ΔGλ=0→1 =
−kBTln⟨e−ΔH/kBT⟩λ=0, corresponds to the work of the ligand
annihilation process, whose information is described in detail
in the Supporting Information. The value can be assessed via
the Bennett acceptance ratio scheme.69 The binding free
energy between SARS-CoV-2 Mpro and the inhibitor, ΔGFEP,
is thus obtained due to the difference of the free energy

Table 1. Calculated Results in Comparison with the Experimental Values of Some Compounds to SARS-CoV-2 Mpro

no name ΔGVina ΔGAD4 W ΔGLIE ΔGMM‑PBSA ΔGFEP ΔGEXP
a

1 7Jb −7.4 −6.0 95.7 ± 6.1 −15.04 ± 0.30 −19.3 ± 1.03 −17.95 ± 2.74 −8.6944

2 11ab −7.3 −8.1 109.7 ± 3.1 −14.78 ± 0.81 −29.67 ± 0.30 −18.95 ± 0.52 −9.9645

3 11bb −7.4 −8.0 91.3 ± 7.9 −13.99 ± 0.36 −14.41 ± 1.85 −16.53 ± 0.59 −10.1345

4 11r −6.8 −6.9 96.6 ± 8.2 −15.98 ± 1.92 −15.14 ± 1.61 −20.89 ± 0.51 −9.2346

5 13ab −7.6 −7.6 64.7 ± 10.6 −10.07 ± 0.59 −0.71 ± 0.87 −10.94 ± 2.51 −7.7046

6 13bb −7.7 −7.4 81.3 ± 6.1 −16.16 ± 2.00 −19.93 ± 3.96 −16.47 ± 0.32 −8.4546

7 baicalein −6.8 −5.7 36.5 ± 8.0 −10.36 ± 2.57 −8.88 ± 2.92 −8.40 ± 2.23 −8.2547

8 boceprevirc −7.1 −8.8 54.5 ± 1.8 −11.75 ± 0.85 −9.74 ± 0.48 −7.65 ± 1.31 −7.3748

9 calpain inhibitor I −5.3 −5.4 50.2 ± 4.9 −10.77 ± 0.87 −7.51 ± 0.17 −6.41 ± 0.37 −6.9448

10 calpain inhibitor IIc −5.6 −5.3 74.1 ± 22.9 −12.21 ± 0.22 −14.92 ± 6.95 −9.09 ± 2.39 −8.2348

11 calpain inhibitor XIIc −6.3 −5.1 51.8 ± 5.7 −11.98 ± 0.30 −24.73 ± 1.21 −9.27 ± 0.88 −8.6948

12 calpeptin −4.9 −6.1 33.0 ± 5.4 −9.75 ± 1.07 −4.37 ± 1.89 −3.43 ± 0.97 −6.8148

13 carmofurb −5.6 −6.0 39.1 ± 5.9 −9.30 ± 1.78 −3.97 ± 0.98 −7.12 ± 3.20 −7.8649

14 GC-373b −7.2 −6.6 53.1 ± 8.3 −12.16 ± 0.41 −12.04 ± 1.13 −10.32 ± 1.55 −8.7650

15 MG-115 −6.1 −5.4 57.8 ± 2.2 −11.34 ± 0.57 −8.14 ± 1.21 −9.19 ± 0.73 −7.5348

16 MG-132c −6.2 −5.2 71.4 ± 9.1 −11.50 ± 0.39 −12.13 ± 3.06 −8.48 ± 0.41 −7.4148

17 narlaprevirb −7.5 −5.9 69.9 ± 2.1 −12.69 ± 0.05 −22.75 ± 0.25 −6.57 ± 0.50 −7.1848

18 PX-12b −3.9 −4.8 32.1 ± 1.0 −8.67 ± 0.05 −32.44 ± 0.73 −2.56 ± 0.30 −6.3949

19 shikonin −6.1 −6.0 27.3 ± 6.9 −9.37 ± 0.27 −0.74 ± 4.30 −3.01 ± 0.95 −6.5849

20 tideglusib −6.6 −7.1 36.5 ± 3.1 −9.92 ± 0.27 −10.56 ± 2.93 −4.26 ± 0.12 −7.9549
aThe experimental binding free energies were gained based on the IC50 value, approximating that the one equals to the inhibition constant Ki and
based on the assumption of the contribution of the covalent binding energy is small. bThe covalent binding inhibitors. cThe possible slow covalent
binding inhibitors. The unit is kcal mol−1.
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changes upon two ligand annihilation processes involving a
demolishing inhibitor in the solvated complex, ΔGλ=0→1

Comp , and
an inhibitor, ΔGλ=0→1

lig ,22 as follows

Δ = Δ − Δλ λ= → = →G G GFEP 0 1
Comp

0 1
lig

(4)

Analysis Tools. Because the protonation states of ligands
possibly alter the protein−ligand binding,70 the chemicalize
webserver, a tool of ChemAxon, was used to assess the
protonation states of inhibitors. The Adaptive Poisson-
Boltzmann Solver (APBS) webserver was used to determine
the surface charge of the protease.66,71 The correlation error
was calculated using 1000 rounds of the bootstrapping
method.72 The intermolecular nonbonded contact (NBC)
between the ligand atoms and the residual SARS-CoV-2 Mpro
was confirmed when the pair between their nonhydrogen
atoms is smaller than 4.5 Å. The intermolecular hydrogen
bond (HB) between the Mpro residues and the inhibitors was
endorsed when the angle ∠ acceptor (A)-hydrogen (H)-donor
(D) is larger than 3π/4 and the pair A−D is smaller than 3.5 Å.
ROC-AUC was calculated using the Scikit-Learn library.73

Since ROC-AUC calculations require ligands to be assigned a
binary label, we classify the ligands according to their
experimental binding affinity and split them into two halves.
The ligands in the first half having experimental binding free
energy below the median were assigned the strong binder label,
whereas those in the second half were assigned the weak binder
label. ROC-AUC was used to benchmark different computa-
tional methods in terms of discriminating between strong and
weak binders.

■ RESULTS AND DISCUSSION

Molecular Docking Calculations. The obtained results
are shown in Tables 1 and S1 in the Supporting Information.
Initially, we assessed the docking results against the relevant
experimental data including binding affinity and native binding
poses.44−50 The assessment includes two parts: correlation
between docking and experimental ligand-binding affinity and
successful docking rate.34 The estimated correlation coef-
ficients for Vina and AD4 are RVina = 0.60 ± 0.13 and RAD4 =
0.47 ± 0.21, respectively. This indicates that the docking
energies of Vina are more strongly correlated with experiments
than those of AD4. Moreover, the root-mean-square error
(RMSE) of Vina is lower than that of AD4, that is, RMSEVina =
1.78 ± 0.17 and RMSEVina = 1.97 ± 0.17 kcal mol−1,
respectively. Although AD4 required much more computing
resources than Vina does, its docking performances lagged
behind Vina. It is probably caused by the difference in scoring
functions as indicated by prior observations,34 in which AD4
uses a hybrid physical-based/empirical scoring function, while
Vina uses an empirical scoring function.25,41 Furthermore, in
the previous work,74 AD4 gave poor correlation, R = 0.36, with
ΔGJarzynski, which is obtained via NEMD simulations,31 a much
more accurate free energy approach. Therefore, it may be
argued that Vina is the appropriate protocol for preliminary
assessment of the ligand-binding affinity to SARS-CoV-2
Mpro.
The inhibitor-binding pose was also obtained using this

process. The docking pose forms a small root-mean-square
deviation (RMSD) with respect to the experimental pose. It
was considered as a successfully docked conformation if the
RMSD is smaller than 2 Å.34 In particular, nine compounds
including 7j, 11a, 11b, 13b, baicalein, boceprevir, calpeptin, GC-

373, and narlaprevir were reported to have the experimental
binding poses with the PDB IDs 6XMK,44 6LZE,45 6M0K,45

6Y2F,46 6M2N,47 7K40,42 7AKU,75 6WTK,50 and 7JYC,42

respectively. Over these systems, the successful docking rate of
Vina is ca. 67% with a mean RMSD of 1.97 ± 0.32 Å, as
presented in Figure 2. It is significantly better than those by

AD4 with the RMSD between docked and experimental
structures of 3.22 ± 0.33 Å, as represented in Figure S2 in the
Supporting Information. Therefore, it may be concluded that
Vina not only formed the proper affinity results but also
showed the suitable binding pose to SARS-CoV-2 Mpro.

MD Simulations. Because the molecular docking simu-
lations often use many constraints/approximations to accel-
erate the calculation speed, the results often need to be refined
using more accurate protocols.17,18 In this context, because
Vina formed the most suitable binding affinity and pose as
discussed above, we have chosen the docking structures
provided by this approach as initial structures for simulating via
SMD/MD techniques. The ligand-binding free energy
calculation methods were thus carried out.23,35 The perform-
ance of free energy calculations based on SMD/MD
trajectories was thus assessed.

Steered MD Simulation. FPL is an efficient technique to
quickly classify the ligand-binding affinity.28 This approach
successfully estimated the affinities of several inhibitors binding
to SARS-CoV-2 Mpro, which suggested a shortlist of potent
compounds to further evaluate via perturbation simulations.16

A benchmark with 11 compounds was then used later on,
indicating that the correlation coefficient of the pulling work,
W, and the experimental binding free energy, ΔGEXP, are
appropriate with a value of RFPL = −0.76 ± 0.10.17 However,
due to the small size of the testing set, the obtained results are
probably unstable due to the large value of the computed error.
Consequently, the value did not show superiority over Vina
docking with RVina = 0.72 ± 0.14, which is within the
computed error.17 In this context, we benchmarked again this
approach for evaluating the ligand-binding affinity versus
SARS-CoV-2 Mpro with a larger testing set. The FPL scheme
was thus used for refining the obtained docking results, which
were provided by Vina. In FPL simulations, an externally
pulling force was applied to extract inhibitors from bound to
unbound states. The recorded rupture force, Fmax, and pulling
work, W, during the simulations are given in Table S2 in the

Figure 2. Comparison of docking (cyan) and experimental binding
(yellow) poses of 11a, 11b, 13b, and boceprevir to SARS-CoV-2
Mpro. The surface charge, ranging from −5 to 5, of the protease was
computed via the APBS webserver. The docking results were obtained
by using the Vina package.
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Supporting Information. The F value in time dependence is
also shown in Figure S3 in the Supporting Information. The
average of W values falls in the range 18.3 ± 1.4 to 111.3 ± 6.0
kcal mol−1, providing a median of 56.0 ± 5.0 kcal mol−1, while
the mean rupture force Fmax is within the range from 279.5 ±
12.7 to 1040.6 ± 68.9 pN, giving a median of 581.9 ± 41.2 pN.
The ligand-binding affinity is possibly ranked via the W value,
which formed an appropriate correlation, R = −0.51 ± 0.15
(cf. Table S2), with the respective experiments.44−50 The
obtained coefficient indicated that FPL is significantly worse
than Vina docking, RVina = 0.60 ± 0.13, in predicting the
ligand-binding affinity of SARS-CoV-2 Mpro. The poorly
correlated outcomes of FPL probably appear due to SMD
simulations performed using the conformations provided by
the short NPT simulations, which may not be sufficient to
reach the equilibrium states. Therefore, the unbiased MD
simulations with a length of 20 ns were performed after NPT
simulations and were reported below. We used the last
conformations of MD simulations as starting structures of FPL
calculations. The obtained outcomes are reported in Tables 1
and S3 in the Supporting Information, in which the F value
during SMD simulations is reported in Figure S4 in the
Supporting Information. The Fmax and W values were thus
altered and ranged from 342.0 to 961.4 pN and 27.3 to 109.7
kcal mol−1, forming median values of 644.0 ± 39.2 pN and
61.3 ± 5.3 kcal mol−1, respectively. The obtained correlation
between W and ΔGEXP was thus increased from R = −0.51 ±
0.15 to RFPL = −0.74 ± 0.11 (cf. Figure 3). The FPL technique
is thus able to improve upon the docking results; however, the
equilibrated simulations are required to be performed carefully.

Unbiased MD Simulations. As mentioned above, the FPL
results based on the rather short relaxation time of only 2 ns
were probably limited since it may not be sufficient to reach
the equilibrium states. Moreover, the SARS-CoV-2 Mpro Cα

atoms were restrained, probably hindering the structural
change of the complexed system to equilibrium states. The
complexed conformation including SARS-CoV-2 Mpro and the
ligand in the best docking pose provided by Vina was thus
solvated and equilibrated via unbiased MD simulations with a
length of 20 ns. The accuracy of the following FPL calculations
was thus increased significantly (Figure 3). During the
unbiased MD simulation, the complexes almost reached the
equilibrium states after 5 ns (cf. Figure S5 in the Supporting
Information). Furthermore, the all-atom RMSD of SARS-CoV-
2 Mpro was found to be in good agreement with the previous
work76 (cf. Figure S6 in the Supporting Information).
Therefore, the snapshots over an interval of 10−20 ns with a
stride of 10 ps were collected for binding free energy

calculation via the LIE and MM-PBSA approaches. In addition,
the structures extracted from MD trajectories of 2.5−5 ns of
the solvated inhibitor system were also involved in free energy
calculations via the LIE approach.
In order to probe the factors controlling the binding process

of inhibitors to Mpro, the intermolecular NBC and HB
between inhibitors and individual residues of SARS-CoV2 Mro
were investigated using equilibrium snapshots of all complexes.
The obtained outcomes are presented in Figure S7 in the
Supporting Information, which mentioned 30 residues
establishing NBC to inhibitors over more than 15% of the
appraised shapes (40,000 snapshots totally). However, there
are only 19/30 residues that created HB to inhibitors.
Shortening the list, we have only counted residues, which
simultaneously showed NBC and HB to inhibitors with a
probability being higher than 42 and 4%, respectively. It should
be noted that 47 ± 5 and 6 ± 2% amounts correspond to the
averaged values over 30 residues. Nine residues were obtained
and are described in Figure 4. We may argue that the residues

Thr26, His41, Ser46, Asn142, Gly143, Cys145, His164, Glu166,
and Gln189 are critical elements governing the binding process
of ligands to SARS-CoV-2 Mpro. The large contribution of
these residues to the ligand-binding process implies that the
protonation state of these residues involving the catalytic dyad
probably alters the ligand-binding affinity. Therefore, the issue
should be carefully carried out in further work. Furthermore,
possible mutations at these residues could change much the
ligand-binding free energy to SARS-CoV-2 Mpro.
In addition, the clustering method was then applied to

characterize the structural change of nine critical residues
during the equilibrium conformations of all complexes. The
calculation was performed with a nonhydrogen atomic RMSD
cutoff of 1.2 Å over 40 000 structures of nine residues in
stabilizing bound states with 20 inhibitors. One cluster was
found, which is shown as colorful residues in Figure 5. The
representative structure of nine critical residues was compared
with the starting conformation, which is in gray color. The
differences between the MD refined and starting structures are
noted as red arrows in Figure 5. The significant structural
changes are the flexing of the residue Asn142 and the rotation
of the hydroxyl and thiol side chains of Ser46 and Cys145,
respectively. The side chain residues probably rotate to form
HB to inhibitors. Moreover, overall, the difference between the

Figure 3. Association of pulling work W and ΔGEXP. The W values
were calculated via eq 1. The ΔGEXP values were computed when the
half-maximal inhibitory concentration, IC50, was assumed to be equal
to the inhibition constant, Ki.

Figure 4. Critical residues forming NBC and HB to the inhibitors.
The results were obtained over the equilibrium snapshots of MD
simulations of all complexes.
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representative structure and the initial conformation is ca. 1.0
Å, implying the stability of the SARS-CoV-2 Mpro active site
during MD simulations.
Binding Free Energy Calculation by Using the LIE

Scheme. The difference between the averaged vdW and cou
interaction energies between each inhibitor to SARS-CoV-2
Mpro, bound state, and the solution, unbound state, as long as
ΔGEXP is given in Tables 1 and S4 in the Supporting
Information. The binding free energy, ΔGLIE, is computed
using eq 2. Traditionally, the parameters α and β were chosen
as 0.18 and 0.50, respectively.27,77 However, similar to the Aβ
oligomeric system,78 no correlation, R = −0.13 ± 0.20, was
observed between the calculated and experimental values. This
is probably due to the shallow binding cleft of SARS-CoV-2
Mpro, which is similar to the ligand−surface binding in the
case of Aβ oligomer.78 Therefore, the parameters including α =
0.288, β = −0.049, and γ = −5.880 of the Aβ system78 were
proposed to be used for calculating the ligand-binding free
energy of the SARS-CoV-2 Mpro + inhibitor complex.
Interestingly, the set of parameters gave a correlation
coefficient RLIE = 0.73 ± 0.09 and RMSE = 4.12 ± 0.40 kcal
mol−1 (Figure 6). Absolutely, the LIE approach formed similar

accuracy outcomes, RLIE = 0.73 ± 0.09, compared to FPL
simulations, RFPL = −0.74 ± 0.11. Moreover, the negative
parameter β may imply the loss of cou interactions of
inhibitors upon association (cf. Table S4) or it may be argued
that the vdW interactions control the binding process of
inhibitors to the protease. It is in good agreement with the
previous outcomes16,18 and obtained results via MM-PBSA and
perturbation calculations below. Furthermore, the negative

value γ implies that the hydrophobic interactions between
inhibitors and SARS-CoV-2 Mpro are strong as mentioned in
the conclusion about the superiority of the above vdW term. In
addition, although the LIE showed a good Pearson correlation,
ΔGLIE overestimates ΔGEXP with an amount of ca. 3.89 kcal
mol−1 (see Table 1). It is probably caused by the lower
hydrophobic interaction between the SARS-CoV-2 Mpro +
inhibitor complexes compared with the Aβ-complexed system
or the incorrect imitation of the interaction between inhibitors
and the surrounding atoms.79,80 Overall, it may be argued that
the binding process of the SARS-CoV-2 Mpro + inhibitor
complex is similar to the Aβ oligomer + ligand complex, but
the hydrophobic contacts of the Mpro complex are weaker
than the Aβ ones.

Establishing the Ligand-Binding Free Energy via the MM-
PBSA Protocol. The equilibrium conformations of the SARS-
CoV-2 Mpro + inhibitor complex during MD simulations were
implemented for estimating the binding free energy using
continuum models29,30 following eq 3. It should be highlighted
that our group has successfully calculated the ligand-binding
free energy for various biomolecules using the MM-PBSA
method.78,81−83 The obtained outcomes are described in
Tables 1 and S5 in the Supporting Information. In particular,
ΔGMM‑PBSA overestimates ΔGEXP with a value of ca. 5.60 kcal
mol−1, which is slightly larger than that given by the LIE
protocol. Moreover, the MM-PBSA method provides a poor
accuracy in comparison with the corresponding experiments,
RMM‑PBSA = 0.32 ± 0.29 and RMSE = 10.15 ± 1.92 kcal mol−1

(Figure 7). It is in good agreement with the previous study84

that MM-PBSA formed a correlation with the experiment with
a value of RMM‑PBSA = 0.25 upon investigating 15 complexes.
Interestingly, as mentioned above that the binding process of
inhibitors to SARS-CoV-2 Mpro is quite similar to that of the
inhibitors to the Aβ oligomer, the Pearson correlations of two
systems are similar, RMM‑PBSA

SARS‑CoV‑2 = 0.32 versus RMM‑PBSA
Aβ = 0.27.78

The poor accuracy of the MM-PBSA approach applying on
SARS-CoV-2 Mpro is possibly similar to the Aβ system that is
probably caused by the selection of an inappropriate dielectric
constant, ε, and roughly entropic approximation.35,78,85

Furthermore, the ε issue was also consolidated via the
inhibitor interaction diagram analysis (cf. Table S2 in the
Supporting Information) where the solvation exposure of
inhibitors is absolutely complicated. Therefore, further
investigation to characterize factors affecting the accuracy of
MM-PBSA applying on SARS-CoV-2 Mpro should be
performed before the approach is widely used for screening
potential inhibitors for the Mpro target.

Figure 5. Representative structures of nine critical residues via the
nonhydrogen RMSD clustering calculation with a cutoff of 1.2 Å. The
colorful residues represent the MD refined structure in comparison
with the initial structure, which is denoted in gray color. Red arrows
imply the change of these residues during MD simulations.

Figure 6. Comparison of ΔGLIE and ΔGEXP. The calculated binding
free energy was computed using eq 2 with the parameters α = 0.288, β
= −0.049, and γ = −5.880 referring the Aβ oligomer + inhibitor
complex. The ΔGEXP values were computed when the half-maximal
inhibitory concentration, IC50, was assumed to be equal to the
inhibition constant, Ki.

Figure 7. Comparison of ΔGMM‑PBSA and ΔGEXP. The calculated
binding free energy was computed using eq 3. The ΔGEXP values were
computed when the half-maximal inhibitory concentration, IC50, was
assumed to be equal to the inhibition constant, Ki.
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Determination of Ligand-Binding Free Energy Using the
FEP Method. In recent reports,18,84 the FEP simulation
successfully determined the ligand-binding free energy and is
known as the most accurate free energy method.23,86 However,
although the perturbation results correlate with the respective
experiments,18,84 the Pearson coefficient diffused in a large
range from 0.54 to 0.94. In particular, FEP simulations
determined the ligand-binding free energy of 11 inhibitors to
SARS-CoV-2 Mpro with high accuracy, RFEP = 0.94 ± 0.04.18

In a different study, perturbation simulations also formed a
Pearson correlation RFEP = 0.54 when 15 complexes were
considered.84 Therefore, in this work, we benchmarked the
FEP performance on a larger set from multi-sources, which
would probably provide a clarification for the accomplishment
of this approach.
The final structures of MD simulations mimicking the

solvated complex and ligand were utilized as the input of λ-
alteration simulations. The obtained results are reported in
detail in Tables 1 and S6 in the Supporting Information. The
perturbation simulations provide the highest accuracy results
with a Pearson correlation of RFEP = 0.85 ± 0.06 (cf. Figure 8).

Although RFEP is quite high, it is far from being perfect. The
inaccurate outcomes are probably caused by the insufficient
simulating the ligand−covalent binding interaction of conven-
tional MD simulations. Because some covalent and slow
covalent binding inhibitors were employed upon investigations
as noted in Table 1, the binding free energy of these

compounds to SARS-CoV-2 Mpro involves two components
including covalent and noncovalent binding free energy.87 The
further expensive computing approach such as QM/MM or
PDLD/S-LRA/β should be thus carried out to refine the
binding process.87−89 However, in this work, the computa-
tional investigations were limited in the framework of the
classical simulation, which is widely used and good enough to
estimate the potential inhibitors for Mpro. Moreover, in
average over complexes, the ΔGFEP value is −9.87 ± 1.20 kcal
mol−1, which overestimates ca. 1.87 kcal mol−1 compared to
the mean of the experimental values. The difference is
significantly smaller than those obtained by LIE, ca. 3.89 kcal
mol−1, and MM-PBSA, 5.60 kcal mol−1, methods. The
difference between the mean of experimental and computa-
tional values probably comes from the incorrect simulations of
the interaction between inhibitors and neighboring atoms.79,80

The rough assumption of the IC50 equals the inhibition
constant Ki, when calculated the experimental binding free
energy, also adopts a shifting possibility. Furthermore, the
obtained results by λ-alteration simulations also revealed the
binding process of the SARS-CoV-2 Mpro inhibitor. The vdW
interaction is dominant in the binding process of ligands to
Mpro, which is in good agreement with the previous
observations16,18 because the average values of ΔGcou and
ΔGvdW are −2.82 ± 0.83 and −7.05 ± 0.49 kcal mol−1,
respectively.

Calculating the Binding Affinities of Other SARS-CoV-2
Inhibitors. The binding free energy of some available SARS-
CoV-2 inhibitors to the Mpro was also evaluated using the
assessed approaches. The outcomes are described in Tables 2
and S7−S10 and Figures S8 and S9 in the Supporting
Information. Although the inhibitory concentration of these
compounds was extracted from cell culture experiments,51

indicating that drug targets probably differ from SARS-CoV-2
Mpro such as RNA polymerase, appropriate correlations
between the calculated results and experimental data were
recorded. Therefore, it may be argued that there are many
compounds aiming at inhibiting Mpro. In particular, in good
agreement with the above evaluation, Vina showed the higher
correlation, RVina = 0.78 ± 0.23, compared with the AD4
package, RAD4 = 0.48 ± 0.23. The binding poses of these
compounds to SARS-CoV-2 Mpro were thus used as the initial

Figure 8. Comparison of ΔGFEP and ΔGEXP. The calculated binding
free energy was computed using eq 4. The ΔGEXP values were
computed when the half-maximal inhibitory concentration, IC50, was
assumed to be equal to the inhibition constant, Ki.

Table 2. Calculated Results in Comparison with the Experimental Values of Some Compounds to SARS-CoV-2

no name ΔGVina ΔGAD4 W ΔGLIE ΔGMM‑PBSA ΔGFEP ΔGEXP
a

1 bazedoxifene −7.5 −8.1 47.4 ± 9.6 −11.12 ± 1.02 −5.13 ± 1.60 −5.25 ± 2.47 −7.4851

2 ciclesonide −7.4 −8.9 55.9 ± 1.9 −12.89 ± 0.47 −11.58 ± 2.80 −9.87 ± 0.40 −7.3451

3 digitoxin −8.1 −8.1 72.5 ± 5.2 −13.22 ± 0.93 −0.92 ± 2.95 −16.19 ± 3.88 −9.0951

4 favipiravir −4.9 −4.9 16.0 ± 1.5 −7.23 ± 0.35 −2.31 ± 1.56 −0.99 ± 0.51 −4.5251

5 gilteritinib −7.5 −8.5 37.7 ± 2.5 −12.15 ± 0.53 −11.55 ± 3.06 −8.02 ± 0.35 −7.0851

6 lopinavir −6.3 −5.1 41.8 ± 5.1 −12.39 ± 1.94 −9.30 ± 3.95 −4.72 ± 2.92 −6.5951

7 mefloquine −6.5 −6.5 45.7 ± 3.0 −10.51 ± 0.16 −9.84 ± 0.06 −3.05 ± 1.36 −7.3451

8 mequitazine −6.6 −7.7 24.6 ± 2.3 −9.33 ± 0.76 −1.98 ± 4.66 −8.88 ± 0.41 −7.0351

9 niclosamide −6.6 −6.3 41.9 ± 6.0 −10.95 ± 0.57 −8.38 ± 1.95 −8.77 ± 0.40 −8.9751

10 osajin −7.0 −7.7 27.6 ± 4.4 −11.45 ± 0.14 −15.26 ± 3.00 −4.15 ± 1.14 −7.4151

11 penfluridol −6.9 −8.0 59.6 ± 0.5 −10.55 ± 0.38 −0.27 ± 3.41 −10.51 ± 1.51 −7.2651

12 phenazopyridine −6.0 −6.0 23.9 ± 3.2 −9.96 ± 0.56 −5.90 ± 2.98 −3.80 ± 0.58 −6.2351

13 proscillaridin −7.6 −7.4 57.8 ± 4.5 −11.85 ± 0.38 −7.32 ± 1.33 −14.56 ± 2.65 −7.7951

14 remdesivir −6.5 −4.5 37.8 ± 3.9 −12.00 ± 0.31 −28.69 ± 2.94 −8.91 ± 5.65 −6.9651

aThe experimental binding free energies were gained based on the IC50 value, approximating that the one equals to the inhibition constant Ki. The
unit is kcal mol−1.
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structures for SMD/MD refined simulations. The Pearson
correlations between FEP, LIE, MM-PBSA, and FPL compared
with the experimental data are RFEP = 0.70 ± 0.16, RLIE = 0.67
± 0.28, RMM‑PBSA = 0.00 ± 0.26, and RFPL = −0.71 ± 0.17,
respectively. The MM-PBSA approach is different from others
since it is very weakly correlated with experiments. Moreover,
although FEP, LIE, and FPL showed appropriate results, the
linear relationship was decreased. The discrepancies occurred
since some compounds probably target on the RNA polymer-
ase rather than Mpro.14

Area under the ROC CurveROC-AUC. The ROC-AUC
values for SARS-CoV-2 Mpro inhibitors and other SARS-CoV-
2 inhibitors are shown in Tables S11 and S12. ROC-AUC is a
commonly used metric to measure the ability of a binary
classifier in distinguishing between two labels. The results
indicate that for Mpro inhibitors, FEP and LIE are the best
classifiers, followed by MM-PBSA, FPL, Vina, and AD4.
However, for other SARS-CoV-2 inhibitors, the two docking
methods give better ROC-AUC than the binding free energy
methods do, except for the FPL method.

■ CONCLUSIONS

In this context, in order to benchmark which is the appropriate
free energy approach for probing the binding free energy of
inhibitors to the SARS-CoV-2 Mpro, we have carried out both
molecular docking and MD simulations. Vina and AD4 were
employed for docking imitations. We have initially demon-
strated that the Vina package is better than the AD4 protocol
in both predicting the ligand-binding affinity, RVina = 0.60 ±
0.13, and binding pose of ligands, where the successful docking
rate is of ca. 67%, to the SARS-CoV-2 Mpro target.
Surprisingly, AD4 produced poorly correlated results with
coefficients of RAD4 = 0.47 ± 0.21. It should be noted that the
poor accuracy of AD4 was also revealed when the docking
results were compared with the NEMD simulations, R =
0.36.74

MD simulations would then be accomplished. The FEP
approach provided the most accurate results, RFEP = 0.85 ±
0.06, compared with the respective experiments. Interestingly,
the LIE and FPL approaches also formed good correlation
coefficients, RLIE = 0.73 ± 0.09 and RFPL = −0.74 ± 0.11, while
using significantly lower computing resources compared to
FEP, respectively. However, an appropriate relaxed simulation,
which is similar to the prepared input for FEP/LIE/MM-PBSA
calculations, was required to reach equilibrium states before
FPL was carried out. Because the successful docking rate is ca.
67%, the short NPT simulation may not be sufficient to reach
the equilibrium states. The MM-PBSA method poorly
correlates with the experimental data, RMM‑PBSA = 0.32 ±
0.29, as agreed in the recent outcomes.84

Atomistic simulations also revealed that the vdW interaction
rigidly dominates the cou interaction during the binding
process of inhibitors to the SARS-CoV-2 Mpro. Moreover, the
residues Thr26, His41, Ser46, Asn142, Gly143, Cys145, His164,
Glu166, and Gln189 play essential roles in frequently forming
NBC and HB to inhibitors.
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