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Abstract
Human metabolism is highly variable. At one end of the spectrum, defects of en-
zymes, transporters, and metabolic regulation result in metabolic diseases such as 
diabetes mellitus or inborn errors of metabolism. At the other end of the spectrum, 
favorable genetics and years of training combine to result in physiologically extreme 
forms of metabolism in athletes. Here, we investigated how the highly glycolytic 
metabolism of sprinters, highly oxidative metabolism of endurance athletes, and 
highly anabolic metabolism of natural bodybuilders affect their serum metabolome at 
rest and after a bout of exercise to exhaustion. We used targeted mass spectrometry- 
based metabolomics to measure the serum concentrations of 151 metabolites and 43 
metabolite ratios or sums in 15 competitive male athletes (6 endurance athletes, 5 
sprinters, and 4 natural bodybuilders) and 4 untrained control subjects at fasted rest 
and 5 minutes after a maximum graded bicycle test to exhaustion. The analysis of all 
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1 |  INTRODUCTION

Inactivity, overweight and its negative impacts on health 
are a world- wide problem (Afshin et al., 2017). In con-
trast, physical activity and exercise training are widely 
accepted as health- promoting factors (Afshin et al., 2017; 
Blair, 2009; Cohen et al., 2015; Pedersen & Saltin, 2015). 
Therefore, a major goal in exercise science is to under-
stand how exercise triggers physiological adaptation (e.g., 
an increase in muscle mass or aerobic capacity) and how 
these adaptations can benefit health or mitigate disease 
(Pedersen & Saltin, 2015).

In athletes, years of training plus a unique genetic makeup 
(Sarzynski & Bouchard, 2020) result in metabolic adapta-
tions: Endurance training increases mitochondrial content 
and activity of oxidative enzymes in skeletal muscle (Egan & 
Zierath, 2013), resistance training increases muscle fiber size 
(Mero et al., 2013), and anerobic training like sprint train-
ing increases glycolytic enzymes in skeletal muscle (Ross 
& Leveritt, 2001). Eventually, genetics and years of specific 
training in athletes result in physiologically extreme meta-
bolic phenotypes.

Metabolites can serve as molecular read- outs of these 
metabolic phenotypes (Aebersold & Mann, 2016; Patti et al., 
2012). The metabolome, which comprises all metabolites 
within an organism, is highly dynamic, and susceptible to 
external influences like exercise (Krug et al., 2012). Studies 
have shown that one bout of exercise (Contrepois et al., 2020; 
Morville et al., 2020; Schranner et al., 2020) and exercise 
training for several weeks (Felder et al., 2017; Neal et al., 
2013) change hundreds of metabolites in blood.

A targeted change of specific metabolites through exer-
cise could be directly relevant to diseases with dysregulated 
metabolism. Recently, Morville et al. showed that a short 
term, targeted change of metabolites is possible through dif-
ferent exercise modes. They showed that within one session, 
endurance exercise changes different metabolites than resis-
tance exercise does (Morville et al., 2020). However, it is not 
clear if there is a long- term effect of different exercise modes 
on the metabolome.

While short- term metabolite changes after one exercise 
session in athletes were reported (Al- Khelaifi et al., 2018, 
2019; Breit et al., 2015; Coelho et al., 2016; Hall et al., 2016; 
Howe et al., 2018), no study showed how years of metabolic 
adaptation to endurance, resistance, or sprint training affect 
metabolite changes to the same acute exercise.

Therefore, we wanted to find out how long- term physio-
logical adaptation to different exercise training modes (en-
durance, resistance, sprint) affect the metabolome at rest and 
how these different adaptations affect the metabolic response 
to the same acute exercise. By comparing the serum metab-
olomes of glycolytic sprinters, oxidative endurance athletes, 
and anabolic natural bodybuilders before and after a maxi-
mum graded exercise test, we aimed to answer the following 
research questions:

1) Do sprinters, endurance athletes and natural bodybuild-
ers have distinct blood metabolite concentrations? If so, the 
concentrations of which metabolites explain the differences 
in- between athlete groups?

2) Within these highly trained athletes, how does a bout 
of graded cycle exercise to exhaustion affect blood me-
tabolite concentrations? And specifically, do metabolite 
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194 metabolite concentrations, ratios and sums revealed that natural bodybuilders 
and endurance athletes had overall different metabolite profiles, whereas sprinters 
and untrained controls were more similar. Specifically, natural bodybuilders had 1.5 
to 1.8- fold higher concentrations of specific phosphatidylcholines and lower levels 
of branched chain amino acids than all other subjects. Endurance athletes had 1.4- 
fold higher levels of a metabolite ratio showing the activity of carnitine- palmitoyl- 
transferase I and 1.4- fold lower levels of various alkyl- acyl- phosphatidylcholines. 
When we compared the effect of exercise between groups, endurance athletes showed 
1.3- fold higher increases of hexose and of tetradecenoylcarnitine (C14:1). In sum-
mary, physiologically extreme metabolic capacities of endurance athletes and natural 
bodybuilders are associated with unique blood metabolite concentrations, ratios, and 
sums at rest and after exercise. Our results suggest that long- term specific training, 
along with genetics and other athlete- specific factors systematically change metabo-
lite concentrations at rest and after exercise.
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concentrations change differently after the exercise depend-
ing on the athlete group?

2 |  MATERIALS AND METHODS

2.1 | Study cohort and human exercise 
testing

For this study, we recruited three groups of healthy male ath-
letes (n  =  15): 5 sprinters, 6 endurance athletes, 4 natural 
bodybuilders, and 4 healthy untrained males. All participants 
passed the inclusion criteria (Supplementary Table S1) and 
completed the study. Mean group characteristics (Table 1) 
and individual details (Supplementary Table S2) are pro-
vided. In preparation for the study, participants followed a 

standard diet (Supplementary Table S7) on the day before 
testing, refrained from exercise training for 24 hours and from 
dietary supplements for 48 hours before testing. Participants 
recorded their exercise training for 4  weeks (Table 1) and 
their intake of dietary supplements and medication for one 
week before the study (Supplementary Table S2).

Human exercise testing included three phases: baseline 
measurement, exercise testing, and recovery (Figure 1). To 
reduce circadian bias, all participants reported to the labora-
tory at 7 am after a 10 hour overnight fast. Upon arrival, we 
measured height, weight, body circumferences, and body fat 
including measurement of subcutaneous fat over Biceps bra-
chii and Quadriceps femoris. Body fat was calculated from 
the thickness of seven skin folds (7- point- calipermetry) using 
the method by Jackson & Pollock (Jackson & Pollock, 1978). 
After resting for 10 minutes, we took blood samples from an 

T A B L E  1  Mean (SD) group characteristics of study participants showing significantly different groups (p < 0.05) in bold after correcting for 
multiple testing

Control Natural Bodybuildinga Endurance Sprint

Number of subjects 4 4 6 5

Age (years) 30 (2) 28 (6) 30 (3) 24 (3)

Resting heart rate (bpm) 70 (9) 56 (4) 51 (15) 59 (7)

Resting blood pressure (mmHg) 140/80 (12/7) 123/78
(10/4)

122/75
(11/7)

126/78 (9/9)

BMI (kg/m2) 24.8 (2.3) 26.5 (2.7)b 22.1 (1.9) 21.9 (1.5)

Height (cm) 188 (4.5) 172 (6.6) 183 (3.8) 189 (7.0)

Body fat (%) 18.8 (7.7) 10.6 (1.2) 7.5 (1.0)c 5.5. (0.7)c 

Upper arm circumference (cm) 30.1 (2.7) 33.1 (3.7) 28.1 (1.7) 28.3 (1.8)

Thigh circumference (cm) 54.2 (4.2) 59.5 (6.6) 51.4 (5.1) 55.4 (4.1)

Subcutaneous fat upper arm (mm) 14.4 (7.2)b,d,e 6.4 (0.5) 6.5 (2.1) 5.6 (0.9)

Subcutaneous fat thigh (mm) 20.4 (7.3)b,d,e 10.1 (2.7) 7.7 (3.4) 5.8 (1.7)

Ventilatory threshold 1
(ml/kg/min)

26.2 (2.1) 27.2 (3.0) 47.9 (6.0)b,c,d 27.3 (5.6)

VO2max (ml/kg/min) 45.6 (4.7) 41.8 (2.0) 63.6 (6.6)b,c,d 52.6 (5.4)

Relative maximum workload (W/kg) 3.9 (0.5) 3.7 (0.2) 5.9 (0.3)b,c,d 4.8 (0.2)c,d 

Lactate (mmol/l) 4 min after 
maximum workload

12.0 (1.0) 9.7 (0.9) 9.5 (2.6) 13.0 (1.5)

Lactate (mmol/l) 10 min after 
maximum workload

12.1 (1.7) 9.2 (2.7) 5.9 (1.7)b,c 11.4 (3.1)

Reactive strength (RSI) 111 (30) 125 (25) 164 (29) 218 (37)c,d 

Hand grip strength (kg) 59.3 (7.2) 62.4 (6.6) 51.5 (2.8) 60.2 (5.1)

Endurance training (min/week) 41 (63) 80 (40) 815 (317)b,c,d 162 (65)

Resistance training (min/week) 0 (0) 413 (227)c,e 85 (50) 207 (56)

Speed training (min/week) 0 (0) 135 (201) 65 (84) 294 (161)c 
aNatural bodybuilders are bodybuilders who abstain from performance enhancing drugs listed in the World Natural Bodybuilding Federation banned substances list 
e.g. steroid hormones (Liokaftos, 2018).
bsignificantly different from sprinters.
csignificantly different from controls.
dsignificantly different from natural bodybuilders.
esignificantly different from endurance athletes.
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antecubital vein of the right arm in a supine position. After a 
three- minute warm up, subjects performed a ramp- test on a 
bicycle ergometer (Lode, Groningen, Netherlands) with power 
increasing linearly at a rate of 30 W per minute until volun-
tary exhaustion. During cycling, we continuously measured gas 
exchange with a stationary cardiopulmonary exercise testing 
system (Cortex, Germany). Out of 19 subjects, 18 met objec-
tive exhaustion criteria of either a respiratory exchange ratio 
(RER) >1.0 or a ventilatory equivalent of oxygen (VEeqO2) 
of >30.0 (Aspenes et al., 2011). One endurance athlete, E1 did 
not meet these criteria. Despite endurance trained subjects have 
lower RER than non- endurance trained subjects in response to 
similar relative exercise intensity (Jeukendrup et al., 1997) we 
conclude subject E1 was not entirely physically exhausted. Five 
minutes after the end of exercise, we took a second blood sam-
ple from the antecubital vein of the left arm in a supine position. 
At maximum exhaustion, we started to sample lactate from the 
earlobe in 20 µl capillaries (EKF diagnostics, Germany) every 

2 min for 10 min in total and analyzed samples immediately 
(Biosen S- Line Analyzer, EKF diagnostics, Germany). Then 
participants rested for 90 minutes and ingested drinks and foods 
ad libitum. After rest, participants re- warmed for ~15 minutes 
(10 min ergometry at 100 W and 5 min supervised jumping and 
dynamic stretching exercises). After re- warm, reactive strength 
was measured by a drop jump from 30 cm height with a force 
plate (Kistler GmbH, Germany). The best out of three attempts 
(highest RSI) was recorded. Afterwards, we measured maxi-
mum hand grip force with a hand grip dynamometer (Jamar, 
JLW instruments, USA) where the best out of three attempts 
was recorded as well.

2.2 | Blood sample preparation

We drew venous blood samples in four replicates into 9 ml 
serum S- Monovettes Z- Gel collecting tubes (Sarstedt AG und 

F I G U R E  1  Overview of the study design where a standardized bicycle ramp test was performed with a continuously increasing load of 30 
watts per minute until voluntary exhaustion

Natural bodybuilders

RecoveryBaseline Bicycle ramp test

Venous blood

Baseline 
serum

10 min

Post-exercise 
serumCentrifuge

10 min/18°C/2460g

Clot for 30 min

15 min 5 min

Maximum 
workload

Endurance athletes

Sprinters

Untrained controls
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Co KG, Nuembrecht, Germany) at each timepoint. Clotting 
was allowed at room temperature for 30 min in an upright 
position. After centrifugation (10 min / 18°C, 2460 g), we 
merged the serum replicates into one 15  ml Falcon tube 
(Greiner Bio- One GmbH, Kremsmuenster, Austria). Then, 
we aliquoted the serum into cryotubes (Sarstedt AG und Co 
KG, Nümbrecht, Germany), froze aliquots on dry ice for 
~30 min and stored them at −80°C until analysis.

2.3 | Metabolomics measurement

Blood serum samples were analyzed at the Genome 
Analysis Center at the Helmholtz Zentrum München 
(Munich, Germany) with a kit- based metabolomics ap-
proach (AbsoluteIDQ p180 Kit; Biocrates Life Sciences 
AG, Innsbruck, Austria) applying liquid chromatography 
(LC- MS/MS) and flow injection analysis- tandem mass 
spectrometry (FIA- MS/MS) to measure a pre- defined set 
of 188 metabolites in a targeted fashion. Sample prepara-
tion and MS/MS measurements were performed accord-
ing to the manufacturer's instructions (manual UM- P180) 
as described previously (Zukunft et al., 2013). Briefly, 
10 µL blood serum were placed into the 96- well plate of 
the p180- kit and dried in a nitrogen stream for 30 minutes. 
For tagging amino acids and biogenic amines, samples 
were derivatized with an excess of 5% phenylisothiocy-
anate (Sigma- Aldrich, Steinheim, Germany). After dry-
ing under nitrogen, metabolites were extracted in 300 µL 
methanol (AppliChem, Darmstadt, Germany) containing 
5  mM ammonium acetate (Sigma- Aldrich, Steinheim, 
Germany). After incubation for 30 min at room tempera-
ture and centrifugation, the eluate was split and diluted 
for the following MS/MS analyses. For sample prepara-
tion and MS/MS analysis, we used the following labora-
tory equipment: (i) Hamilton Microlab STARTM robot 
(Hamilton Bonaduz AG, Bonaduz, Switzerland) for liquid 
sample handling, (ii) Ultravap nitrogen evaporator (Porvair 
Sciences, Leatherhead, UK) for sample drying, (iii) 1200 
Series HPLC (Agilent Technologies Deutschland GmbH, 
Böblingen, Germany) equipped with a HTC PAL auto sam-
pler (CTC Analytics, Zwingen, Switzerland) for the liquid 
chromatography step, and (iv) API 4000 triple quadrupole 
(Sciex Deutschland GmbH, Darmstadt, Germany) oper-
ated using the software Analyst (version 1.6.2) for MS/MS 
analysis. For compound identification and quantification, 
the mass spectrometer was run in multiple reaction moni-
toring mode. Following the kit procedure, we applied the 
MultiQuant 3.0.1 (Sciex) and MetIDQ™ software to assess 
measurement quality and to calculate metabolite concen-
trations in reference to the corresponding isotope- labeled 
internal standards contained in the kit plate. Concentrations 
were reported in µM.

The assay allows simultaneous quantification of 188 metab-
olites: free carnitine (C0), 39 acylcarnitines (Cx:y), 21 amino 
acids (19 proteinogenic +citrulline + ornithine), 21 biogenic 
amines, hexose (sum, consisting of about 90%– 95% glucose), 
90 glycerophospholipids 14 lysophosphatidylcholines (lysoPC) 
and 76 phosphatidylcholines and 15 sphingolipids (SMx:y). 
The abbreviations Cx:y are used to describe the total number 
of carbons and double bonds of all fatty acid chains, respec-
tively. PCs are labeled as either diacyl- phosphatidylcholines 
(PC aa) or alkyl- acyl- phosphatidylcholines (PC ae). This la-
beling is based on the assumption that even- numbered fatty 
acids and lower degrees of desaturation are more common 
than odd- numbered fatty acids or very high degrees of desatu-
ration. For example, the labels PC ae C38:0, PC aa C37:0, and 
PC aa C38:7, all have the same mass and, thus, all would de-
scribe the same PC kit measure representing a mixture of these 
structurally different PCs; according to the assumptions above, 
the respective kit measure is labeled as PC ae C38:0 (for more 
details see (Quell et al., 2019)).

The values for limit of detection (LODs) of metabolites 
were calculated as three times the values of the zero samples, 
here phosphate- buffered saline. To assess the experimental 
variation of measurements, five aliquots of a pooled refer-
ence plasma (Haid et al., 2018) were measured on the same 
kit plate as the samples of interest and were used to calculate 
the coefficient of variation (CV) for each metabolite.

For a full list of all measured 188 metabolites and 44 cal-
culated biologically relevant metabolite ratios or sums see 
Supplementary Table S3.

2.4 | Statistical analysis

2.4.1 | Data quality control and preprocessing

In total, 37 metabolites and 1 ratio were excluded from further 
analysis based on the following criteria: (i) missing values for 
more than 90% of the samples (c4- OH- Pro, Dopamine, Nitro- 
Tyr, Carnosine), (ii) CV of the five reference plasma samples 
(indicating the technical variation of measurements) exceed-
ing 25% (Zhang et al., 2020) (DOPA, Histamine, PC aa C30:2, 
SM C22:3, PEA, Spermine, SM C26:0, Spermine/Spermidine, 
C5:1- DC), and (iii) values below specified LOD for more 
than 50% of samples (29 metabolites, including DOPA, PEA, 
Spermine, C5:1- DC). Parameters for quality control (missing-
ness, CV, LOD) along with the mean concentrations of all 
measured analytes are provided in Supplementary Table S3.

As metabolite concentrations are mostly log- normally 
distributed, the 151 metabolites and 43 ratios remaining after 
quality control were log- transformed (log2) and missing val-
ues (PC ae C30:1, 5.3%; PC ae C38:1, 18.4%) were imputed 
using a k- nearest- neighbor approach (k=3) with variable se-
lection (Do et al., 2018).
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2.4.2 | Partial least squares discriminant 
analysis (PLS- DA)

To check if the four groups (control, endurance, sprint, body-
building) can be discriminated based on their metabolomic pro-
files at baseline and after exercise, we performed a PLS- DA 
analysis using the ropls R package (version 1.16.0). Prior to 
the analysis, metabolite concentrations were scaled (mean = 0, 
standard deviation = 1) over all samples. PLS- DA projects these 
z- scores of the 194 metabolite measures onto a reduced number 
of artificial components (here: components 1 and 2) that are 
linear combinations of the original variables which maximize 
the distinction of the pre- defined groups (i.e., the covariance 
between components built from the variables and response 
(grouping)) (Wold et al., 2001). R2X (0.258), R2Y (0.488), 
Q2Y (0.304) representing the fraction of explained variances 
(of variables and response) and the accuracy of prediction 
(Eriksson, 2002; Tenenhaus, 1998) are provided as measures 
for the quality of the resulting PLS- DA model in Supplementary 
Figure S1. To test for overfitting, we inspected R2Y and Q2Y 
from 20 PLS- DA models based on our data with random per-
mutations of the group labels. Resulting empiric p- values for 
the achieved R2Y and Q2Y were below 0.05 (Szymańska et al., 
2012). To identify key variables that drive the discrimination 
of athlete groups, we examined the loading vectors of the two 
PLS- DA components (i.e., the weights assigned to each me-
tabolite in the linear combination that defines each component). 
The loadings along with the metabolites' variable importance in 
projection (VIP) scores (summarizing the loading weights for 
both components and how much the components explain the 
group distinctions) are given in Supplementary Table S4 and 
Supplementary Figure S1. To examine the influence of sums 
and ratios (as partially redundant variables) on the separation of 
groups in the PLS- DA, we repeated the analysis based on the 
151 single metabolites and found the group differences to be 
stable (Supplementary Figure S2).

2.4.3 | Hypothesis testing for group differences 
in metabolite levels

For the metabolites that showed the five most extreme load-
ing weights in negative and positive direction in the two 
PLS- DA components, we formulated a linear mixed effects 
model (assuming fixed effects for time (baseline/post ex-
ercise) and group and a random intercept for the subjects) 
and performed an ANOVA to obtain p- values for the group 
differences in the levels of these 2*10 selected metabolites 
(z- scored). Group effects were considered significant if 
p < 0.0050 (α = 0.05/10 adjusted for ten tests). As compo-
nent 1 separates the bodybuilding group and component 2 
the endurance group from the other groups, we additionally 
tested for differences of these two groups against all other 

participants for the selected metabolites respectively, again 
using analogous linear mixed models.

2.4.4 | Hypothesis testing for effect of 
exercise and effect differences by group

To identify metabolites or ratios/sums that significantly 
change upon exercise, we performed a paired Student's t- test 
for each of the 194 variables. The resulting - log10(p- value) 
were displayed versus the means of metabolite fold changes 
within individuals of measured metabolite concentrations 
in a Volcano plot (generated using Prism 8.3.0, GraphPad). 
Log2 fold changes (means of fold change within individuals) 
and p- values for the full list of metabolites are provided in 
Supplementary Table S5. p- values were considered signifi-
cant if p < 2.58*10−4 (α = 0.05/194 adjusted (Bonferroni) for 
multiple testing). For identification of group- specific effects 
of exercise, we performed a t- test for each metabolite com-
paring the mean log2 fold change (within individuals) of each 
group with the mean log2 fold change (within individuals) of 
all other subjects (Supplementary Table S6). Additionally, 
we performed non- parametric Wilcoxon signed rank/rank 
tests to ensure robustness of our results against potential out-
liers (Supplementary Tables S5 and S6).

All calculations were performed using R Studio (Version 
1.2.5033, Boston, MA, USA) with R version 3.6.2. Single 
metabolite plots, the PLS- DA loading plot and the Volcano 
plot were generated using Prism version 8.3.0.

3 |  RESULTS

We recruited three groups of healthy male athletes: 5 sprint-
ers, 6 endurance athletes, and 4 natural bodybuilders. Four 
healthy sedentary males were recruited as a control group. 
All subjects met the inclusion criteria given in Supplementary 
Table S1 and completed the study. Mean group characteris-
tics are listed in Table 1 and subjects’ details are provided in 
Supplementary Table S2.

We analyzed 194 blood metabolite measures before and 
after the graded bicycle test to exhaustion to identify differ-
ences in the metabolomes of our four subject groups (Figure 
1). These measures include 151 metabolites and 43 biologi-
cally relevant metabolite ratios and sum that remained after 
quality control of the analytical data (see Methods). We used 
a targeted metabolomics kit that mainly measures amino acids 
and lipids. Measured lipids include acylcarnitines, which 
are essential for fat metabolism and complex lipids such as 
sphingomyelins (SMs), and phosphatidylcholines (PCs), 
which are incorporated into membranes and carry two fatty 
acid residues. The kit also includes lysophosphatidylcholines 
(lysoPCs), which are degradation products of PCs. Over 70 
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PCs with different molecular weights are measured by the kit 
and are labeled as either diacyl- phosphatidylcholines (PC aa) 
or alkyl- acyl- phosphatidylcholines (PC ae), also known as 
ether lipids. This labeling bases on the assumption that even- 
numbered fatty acids and lower degrees of desaturation are 
more common than odd- numbered fatty acids or very high 
degrees of desaturation. Common violations of these assump-
tions and observable mixed molecular compositions of mea-
sured PCs in human blood have been discussed recently in 
more detail (Quell et al., 2019). The assessed biologically rel-
evant ratios include e.g. the carnitine- palmitoyl- transferase- 1 
ratio (CPT1- ratio), calculated as the concentration ratio of 
the CPT- 1 reaction products hexadecanoylcarnitine (C16:0) 
and octadecanoylcarnitine (C18:0) to the substrate free carni-
tine (C0). The CPT1- ratio is considered a proxy measure of 
ß- oxidation activity.

After quality control, the final set of 194 metabolite mea-
sures included 151 metabolites and 43 biologically relevant 
ratios or sums, which we used for all further statistical analy-
ses (Supplementary Table S3).

3.1 | Do sprinters, endurance athletes and 
natural bodybuilders have distinct blood 
metabolite concentrations at rest and after 
exercise?

We calculated a partial least squares discriminant analysis 
(PLS- DA) by combining baseline and post- exercise samples 
and using all 194 metabolite measures. PLS- DA combines 
the large number of metabolite concentrations to yield two 
artificial components (component 1 and component 2) that 
are calculated to maximize the distance between the groups. 
Our PLS- DA revealed overlapping clusters of controls and 

sprinters suggesting more similar metabolite concentrations. 
Natural bodybuilders (along component 1) and endurance 
athletes (along component 2) appeared as distinct clusters 
from sprinters and untrained controls (Figure 2) suggesting 
unique metabolite concentrations.

3.2 | Which metabolites explain the 
differences in- between groups?

In a next step, we identified those metabolites that separated 
the clusters of natural bodybuilders and those of endurance 
athletes from the other groups. We inspected the PLS- DA 
loadings which show by how much each metabolite contrib-
utes to component 1 and component 2. We selected the five 
metabolites with the highest positive and negative contribu-
tions (i.e., largest absolute weights), respectively, for each 
component (Table 2). All 10 metabolites selected for compo-
nent 1 (Table 2a) differed significantly in- between groups in 
an ANOVA. Out of the 10 metabolites selected for component 
2 (Table 2b), four differed significantly in- between groups.

Isoleucine, leucine, BCAA, tryptophan and tetradecadien-
oylcarnitine (C14:2) were lower concentrated in natural body-
builders (Figure 3a) when compared to all other groups. Five 
complex lipids including two hydroxy- sphingolipids (SM- OH), 
the total sum of hydroxy- sphingolipids (total SM(OH)) and two 
PCs (Table 2a) were higher concentrated in natural bodybuild-
ers (Figure 3b) when compared to all others. Out of the 10 me-
tabolites selected in component 1, PC aa C36:6, PC ae C38:0, 
and C14:2 differed significantly (p < 5.0*10−3) between body-
builders and all other groups when tested one by one (Table 2a).

Alpha- aminoadipic acid (alpha- AAA) and four PCaes 
(Table 2b, Figure 3d) were lower concentrated in the endur-
ance athletes when compared to all other groups. In contrast, 

F I G U R E  2  PLS- DA score plot 
showing baseline (●) and post- exercise 
(■) serum metabolite profiles within 75% 
confidence intervals (shading) of natural 
bodybuilders (B1- B4), endurance athletes 
(E1- E6), sprinters (S1– S5) and untrained 
controls (C1– C4)
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three lysoPC measures, the kynurenine/tryptophan ratio and 
the CPT1- ratio (Figure 3c) which is a proxy measure for a rate- 
limiting step in ß- oxidation, were higher concentrated in endur-
ance athletes than in all other groups (Table 2b). Out of the 10 
metabolites selected in component 2, PC ae C36:4 and PC ae 
C36:5 differed significantly (p < 5.0*10−3) between endurance 
athletes and all groups when tested one by one (Table 2b).

3.3 | How does a fasted, graded exercise 
test to exhaustion affect blood metabolite 
concentrations?

Next, we compared the concentrations of 151 metabolites 
and 43 metabolite ratios or sums between post- exercise and 

baseline. After exercise, a third of all metabolite measures 
(46 metabolites and 12 metabolite ratios or sums) signifi-
cantly increased. In contrast, only ~5% of all metabolite 
measures (4 metabolites, 5 ratios or sums) significantly de-
creased after exercise (Figure 4, Supplementary Table S5).

In detail, the ratio spermidine/putrescine decreased most, 
while the ratio serotonin/tryptophan increased most across 
groups (tryptophan decreasing; serotonin increasing). Alanine 
concentration increased and had the lowest p- value (Figure 4a) 
of metabolites that changed by exercise. Among all amino acids, 
muscles mainly excrete alanine during fasting, and the blood 
transports it to the liver for gluconeogenesis (Adeva- Andany 
et al., 2016). After exercise, the ratio of short chain acylcarni-
tines to free carnitine (C2+C3/C0), the ratio of acetylcarnitine to 
free carnitine (C2/C0), short chain acylcarnitines (C2, C3) and 

T A B L E  2  Metabolites that contributed most to the distinction of the natural bodybuilders in component 1 (a) and to the distinction of 
endurance athletes in component 2 (b) from all other subjects

(a) Metabolite, ratio or 
sum Loading on component 1a 

p value
Overall group differences

p value
Natural Bodybuilder versus others

Isoleucine −0.1500 2.7*10−6* 0.021

BCAA −0.1397 1.1*10−5* 0.014

Leucine −0.1375 6.5*10−5* 0.023

C14:2 −0.1344 2.3*10−3* 5.0*10−3*

Tryptophan −0.1269 3.8*10−6* 0.011

PC ae C38:0b 0.1603 3.2*10−7* 6.8*10−4*

Total SM- OH 0.1553 4.8*10−5* 0.014

SM (OH) C22:2b 0.1501 1.6*10−4* 0.0260

PC aa C36:6 0.1490 2.9*10−7* 2.2*10−3*

SM (OH) C22:1b 0.1488 3.5*10−6* 0.015

(b) Metabolite, ratio or 
sum Loading on component 2c 

p value
Overall group differences

p value
Endurance versus others

LysoPC a C18:2 −0.1426 0.018 0.138

Kynurenine/tryptophan −0.1411 0.050 0.054

LysoPC a C18:1 −0.1370 6.9*10−3 0.083

Total lysoPC −0.1369 0.020 0.073

CPT- I ratiod −0.1328 2.7*10−3* 0.042

PC ae C36:5 0.1758 2.2*10−4* 3.8*10−3*

PC ae C36:4 0.1722 1.5*10−3* 4.9*10−3*

PC ae C38:6 0.1491 7.9*10−5* 0.018

PC ae C38:5 0.1427 0.017 0.023

Alpha- AAA 0.1418 0.060 0.059
aNegative loadings indicate lower concentration in natural bodybuilders. Positive loadings indicate higher concentration in natural bodybuilders compared to all other 
groups.
bPC ae C38:0 is isobar (same nominal mass) with PC aa C38:7. In human plasma of young healthy men, PC ae C38:0 is considered to contain considerable amounts 
of PC molecules that carry a fatty acid chain with 22 carbon atoms and 6 double bonds (C22:6), same as for the related measure PC aa C36:6 (Quell et al., 2019). SM 
(OH) C22:1 and SM (OH) C22:2 labeled as hydroxy- sphingolipids are isobar with odd- chain non- hydroxy sphingolipids (e.g. SM C23:0 and SM C23:1).
cNegative loadings indicate higher concentration in endurance athletes. Positive loadings indicate lower concentration in endurance athletes compared to all other 
groups.
dSum of hexadecanoylcarnitine (C16:0) and octadecanoylcarnitine (C18:0) divided by free carnitine (C0).
*Significant comparison after correcting for multiple testing p < 5.0*10−3.
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the ratio of esterified to free carnitine (total AC/C0) increased, 
indicating higher ß- oxidation activity. Several complex lipids 
like PCs and SMs increased after exercise (Figure 4a), suggest-
ing a general increase in blood complex lipids after exercise.

3.4 | Do metabolite concentrations change 
differently after exercise depending on the 
group?

Finally, we compared the log2 fold- change of each metabo-
lite between groups (Supplementary Table S6). No metabolite 
change differed significantly between groups when correcting 
for 194 tests (151 metabolites, 43 ratios or sums). However, 
when using a raw p- value cut- off of p < 0.01, we identified me-
tabolites with suggestive, group- specific responses to exercise.

In endurance athletes, hexose (Figure 5a), which mainly 
comprises glucose (fasting blood glucose concentration in 
healthy humans ranges between 4.0 and 5.9 mmol/l) (American 
Diabetes Association, 2014), butyrylcarnitine (C4), tetradece-
noylcarnitine (C14:1), and tetradecadienoylcarnitine (C14:2), 
had higher fold- changes in response to exercise compared to 
all other groups. In natural bodybuilders, putrescine and tau-
rine (Figure 5b) stayed almost at the same level form pre- to post 

exercise, whereas in all other groups, putrescine and taurine in-
creased. In the control group, C14:1 and tetradecanoylcarnitine 
(C14:0) had lower fold- changes compared to all other groups. 
Notably, C14:1 was one of those metabolites which increased 
the highest in endurance athletes.

In sprinters, we found no metabolite that had a p- value 
below 0.01. The metabolites that differed most were sero-
tonin (p = 0.029) and the serotonin/tryptophan ratio (Figure 
4d) with higher, but not significant, increases in sprinters 
when compared to all other groups.

4 |  DISCUSSION

The aim of this study was to investigate how the selectively 
adapted metabolism of aerobic, glycolytic, and anabolic athletes 
affects blood metabolomes at rest or after exercise and in response 
to exercise. We made the following main observations: First, 
endurance- trained athletes and natural bodybuilders had unique 
metabolite concentrations, ratios and sums when compared to 
sprinters and untrained controls. Second, endurance athletes had 
higher CPT1- ratios, higher lysoPCs C18:1 and C18:2 and lower 
levels of highly unsaturated alkyl- acyl- phosphatidylcholines than 
others. In contrast, natural bodybuilders had lower concentrations 

F I G U R E  3  Concentration changes 
for every participant between baseline (○) 
and post- exercise (□) for isoleucine (a) 
and PC aa C36:6 (b), contributing most 
to the separation of natural bodybuilders 
and the CPT1- ratio (c) and PC ae C38:6 
(d) contributing most to the separation of 
endurance athletes
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of BCAAs, lower tryptophan and higher concentrations of spe-
cific phosphatidylcholines and sphingomyelins. Third, ~30% of 
all serum metabolite measures increased 5 minutes after a graded 
bicycle ergometry test to exhaustion, whereas ~5% of all metabo-
lite measures decreased. Fourth, some metabolites changed dif-
ferently during exercise in- between groups but not significantly.

The first and the second main findings are discussed to-
gether, followed by the third and the fourth finding separately.

4.1 | Natural bodybuilders have a depleted 
blood BCAA pool, which might be caused by 
high muscle growth

Fasted, natural bodybuilders had lower concentrations of leu-
cine, isoleucine, tryptophan, and BCAAs than the other groups. 
A likely explanation is that higher rates of protein synthesis 
(McGlory et al., 2017) and a greater muscle mass result in faster 
declines of amino acids including BCCAs. The standardized 

nutrition on the day before testing may have contributed to this 
finding: Based on their dietary reports, natural bodybuilders 
usually ingested higher amounts of protein (~36%, ~2.4 g/kg 
bodyweight) than all other groups (20– 24%, ~0.9– 2.0 g/kg bod-
yweight). On the day before testing, protein intake was standard-
ized to 20% of total macronutrient intake for all participants. For 
bodybuilders, this reduced protein intake could have depleted 
BCAA and tryptophan in blood even faster because bodybuild-
ers need more of these dietary essential amino acids than the 
other groups due to higher protein synthesis rates. A practical 
conclusion to the fast overnight depletion of blood amino acids 
could be that bodybuilders should consider ingesting protein 
pre- and post- sleep to avoid “running empty” on amino acids.

In general, habitual dietary protein intake can also influ-
ence amino acid levels in blood (Durainayagam et al., 2019; 
Seyedsadjadi et al., 2018). Durainayagam et al. report that 
doubling protein intake (from 0.8 g/kg bodyweight to 1.6 g/
kg bodyweight) for 10 weeks increases tryptophan, creatine, 
and glutamine levels. Seyedsadjadi et al. report that the intake 

F I G U R E  4  Volcano plot (a) showing significant metabolite changes (in black; α < 2.58*10−4) after graded cycle exercise in all participants 
and metabolites with the highest concentration changes from baseline (○) to post- exercise (□) including (b) alanine, (c) spermidine/putrescine and 
(d) serotonin/tryptophan
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of ~94 g protein per day increases tryptophan and kynurenine 
but do not provide data on relative protein intake in g/kg body-
weight. Contrasting to both studies, tryptophan levels in body-
builders were lower than in all other groups in our study. We 
are not aware of any study that has shown how the habitually 
high protein intake of the participating natural bodybuilders 
(~36%) affects the blood metabolome long- term.

4.2 | Natural bodybuilders have higher 
levels of two docosahexaenoic acid derivatives 
which may originate from supplemented 
fish oils

PC aa C36:6 and PC ae C38:0 concentrations were higher in 
natural bodybuilders when compared to all other groups, with 
the largest differences observed for PC aa C36:6. Quell et al. 
recently showed that blood PC aa C36:6 measured in healthy 
young men mainly comprises a derivative of DHA, a fatty acid 
with 22 carbons and 6 double bonds (C22:6). Quell et al. found 
PCaas that contain DHA as one, and tetradecanoic acid as the 
second fatty acid chain (PC 14:0_22:6) account for the major 
part (~88%) of measured PC aa C36:6 concentrations (Quell 
et al., 2019). They also suggested the second PCae that was 
higher in natural bodybuilders (PC ae C38:0) to be a DHA 
derivative. The measure labeled as PC ae C38:0 includes the 
concentrations of the isobaric (i.e., showing the same mass 
spectrometric signal) PC aa C38:7 with C22:6 as one of the 
two fatty acid chains. Natural bodybuilders may have higher 
levels of DHA- containing PCs as some bodybuilders sup-
plemented fish oils. Fish oils are rich in omega- 3 fatty acids 
including DHA and eicosapentaenoic acid (EPA, C20:5) and 
have been reported to increase muscle protein synthesis via 
increased mTOR and p70 S6 k signaling (Smith et al., 2011). 
Especially two natural bodybuilders (B3 and B4) who either 
ingested omega- 3 capsules (B3, Supplementary table S3) or 

ate omega- 3 rich oils (around 20 g daily), chia seeds (around 
20 g daily), and fish (weekly) (B4) had high concentrations of 
DHA- containing PCs. Among the other participants, only en-
durance athlete E3 ate fish regularly. E3 had the highest base-
line concentration in PC aa C36:6 next to B3 and B4, but no 
notable elevation in PC ae C38:0. No other participant reported 
rapeseed oil, linseed oil, or chia seeds or fish in their nutri-
tion. Besides the DHA derivatives, the concentrations of two 
sphingomyelins which also contain fatty acids with 22 carbons 
were higher in natural bodybuilders than in all other groups. 
Whether this is similarly a result of the natural body builders 
diet or because other factors play a role is unclear. Collectively, 
the overall pool of 22 carbon fatty acid- containing molecules 
such as PCs or sphingomyelins is higher in natural bodybuild-
ers, which might be in part because of their diets.

4.3 | Endurance athletes have higher CPT1- 
ratio, suggesting higher fat oxidation

Endurance athletes had higher CPT1- ratios than all others, 
especially sprinters. CPT1 is a mitochondrial transmembrane 
enzyme that catalyses a reaction essential for the transport 
of fatty acids from the cytosol into the mitochondria, where 
fatty acids enter β- oxidation (Lundsgaard et al., 2018). 
Metabolomics analyses allow to estimate the activity of the 
CPT1 reaction via its reaction products hexadecanoylcarni-
tine (C16:0) and octadecanoylcarnitine (C18:0) versus the 
concentration of free carnitine (C0). The CPT1- ratio could 
be a biomarker either for a higher capacity for fat oxidation 
or for acutely higher fat oxidation rates in endurance athletes. 
Supporting this assumption, endurance athletes had the low-
est respiratory exchange ratios (RERs) of all groups, at rest 
and during the exercise test, indicating higher fat oxidation 
compared to the other groups (Supplementary Figure S3). 
Further studies should seek to clarify the association between 

F I G U R E  5  Among all 194 metabolite measures, hexose (a), taurine (b) and tetradecenoylcarnitine (c) showed suggestive group- specific 
responses between baseline (○) and post- exercise (□)
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the CPT1- ratio, the capacity for fat oxidation, CPT1 activity 
and the acute rate of fat oxidation.

4.4 | Endurance athletes have higher lysoPC 
a C18:1 and C18:2 concentrations, which may 
be linked to cardiovascular fitness

Endurance athletes had higher concentration of lysoPC a 
C18:1 than bodybuilders and controls. Earlier studies have 
already associated lysoPCs containing 18 carbons with en-
durance traits (Felder et al., 2017; Schader et al., 2020). 
Specifically, lysoPC a C18:1 was, among other lysoPCs, re-
ported to increase after several weeks of endurance training 
(Felder et al., 2017). Another lysoPC C18:2 was found to be 
elevated after a marathon race in subjects with high VO2max 
(63.3 ± 5.2 ml/kg/min) that is similar to the VO2max of our 
endurance athletes (Table 1), but not in subjects with low 
VO2max (41.8 ± 5.5 ml/kg/min) (Schader et al., 2020) that is 
similar to the VO2max of natural bodybuilders and controls 
(Table 1). Supporting the association between cardiovascu-
lar fitness and these lysoPCs, lysoPC a C18:0 and lysoPC 
a C18:2, were shown to be lower in patients with heart fail-
ure, who typically have a lower VO2max (17.2 ± 7.2 ml/kg/
min), than in healthy controls (Marcinkiewicz- Siemion et al., 
2018). LysoPCs are generated by phospholipases A (PLA) 
from PCs. Overexpression of a specific PLA, phospholipase 
A2 type IIA (PLA2G2A), which is secreted to blood and 
expressed in skeletal muscle and adipose tissue (Prunonosa 
Cervera et al., 2021), increased the metabolic rate, and im-
proved both insulin sensitivity and glucose tolerance in 
mice (Kuefner et al., 2017). Interestingly, mice expressing 
PLA2G2A compared to mice without PLA2G2A expression 
had higher uncoupling protein 1 (UCP- 1) and higher peroxi-
some proliferator- activated receptor- gamma coactivator- 1- 
alpha (PGC1- alpha) expression in adipose tissue, suggesting 
a role of PLA2G2A in adipose tissue browning (Kuefner et al., 
2017). Among others PGC1- alpha is known as a major regu-
lator for mitochondrial biogenesis after endurance exercise in 
humans. Furthermore, there is first evidence in humans that 
exercise can increase PLA2G2A expression in adipose tissue 
(Imam, 2019). Collectively, increased lysoPCs in endurance 
athletes may point to exercise- associated increases in spe-
cific phospholipases that are beneficial for metabolic health.

4.5 | Endurance athletes have lower levels of 
highly unsaturated PCaes, which are ligands of 
endurance adaptation regulators

Endurance athletes had lower concentrations of specific 
PCaes (PC ae C36:5, PC ae C36:4, PC ae C38:6) than all 
other groups. Functionally, PCae can act as ligands of 

signaling molecules like PPARγ (Dean & Lodhi, 2018), 
which is a known regulator of the mitochondrial biogenesis 
adaptation to endurance exercise. We therefore speculate that 
endurance exercise decreases certain blood PCaes, because 
they are needed in intramuscular signaling for signaling pro-
cesses in adaptation.

4.6 | In all subjects, fasted, graded 
cycle ergometry to exhaustion affects 
energy metabolism

Consistent with other studies (Contrepois et al., 2020; 
Morville et al., 2020; Schranner et al., 2020), most metab-
olites that changed after exercise in all participants were 
energy metabolites related to glucose or fat degradation. 
Specifically, the concentrations of gluconeogenic and glyco-
lytic metabolites such as alanine and hexose (mainly glucose) 
increased after exercise. Increases in blood glucose concen-
tration during exercise probably result from hepatic glucose 
production via glycogenolysis and gluconeogenesis (Brooks, 
2020; Kjær, 1998). Measures of overall fatty acid oxidation 
activity (C2+C3/C0), even- numbered fatty acid oxidation ac-
tivity (C2/C0) and the concentrations of short chain acylcar-
nitines (C2, C3) all increased. Exercise is known to increase 
lipolysis in fat tissue and fat oxidation within mitochondria 
(Lundsgaard et al., 2018), leading to increased acylcarnitine 
levels in blood (Schranner et al., 2020).

4.7 | In all subjects, exercise increases 
tryptophan breakdown to serotonin and 
kynurenine, which links to mental health 
effects of exercise

Exercise increased the ratios of serotonin/tryptophan and 
kynurenine/tryptophan as well as increased the serotonin 
concentration and decreased the tryptophan concentration. 
In contrast, kynurenine concentrations did not change sig-
nificantly. Thus, we assume that the increase in kynure-
nine/tryptophan is only because tryptophan decreased, 
suggesting that exercise shifted the tryptophan breakdown 
towards serotonin. Serotonin can be broken down to mela-
tonin and positively regulate mood or sleep (De Crescenzo 
et al., 2017; Zimmer et al., 2016). Serotonin increases were 
shown to depend on exercise intensity (Zimmer et al., 
2016), which explains the significant increase of serotonin 
after maximum exercise done in our study. Supporting our 
findings, Strasser et al. also found decreased tryptophan 
concentrations in athletes after exercise (Strasser et al., 
2016). Collectively our data confirm that acute exercise al-
ters metabolites that are associated with mood and mental 
health.
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4.8 | In all subjects, exercise increases 
complex lipids, especially PCaes

Complex lipids can act as ligands for cell signaling and 
can be used for fat oxidation. We assume that increased 
concentrations of complex lipids after maximum exercise 
are a sign of increased lipolysis and oxidation in the fasted 
state. In line with that, total PCae concentrations increased 
in rat livers after acute exercise (Hoene et al., 2016), which 
could show a higher demand for muscular fatty acid oxi-
dation. In contrast, several studies reported that complex 
lipids decrease after exercise in non- fasted humans (Karl 
et al., 2017; Nieman et al., 2013; Schader et al., 2020). 
Therefore, we assume that in fasted but not in non- fasted 
subjects, complex lipids like PCae or PCaa are used for fat 
oxidation during exercise.

4.9 | In all subjects, exercise increases 
polyamines, which are related to muscular 
hypertrophy

Spermidine and the spermidine to putrescine ratio de-
creased after exercise. As putrescine did not change, the 
observed decrease in the spermidine to putrescine ratio is 
mainly because of the decrease in spermidine. Polyamine 
concentrations in skeletal muscle are associated with hyper-
trophy (Cepero et al., 1998; Turchanowa et al., 2000) and 
muscle regeneration after injury (Kaminska et al., 1982) in 
rats. We assume that the blood spermidine pool decreases 
after exercise not because of changed spermidine synthe-
sis, but because of higher spermidine demand in muscle 
after exercise e.g. to regenerate. Mechanistically, it is still 
unclear why muscular polyamine concentrations increase 
after exercise (Lee & MacLean, 2011) but it seems that 
androgens like testosterone, which also increase muscle 
mass and strength, regulate polyamine synthesis (Cyriac 
et al., 2002). Eventually, it is unclear if and how polyam-
ine concentration changes after exercise in blood relate to 
intra- muscular processes.

4.10 | In endurance athletes, blood glucose 
concentration increased more after exercise 
than in all other groups

Despite the low sample size and lack of significance after 
stringent multiple testing correction, we briefly discuss me-
tabolites that changed differently in- between groups after 
exercise. Specifically, we highlight the differences found in 
endurance athletes.

After exercise, hexose (mainly glucose) concentrations in-
creased in all athletes but most in endurance athletes. Despite 

strenuous exercise, hexose increased only in 2 out of 4 un-
trained controls. Intensive exercise increases hepatic glucose 
production via glycogenolysis and gluconeogenesis by 2– 3 
fold (Brooks, 2020) to prevent hypoglycemia. Collectively, 
this suggests that endurance athletes either have a high ability 
for hepatic glucose synthesis and/or less muscular glucose 
uptake because of higher rates of fat oxidation during sub-
maximal exercise.

4.11 | In endurance athletes, medium/long- 
chain acylcarnitines increased more after 
exercise than in all other groups

During exercise, the concentrations of C14:1 and C14:2, 
which are involved in the ß- oxidation of long- chain fatty 
acids, increased highest in endurance athletes especially 
when compared to untrained controls. We assume that this 
shows different usage or availability of long- chain fatty acids 
for fat oxidation. Recently, several other long- chain acylcar-
nitines have been associated with endurance exercise vari-
ables (Al- Khelaifi et al., 2018). Collectively, this suggests 
that endurance athletes may metabolize long- chain fatty 
acids differently than subjects who are not endurance trained.

4.12 | Limitations

This study has several limitations. First our study cohort was 
small, restricting the statistical power for group comparisons. 
We justify this small cohort with the large differences of gly-
colytic capacity, aerobic capacity, and anabolism in the four 
groups investigated. Following a hypothesis- free approach, 
we indeed observed significant differences in the metabo-
lomes of these highly selective groups, despite the relatively 
low sample size and variations within groups. However, due 
to the limited statistical power in our study and because re-
sults of the PLS- DA might be biased towards the groups with 
the biggest differences observed (bodybuilders vs. all oth-
ers and endurance vs. all others), we might have missed less 
pronounced differences, in particular potential differences 
between sprinters and controls. Therefore, we cannot draw 
any robust conclusion on the differences between these two 
groups. Still, we consider that the metabolomes of sprinters 
and controls are more similar than those of the other groups 
in this study. Moreover, the choice of PLS- DA might have 
biased the selection of metabolites for differential analy-
sis (Ruiz- Perez et al., 2020). Second, we only used endur-
ance exercise as an exercise mode, which activates only a 
subset of metabolic enzymes in the musculature. Other ex-
ercise modes such as resistance exercise would have stimu-
lated other branches of metabolism (Morville et al., 2020) 
and may have revealed other group- specific changes in the 
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metabolome. With choosing a standardized maximum endur-
ance test, we did not aim to report metabolite changes of en-
durance training per se but those of a metabolic challenge to 
metabolism. Contrepois et al. showed that such standardized 
maximum exercise testing is sufficient to show phenotypic 
differences in metabolism (Contrepois et al., 2020). Third, 
we measured a limited set of metabolite classes mainly lipids 
(e.g. acylcarnitines) and amino acids. We assumed that acute, 
fasted exercise particularly challenges lipid energy metabo-
lism and shows differences between athlete groups with dif-
ferently well- developed lipid metabolism. Furthermore, we 
assumed that especially natural bodybuilders, who have high 
protein synthesis, have different baseline amino acid levels 
than other athletes. Amino acids were also of interest be-
cause previous studies inconsistently reported amino acid 
changes after exercise (Schranner et al., 2020). Fourth, after 
study completion, subject E5 reported a nightly ingestion of 
~1 mg of melatonin, which was against our inclusion crite-
ria. Studies suggest that melatonin has effects on several or-
gans (Opie & Lecour, 2016) besides the brain. Possibly, this 
influenced E5’s metabolite levels at baseline, post- exercise 
or the level changes by exercise. Specifically, melatonin 
ingestion can affect metabolites of its related pathway, the 
tryptophan- serotonin pathway. In the PLS- DA, E5 appeared 
metabolically different from the cluster of E1- E4. However, 
this difference is not attributable to different serotonin levels, 
as E5 showed no conspicuous serotonin levels compared to 
E1- E4. Fifth, special nutrition or dietary supplements may 
influence certain metabolite concentrations long- term. As 
suggested by higher DHA levels in natural bodybuilders in 
our study, refraining from dietary supplements for 48 hours 
before a metabolomics analysis may not be long enough to 
eliminate all nutritional influences on certain blood metab-
olites. However, it is also questionable if longer restriction 
of supplements for several days is enough to wash out long- 
term dietary influences. Studies that investigated dietary ef-
fects on the metabolome assessed diets between 2 weeks and 
6  months (Guasch- Ferré et al., 2018). Controlling supple-
mentary intake that long is problematic when working with 
ambitious athletes. Sixth, we additionally provided 500– 1000 
kilocalories for athletes (Supplementary Table S7) on the day 
before the study as they have higher energy demand than sed-
entary controls. Increased caloric intake included all classes 
of macronutrients but slightly higher fat intake (~25%) when 
compared to controls (~20%). Dietary fat intake on the day 
before the study could have influenced acylcarnitine levels of 
the natural bodybuilders because they habitually ate low- fat 
(~14.7%). Low levels of C14:2 acylcarnitine have been asso-
ciated with higher intake of fats such as butter (Floegel et al., 
2013). Complex lipids like PCae's and PCaa's are not influ-
enced by short term but by long- term fat intake over weeks 
and months (Saadatian- Elahi et al., 2004). Seventh, as ex-
pected in highly specialized athletes, we observed significant 

differences in body fat and suggestive differences in muscu-
larity between groups (Table 1). A population- based study by 
Jourdan et al., (2012) found that a high fat free mass index 
(FFM kg/height²) which corresponds to low body fat, was 
associated with higher levels of BCAAs, acylcarnitines, and 
a shift in phosphatidylcholine composition, chain length and 
saturation (Jourdan et al., 2012). In the case of BCAA, we 
see the highest concentrations in the group with the lowest 
body fat (sprinters) but no consistent association, across our 
cohort.

5 |  CONCLUSION

In conclusion, we found systematic differences in the con-
centrations of metabolites in- between highly trained glyco-
lytic, aerobic, and anabolic athletes. Moreover, we observed 
different metabolite changes in- between groups that were 
not significant but worth of mentioning. The observed meta-
bolic differences of years of training could give hints on 
which exercise mode can change specific metabolites or me-
tabolite classes. However, influences on the metabolome are 
manifold and further studies are needed to disentangle the 
specific contributions of genetic variants, of adaptations to 
sports- specific exercise training or of special nutrition to the 
systematic metabolic differences between differently trained 
individuals.
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