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Abstract: The volume expansion during Li ion insertion/extraction remains an obstacle for the
application of Sn-based anode in lithium ion-batteries. Herein, the nanoporous (np) Cu6Sn5 alloy
and Cu6Sn5/Sn composite were applied as a lithium-ion battery anode. The as-dealloyed np-Cu6Sn5

has an ultrafine ligament size of 40 nm and a high BET-specific area of 15.9 m2 g−1. The anode
shows an initial discharge capacity as high as 1200 mA h g−1, and it remains a capacity of higher
than 600 mA h g−1 for the initial five cycles at 0.1 A g−1. After 100 cycles, the anode maintains
a stable capacity higher than 200 mA h g−1 for at least 350 cycles, with outstanding Coulombic
efficiency. The ex situ XRD patterns reveal the reverse phase transformation between Cu6Sn5 and
Li2CuSn. The Cu6Sn5/Sn composite presents a similar cycling performance with a slightly inferior
rate performance compared to np-Cu6Sn5. The study demonstrates that dealloyed nanoporous
Cu6Sn5 alloy could be a promising candidate for lithium-ion batteries.

Keywords: dealloying; nanoporous; Cu6Sn5 alloy; lithium-ion battery

1. Introduction

The development of portable electronic devices urgently requires lithium-ion batteries
(LIBs) with a high capacity and long lifespan [1–3]. Currently, extensive efforts have been
devoted to developing alternative anode materials, e.g., metal oxide, alloys and group IVA
elements, to boost the capacity of LIBs [1,4,5]. Micro-pillar splitting and micro-cantilever
bending have been proposed to evaluate the mechanical behaviors of materials at the micro-
scale, and micro-pillar splitting is commonly employed to analyze the fracture toughness of
battery electrode materials and solid state electrolyte [6]. Tin (Sn) is regarded as one of the
promising anode substitutes due to its high theoretical gravimetric capacity (994 mA h g−1

for Li22Sn5), low cost, great safety and low working potential window (0.3–0.6 V) [7–9].
However, Sn suffers from violent irreversible capacity loss and disintegration due to its
Li-driven volume expansion (up to 259%) during lithiation and de-lithiation cycling, which
impedes its application in commercial LIBs [7,10].

Several approaches have been proposed to overcome the volume expansion issue.
One is to reduce the size of the Sn-based materials, i.e., construction of nanostructures. For
instance, a 3D nanocomposite consisted of 3D structured Sn scaffold and a hollow Sn sphere
was fabricated as the LIBs anode [11]. The anode exhibited a capacity of 1700 mA h cm−3

for over 200 cycles at 0.5 C. The high cycling stability could be attributed to the 3D nanos-
tructured design that accommodated the volume expansion during charge/discharge [11].
Another effective approach is to construct Sn/carbon or Sn/metal composite, in which the
carbon substrate or metal can act as the buffer to bear the volume change of Sn. Wang’s
group designed a mesoporous carbon/Sn anode for Li-ion and Na-ion batteries, in which
the mesoporous carbon was proposed to accommodate the volume change of Sn nanoparti-
cles during ion insertion and extraction [12]. A Sn/graphite anode presented improved
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capacity retention with only 0.7% loss per cycle [13]. Nanocable-like Sn-core/carbon-sheath
anode materials have been fabricated by chemical vapor deposition, delivering a specific
capacity of 630 mA h g−1 after 100 cycles at a current density of 100 mA g−1 [14]. In addi-
tion, graphene-confined Sn nanosheets and 3D hierarchical SnO2/graphene frameworks
were designed, showing enhanced lithium storage capability [15,16]. Liu et al. reported
a 3D nanocomposite including both a 3D structured Sn scaffold and a hollow Sn sphere
within each cavity where all the free Sn surfaces are coated with carbon, showing a high
volumetric capacity of ∼1700 mA h cm−3 over 200 cycles at 0.5 C, and a capacity greater
than 1200 mA h cm−3 at 10 C [11]. Combining Sn with metals could form intermetallic
compounds and the metal could also act as the buffer to accommodate the volume expan-
sion [1,17]. A Ni3Sn2 microcage showed stable capacity of 534 mA h g−1 after 1000 cycles
at the current density of 1 C [17]. Single-crystalline FeSn2 nanospheres with uniform small
particle size have been synthesized, showing better electrochemical performances than
other nano-spherical intermetallic compounds such as Cu6Sn5, CoSn3 and Ni3Sn4, due to
its crystal structure [18]. In addition, Sn-Co alloy nanoparticles encapsulated in a porous
3D graphene network was also applied as the LIB anode [19].

In addition to the above-mentioned materials, the most studied Sn-based materials are
Cu-Sn alloys, as copper owns high conductivity and elasticity, and Cu6Sn5 possesses the
high theoretical capacity of 605 mA h g−1 [20–25]. Several approaches have been applied
to fabricate Cu6Sn5 nanoparticles, film, or nanowires [20,26–29]. A solution route was used
to synthesize dendrite Cu6Sn5 powers [27]. A facile one-step electrodepositing method
could also form Cu6Sn5 alloy on the Cu foil, and the alloy electrode showed a discharge
capacity of 462 mA h g−1 [30]. A core-shell Cu@Cu6Sn5 nanowire was synthesized via
an electrodeposition process, and the anode showed excellent rate performance even at
high current density of 20 C [31]. Recently, dealloying, a powerful method to fabricate
nanoporous metals, was applied to fabricate Cu6Sn5 nanostructure for fabrication LIB
anode [22,25,28]. Liu et al. dealloyed Cu17Sn7Al76 alloy in a 1 M NaOH to obtain a 3D
nanoporous Cu-Sn electrode. The electrode presents a capacity of 566 mA h g−1 at a current
density of 1670 mA g−1 [25]. The study found that the nanopores facilitated the penetration
of Li+ ions. A nanoporous Cu6Sn5/Cu composite was generated via a similar method
by dealloying Al10Cu3Sn alloy [22,32]. The hierarchical porous structure promoted the
mass transport and accommodated the volume change; thus, the as-dealloyed composite
displayed enhanced stability and rate performance [22].

In our previous report, we found that by changing Cu and Sn ratio in the Mg-Cu-
Sn alloy, Cu-Sn alloys or composite with different phase compositions can be achieved
via dealloying [28]. Herein, in this study, we applied the as-dealloyed Cu6Sn5 alloy and
Cu6Sn5/Sn composite as the LIB anode. The as-dealloyed anode was found to have
excellent cycling stability and rate performance due to the nanoporous structure. Moreover,
the anode material has good thermal stability due to the formation of intermetallic Cu6Sn5,
favoring the cycling. The ex situ XRD proved the reverse phase transformation between
Cu6Sn5 and Li2CuSn during charge/discharge process.

2. Experimental
2.1. Synthesis of Nanoporous Cu6Sn5 Alloy and Cu6Sn5/Sn Composite

Mg67Cu18Sn15 and Mg66Cu10.2Sn23.8 (at.%) precursor ribbons were prepared from
rapid solidification. Pure Mg, Cu and Sn metal blocks (purity: 99.9 wt.%) were melted in an
alumina crucible using a resistance furnace (KYKY Technology Co., Ltd., Shenyang, China)
under the protection of covering agent at about 800 ◦C. The melt liquid was cast into an
alloy rod in a module. The obtained alloy rod was cut into ingots and remelted at 800 ◦C
using a high-frequency induction furnace (KYKY Technology Co., Ltd., Shenyang, China)
in a quartz tube with a pinhole below. The alloy melt was blasted onto a copper roller
spinning at 1000 revolutions per minute from the pinhole by an Ar blow. The precursor
ribbons obtained were collected for dealloying. The dealloying of Mg-Cu-Sn precursor
ribbons was performed in a 1 wt.% tartaric acid (TA) at room temperature until no bubbles
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emerged. The as-dealloyed ribbons were rinsed with deionized water and dehydrated
alcohol for further characterizations and applications.

2.2. Microstructural Characterization

The microstructures of the as-dealloyed samples were investigated with scanning elec-
tron microscope (SEM, LEO 1530P, LEO Electron Microscopy Ltd., Oberkochen, Germany)
and transmission electron microscope (TEM, Philips CM 20, FEI Company, Hillsboro, OR,
USA). The crystalline nature was probed using high-resolution TEM (HRTEM, FEI Tecnai
G2, Thermo Fisher Scientific Inc., Waltham, MA, USA) and selected-area electron diffraction
(SAED, FEI Tecnai G2, Thermo Fisher Scientific Inc., Waltham, MA, USA). Nitrogen adsorp-
tion/desorption isotherms were measured with a surface area and porosity analyzer (Gold
APP V-Sorb 2800, Gold APP Instruments, Beijing, China) at 77 K. Specific surface area was
determined using the Brunauer–Emmett–Teller (BET) method. Pore size distribution was
calculated from the adsorption branch by the Barrett–Joyner–Halenda (BJH) method using
the corrected form of Kelvin equation. The ex situ XRD patterns of the discharged/charged
samples were determined by a XD-3 diffractometer (Beijing Purkinje, Beijing Purkinje
General Instrument Co., Ltd., Beijing, China) equipped with Cu-Ka radiation as described
before [33,34]. The batteries were cycled to the required voltage and then opened for the ex
situ XRD testing. A dimethyl carbonate (DMC) solution was used to remove the lithium
salt of the cycled electrodes before testing.

2.3. Electrochemical Measurement

The as-dealloyed samples were ball-milled to fine powders with zirconia beads at
a rotation speed of 300 rpm for 3 h. The Cu6Sn5 or Cu6Sn5/Sn powders (80 wt.%) were
ground with acetylene black (Super-P, 10 wt.%) and polyvinylidene fluoride (PVDF) binder
(10 wt.%) in N-methyl-2-pyrrolidinone (NMP) solvent to make a slurry. The slurry was
coated onto Cu foil and further dried at 80 ◦C for 12 h under vacuum. The coated Cu
foil was punched into disk shape of 12 mm in diameter, with the low mass loading of
around 0.5 mg/cm2. The as-prepared foil was used as the working electrode. A Li foil was
used as both the reference electrode and counter electrode and a polypropylene (PP) film
(Celgard 2325) was utilized as the separator. The electrolyte was made by mixing 1.0 M
LiPF6 with ethylene carbonate (EC) and DMC (1:1 by volume). The CR2032-type coin cells
were assembled in an argon-filled glove box (Mikrouna Co. Ltd., Shanghai, China), with
oxygen and moisture levels below 0.1 ppm. The galvanostatic discharging/charging tests
were conducted at various current densities at the voltage window between 0.01 and 2.00 V
(vs. Li+/Li) using a LANDCT2001A test system. Cyclic voltammetry (CV) was conducted
at a scan rate of 0.1 mV s−1 between 0.01 and 2.00 V (vs. Li+/Li) on an electrochemical
workstation (CHI 660E).

3. Results and Discussions

The phase compositions of the precursors and dealloyed samples were confirmed
by XRD in Figure 1. As exhibited in our previously reported study [28], the starting
precursors Mg67Cu18Sn15 (Figure 1a) and Mg66Cu10.2Sn23.8 (Figure 1b) both consist of
Mg2Sn (PDF # 65-2997) and Mg2Cu (PDF # 65-5460) phases. Only a minor amount of
Mg2Cu is present, which indicates that substantial Cu enters the lattice of Mg2Sn to form
Mg2(Sn,Cu) phase. The dealloying of Mg67Cu18Sn15 (Figure 1c) and Mg66Cu10.2Sn23.8
(Figure 1d) in 1 wt.% TA resulted in the formation of np-Cu6Sn5 (PDF # 65-2303) alloy
and Cu6Sn5/Sn (PDF # 65-2303/PDF # 65-0296) composites, respectively, as described
in ref [28]. It has been discussed that the formation of Cu6Sn5 involved the selective
dissolution of Mg and co-diffusion of Cu and Sn [28]. The phase formation process was
different from the dealloying of Al-Cu-Sn alloys, of which heating was required to form
Cu-Sn alloys [22,35]. The difference in precursor type not only determines the dealloying
process, but also has an effect on the microstructure of dealloyed alloys. As shown in
Figure 2a and Figure S1, the as-dealloyed Cu6Sn5 derived from Mg67Cu18Sn15 has ultra-fine
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bi-continuous ligament-channel morphology. EDS spectra confirms the co-existence of
Cu and Sn (Figure 2b). Magnified TEM image shows that the average pore size is below
40 nm (Figure 3a), which is comparable to that from dealloying of Al10Cu3Sn in a 20 wt.%
NaOH solution [22]. When increasing the content of Sn to 23.8 at.%, large skeletons with
particles attached instead of nanoporous ligament-channel structure was formed (Figure 2c
or Figure 3b and Figure S1). Combined with XRD results in ref [28], the skeletons should
be Cu6Sn5 while the particles are composed of Sn. EDS spectra in Figure 2d shows
higher relative Sn contents in the composite, corresponding to higher Sn ratio in the
precursor. HRTEM in Figure 3c shows well-aligned lattices corresponding to as-dealloyed
Cu6Sn5 alloy. The lattice distance indicates that the ligaments are identified to Cu6Sn5.
Moreover, the corresponding FFT pattern (inset of Figure 3c) verifies the nanocrystalline
nature of Cu6Sn5 ligaments. Figure 3d,e exhibit the HRTEM images and corresponding
FFT patterns of as-dealloyed Mg66Cu10.2Sn23.8 precursor. The spacing distances of lattice
fringes corresponds to the (021) crystal plane (0.34 nm) of Cu6Sn5 (Figure 3d) and (101)
plane (0.28 nm) of Sn (Figure 3e), respectively.
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Figure 1. XRD patterns of (a) Mg67Cu18Sn15 and (b) Mg66Cu10.2Sn23.8 precursors; (c) dealloyed
Cu6Sn5 and (d) dealloyed Cu6Sn5/Sn composite. Reproduced from Ref. [28] with permission from
the Royal Society of Chemistry.

The specific surface areas and pore distributions of as-dealloyed np-Cu6Sn5 are de-
termined by N2 adsorption-desorption method. Figure 4a presents the N2 adsorption–
desorption isotherms, which corresponds well to the type IV curve with a H3 hysteresis
loop, indicating the formation of mesoporosity [36]. The BET-specific surface area is calcu-
lated as 15.9 m2 g−1, which is comparable to np-Cu6Sn5/Cu composite from the dealloying
of Al10Cu3Sn [22]. The pore size distribution derived from the adsorption branch of the
isotherm using the BJH model. The result (Figure 4b) shows that the pore size distributes
in the range of 10–40 nm, in accordance with the TEM observation. The relatively high
specific surface areas and robust ligament-channel structure might facilitate the diffusion
of Li ions and alleviate the volume expansion during the charge/discharge process.
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Figure 4. (a) N2 adsorption/desorption isotherms of the as-dealloyed nanoporous Cu6Sn5. (b) The pore size distribution.

CVs at a scan rate of 0.1 mV s−1 between 0.01 and 2.5 V (vs. Li+/Li) are shown in
Figure 5a. In the first cathodic process, np-Cu6Sn5 anode shows a peak at 0.77 V (vs.
Li+/Li), due to the irreversible reactions in the initial cycle [22]. The irreversible reactions
might be attributed to the formation of solid-electrolyte interface (SEI). The CV peaks start
to overlap from the second cycle, indicating that the anode becomes stable after the first
cycle (Figure 5a). The performance of as-dealloyed Cu6Sn5 anode was evaluated using
galvanostatic discharge–charge cycling. Figure 5b exhibits the initial five charge/discharge
curves between 0.01 V (vs. Li+/Li) and 2.0 V (vs. Li+/Li) of the dealloyed Cu6Sn5 anode at
the current density of 0.1 A g−1. For the first cycle, the discharge process shows a plateau
at around 0.25 and 0.77 V (vs. Li+/Li), corresponding to the CV curve in Figure 5a. The
discharge processes from the second cycle show obvious potential plateau at around 0.3 V
(vs. Li+/Li), in correspondence with the slight anodic peak from CV curves. The charge
processes have plateaus at around 0.5 and 0.75 V (vs. Li+/Li), which were also found in
other Cu6Sn5-based materials [21–24,26]. To further study the phase transition during the
charge/discharge process, the ex situ XRD analysis was performed. The pristine np-Cu6Sn5
clearly shows the peaks indexed to Cu6Sn5 phase (PDF # 65-2303) (Figure 5c). After fully
discharging to 0 V for the first cycle, Cu6Sn5 phase disappears, and Li2CuSn phase (PDF #
65-5125) emerges at around 24.5 ◦C and 40.6 ◦C. The XRD pattern corresponding to the fully
charged state of the second cycle confirms the transition from Li2CuSn to Cu6Sn5 again.
Furthermore, the second fully discharged process proves the reversible conversion from
Cu6Sn5 to Li2CuSn. The ex situ XRD patterns indicate the reversible conversion of Cu6Sn5
to Li2CuSn during the charge/discharge process. Figure 5d shows the cycling performance
of np-Cu6Sn5 alloy at the current density of 0.1 A g−1. The initial discharge capacity is as
high as 700 mA h g−1, slightly higher than that from electrodeposited Cu6Sn5 alloy film [26].
The higher capacity could be attributed to the nanoporous ligament-channel structure that
facilities the diffusion of electrolyte and the reduced Li-ions insertion pathway into the
Cu6Sn5 ligaments [8,9]. The capacity can be maintained higher than 500 mA h g−1 for at
least 20 cycles and keep at ~200 mA h g−1 for the following 400 cycles with the Coulombic
efficiency of nearly 100%. The residual stress of electrodes is related to the performance
and stability of energy generation devices such as LIBs here, and np-Cu6Sn5 with bi-
continuous ligament-channel structure own strain relaxation, favoring the cyclability of
LIBs [37]. The decay of capacity is induced by the alloy aggregation and collapse of porous
structure during cycling, and the stability of np-Cu6Sn5 anode is expected to be improved
by adjusting the constituent of alloy precursors and dealloying conditions in the future.
The np-Cu6Sn5 anode also presents excellent rate performance, as illustrated in Figure 5e,f.
At the current density of 0.1 A g−1, the capacity is ~900 mA h g−1 for the first cycle and
maintains at higher than 700 mA h g−1 for 10 cycles. With the current density increasing
to 2.0 A g−1, the capacity gradually decreases to ~380 mA h g−1. The anode recovers to a
capacity of around 600 mA h g−1 when the current density is reversed to 0.1 A g−1. The
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results demonstrate that the nanoporous structure gives an excellent rate performance to
the Cu6Sn5 anode, even after experiencing the high current density of 2.0 A g−1. The anode
was also performed under 0.5 A g−1 to investigate its possible application under a higher
current density. As shown in Figure S2, after 100 cycles, the anode can maintain its capacity
higher than 150 mA h g−1 for at least 1000 cycles, demonstrating excellent stability.
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Figure 5. (a) CVs at a scan rate of 0.1 mV s−1 between 0.01 and 2.5 V (vs. Li+/Li). (b) The initial five charge/discharge
profiles of as-dealloyed Cu6Sn5 anode with the current density of 0.1 A g−1. (c) Ex situ XRD patterns collected at various
states. (d) Cycling performance of the Cu6Sn5 at current density of 0.1 A g−1. (e) The charge–discharge voltage profiles of
the Cu6Sn5 alloy electrode at various current densities from 0. 1 A g−1 to 2.0 A g−1. (f) Rate performance at various current
densities from 0. 1 A g−1 to 2.0 A g−1.

The charge/discharge cycling performance of Cu6Sn5/Sn composite was also tested.
The initial charge capacity is higher than 800 mA h g−1, better than that of Cu6Sn5, suggest-
ing the contribution of Sn in the composite (Figure 6a). The capacity can be kept at around
200 mA h g−1 for at least 550 cycles, comparable to that of np-Cu6Sn5. At a higher current
density of 0.5 A g−1, the capacity could maintain 150 mA h g−1 (Figure S3). The Cu6Sn5/Sn
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composite also shows an inferior rate performance, as shown in Figure 6b. When the
current density was reversed to 0.2 A g−1, the capacity could only maintain around 60% of
its initial capacity at 0.2 A g−1. The inferior cycling performance might be attribute to the
Sn particles with large volume expansion during charge/discharge process [1].
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Figure 6. (a) Cycling performance of the Cu16.2Sn23.8 at current density of 0.1 A g−1. (b) Rate performance at various
current densities from 0. 1 A g−1 to 1.6 A g−1.

4. Conclusions

In summary, nanoporous Cu6Sn5 alloy and Cu6Sn5/Sn composite were prepared
via dealloying and their performance as lithium-ion battery anodes were tested. The
dealloyed np-Cu6Sn5 presented an ultrafine ligament-channel structure with ligament
size below 40 nm and BET specific area of 15.9 m2 g−1. The 3D nanoporous structure
and high specific area endowed the anode with high lithium-ion battery performance.
The anode displayed a capacity of higher than 600 mA h g−1 for the initial five cycles at
0.1 A g−1. It also had excellent cycling performance for at least 350 cycles at 0.1 A g−1,
with a reversible capacity of higher than 200 mA h g−1. The ex situ XRD patterns reveal
the reverse phase transformation between Cu6Sn5 and Li2CuSn. Similar performance was
obtained from Cu6Sn5/Sn composite. This study provided a practice for fabricating highly
stable Sn-based anode in lithium-ion batteries.
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.3390/ma14154348/s1, Figure S1: SEM image of the dealloyed (a) Mg67Cu18Sn15 and (b) Mg66Cu10.2Sn23.8
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performance of the Cu6Sn5/Sn at current density of 0.5 A g−1.
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