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Background: RNA N6-methyladenosine (m6A) regulators may be necessary for diverse

viral infectious diseases, and serve pivotal roles in various physiological functions.

However, the potential roles of m6A regulators in coronavirus disease 2019 (COVID-19)

remain unclear.

Methods: The gene expression profile of patients with or without COVID-19 was

acquired from Gene Expression Omnibus (GEO) database, and bioinformatics analysis

of differentially expressed genes was conducted. Random forest modal and nomogram

were established to predict the occurrence of COVID-19. Afterward, the consensus

clustering method was utilized to establish two different m6A subtypes, and associations

between subtypes and immunity were explored.

Results: Based on the transcriptional data from GSE157103, we observed that the

m6A modification level was markedly enriched in the COVID-19 patients than those

in the non-COVID-19 patients. And 18 essential m6A regulators were identified with

differential analysis between patients with or without COVID-19. The random forest

model was utilized to determine 8 optimal m6A regulators for predicting the emergence

of COVID-19. We then established a nomogram based on these regulators, and its

predictive reliability was validated by decision curve analysis. The consensus clustering

algorithm was conducted to categorize COVID-19 patients into two m6A subtypes from

the identified m6A regulators. The patients in cluster A were correlated with activated

T-cell functions and may have a superior prognosis.

Conclusions: Collectively, m6A regulators may be involved in the prevalence of

COVID-19 patients. Our exploration of m6A subtypes may benefit the development of

subsequent treatment modalities for COVID-19.

Keywords: COVID-19, m6A methylation modification, m6A regulators, diagnostic biomarkers, consensus

clustering
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INTRODUCTION

Coronavirus disease 2019 (COVID-19) derived from severe
acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2)
has evolved as a significant challenge to the public health of
global populations (1). Although various vaccines and antiviral
agents are now being developed to reduce virus infection and
combat this epidemic, little is known about how viruses interact
with their hosts (2, 3). Recent studies have demonstrated a
clear genetic link between SARS-CoV-2 infection and COVID-
19 severity, and have identified multiple human genomic
regions that are linked to disease severity (4, 5). Moreover,
COVID-19 patients displayed obvious variations in the immune
system, including immune cells, immune checkpoint, and
cytokines (6–8). A deeper understanding of the pathogenesis
of COVID-19 will facilitate better management of it, and
determination of susceptible populations benefit for rationalizing
the allocation of medical resources. It is critical and urgent to
identify the association between patients’ genomes and immune
function during viral infections. Accordingly, early detection and
appropriate intervention of high-risk patients from a genomic
perspective will provide a significant benefit to managing the
prevalence of COVID-19.

The N6-methyladenosine (m6A), an innate modification
of mRNA and lncRNA, is a reversible procedure regulated
by “writers,” “readers,” and “erasers” (9). For its biological
characteristics, m6A can regulate carcinogenesis, immunity,
stemness, and so on (10–12). Numerous reports have
demonstrated that m6A modification serves a prominent
part in tumorigenesis through modulating the activity of tumor-
associated genes (13, 14). Similarly, m6A is observed and widely
studied in diverse virus infections (15, 16), and existing studies
have proven the significant role of m6A in the occurrence and
progression of COVID-19 (17, 18). However, these researches
concentrated predominantly on several m6A-related genes, and
a majority of these models were constructed based on non-
virally infected cells, which may not fully reveal the authentic
status of m6A methylome modifications in immune cells of
COVID-19 patients. Therefore, the function of m6A regulators
in COVID-19 remain to be further investigated.

In this research, we systematically explored the roles of m6A
regulators in the management and categorization of COVID-19.
We constructed a gene signature to predict the occurrence of
COVID-19 based on 8 selectedm6A regulators and observed that
patients could benefit from clinical decisions from this signature.
Additionally, we identified two m6A subtypes that were closely
associated with T-cell activation, indicating that m6A subtypes
may distinguish COVID-19 and non-COVID-19 and provide
reliable options for clinical treatment.

MATERIALS AND METHODS

Data Collection and Processing
The GSE157103 dataset, composed of 100 COVID-19 patients
and 26 non-COVID-19 patients, was acquired from the GEO
database (19). This dataset was selected based on some
characteristics: sample size >100, diverse disease status, and

TABLE 1 | m6A modification regulators and their major biological functions.

Type m6A regulator Function

Writer METTL3 Catalyze m6A modification

METTL14 Facilitate METTL3 recognition of subunits

METTL16 Catalyze m6A modification

WTAP Facilitate METTL3-METTL14 heterodimer to

the nuclear speckle

VIRMA Bind the m6A complex and mobilize it to

specific site

RBM15 Bind the m6A complex and mobilize it to

specific site

RBM15B Bind target RNAs and recruiting the WMM

complex

CBLL1 Regulate mRNA splicing and RNA processing

ZC3H13 Bridge WTAP to the mRNA-binding factor Nito

Reader YTHDC1 Promote RNA splicing and translocation

YTHDC2 Promote target RNA translocation

YTHDF1 Promote RNA translocation

YTHDF2 Decrease mRNA stability

YTHDF3 Regulate the translation or degradation

HNRNPC Regulate mRNA splicing

FMR1 Regulate mRNA splicing, stability, dendritic

transport and postsynaptic local protein

synthesis

LRPPRC Regulate nuclear mRNA exportation

HNRNPA2B1 Promote primary microRNA processing

IGFBP1/2/3 Recruiting RNA stabilizer

IGF2BP1 Improve mRNA stability

ELAVL1 Improve mRNA stability

RBMX Regulate gene transcription and pre-mRNAs

splicing

Eraser ALKBH Regulate mRNA intranuclear transport

FTO Catalyze the demethylation of m6A

publicly available data. And all samples are extracted from plasma
and leukocyte samples of hospitalized patients. Normalization of
the read count values was completed with the limma package
(20). A total of 26 m6A regulators was collected from previous
studies, and these regulators contain 9 writers, 15 readers,
and 2 erasers (Table 1). Differently expressed analysis of these
regulators based on limma package was performed between
patients with or without COVID-19 to subsequent exploration.
A protein-protein interaction (PPI) analysis of differentially
expressed genes (DEGs) was performed through the string
website (https://cn.string-db.org), and we exhibited gene set
variation analysis (GSVA) with the “GSVA” package (21), thus
matching the biological function between patients with or
without SARS-COV-2 infection.

Establishment of a Random Forest Model
and Support Vector Machine Model
Random forest (RF) and support vector machine (SVM) model
was established to predict the prevalence of COVID-19 patients.
Several methods, including “Reverse cumulative distribution
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FIGURE 1 | Landscape of the 26 m6A regulators in COVID-19. (A) Differential expression analysis of the 26 m6A regulators identified between samples with different

COVID-19 status. (B) Expression heat map of the 26 m6A regulators in samples. (C) GSVA enrichment analysis between Non-COVID-19 and Non-ICU-COVID-19

samples. (D) GSVA enrichment analysis between Non-COVID-19 and ICU-COVID-19 samples. (E) GSVA enrichment analysis between Non-ICU-COVID-19 and

ICU-COVID-19 samples. (F) The PPI network analysis among the differentially expressed genes. (G) Chromosomal positions of the 26 m6A regulators. *p < 0.05, **p

< 0.01, and ***p < 0.001.
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of residual,” “Boxplots of residual” and receiver operating
characteristic (ROC) curve was conducted to validate these
models. “RandomForest” package was applied to construct an
RF model to identify optimal m6A regulators within the 26

m6A regulators for predicting the prevalence of COVID-19 (22).
In this study, to identify optimal RF model, mtry and ntrees
were given as 3 and 500 after multiple adjustment. We also
discussed the relevance of the 26 m6A regulators and determined

FIGURE 2 | Correlation between m6A regulators in COVID-19. (A) Correlation plot of 26 m6A regulators. (B–J) Correlation between writers and erasers in COVID-19.

Writer genes: METTL3, METTL14, METTL16, RBM15B, VIRMA, CBLL1, and ZC3H1; eraser genes: ALKBH5 and FTO. *p < 0.05, **p < 0.01, and ***p < 0.001.

Frontiers in Public Health | www.frontiersin.org 4 May 2022 | Volume 10 | Article 914193

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Qing et al. m6A Regulators in COVID-19

FIGURE 3 | Establishment of RF model and SVM model. (A) Reverse cumulative distribution of residual was displayed to demonstrate the residual distribution of RF

and SVM model. (B) Boxplots of residual was displayed to demonstrate the residual distribution of RF and SVM model. (C) The influence of the number of decision

trees on the error rate. (D) The importance of the 26 m6A regulators based on the RF model. (E) ROC curves revealed the accuracy of the RF and SVM model.

the candidate m6A regulators based on 10-fold cross-validation.
The Y-axis of the 10-fold cross-validation curve represents the
precision of the model when identifying different numbers of
m6A regulators. The genes with an importance value over 2 were
considered as the disease specific genes for the further analysis.
SVM can minimize structural risk, thus enabling classification
and regression analysis (23). In SVM model, the expression level
of m6A regulators was regarded as the continuous predictive
parameter and the sample type was regarded as the categorical
variable. The “caret” package was applied to conduct a grid
search for the determination of the reasonable hyperparameters
for the SVM model with a 5-fold cross-validation (24). Each
data is considered as a point in the n-dimensional space (n
is 26 in this study), and an appropriate plane was found to
distinguish well between the two categories (COVID-19 and non-
COVID-19). A repeated 10-fold cross-validation was utilized to

tune and evaluate the models. The sample was split into 70%
training and 30% test sets. We randomly split the training-test
dataset 500 times and used 10-fold repeated 10 times cross-
validation approach to optimize the model factors of each round
of evaluation. The robustness of these model was assessed based
on the area under curve (AUC) value of the receiver operating
characteristics (ROC) curve.

Establishment of the Nomogram
Based on the abovementioned m6A regulators, a nomogram was
developed to predict the occurrence of COVID-19 (25). Then,
the reliability of this nomogram was assessed by the calibration
curve, and decision curve analysis (DCA) was also constructed
(26).Moreover, a clinical impact curve was established to evaluate
the rationality and benefit of decisions from this nomogram (25).
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FIGURE 4 | Establishment of the nomogram model. (A) Establishment of the nomogram model based on the 8 selected m6A regulators. (B) Predictive robustness of

the nomogram model as disclosed by the calibration curve. (C) Decisions based on the nomogram model may benefit COVID-19 patients. (D) Clinical impact of the

nomogram model as evaluated by the clinical impact curve.

Identification of Molecular Subtypes From
m6A Regulators
Consensus clustering with K-means algorithms was applied to
identify m6A regulators-related subtypes correlated with gene
expression (27). The quantity and robustness of clusters were
determined with a consensus clustering algorithm realized in the
“ConsensuClusterPlus” package (28).

Identification and Functional Enrichment
Analysis of Differentially Expressed Genes
The “limma” package was applied to identify DEGs between
different m6A subtypes with the criterion of p < 0.001 (29).
GO enrichment analysis was utilized to investigate the potential
function of the DEGs responsible for COVID-19 with the
“clusterProfiler” package (30).

Establishment of the m6A Gene Signature
Principal component analysis (PCA) was conducted to obtain
the m6A score for individual specimens, thus quantifying
the m6A subtypes (31). We exhibited the PCA method to
identify the m6A subgroups, and the m6A score was acquired
based on the following method: m6A score = PC1i, of

which PC1 refers to principal component 1 and i to DEG
expression (32).

Exploration of Infiltrating Immune Cell
Single sample gene set enrichment analysis (ssGSEA)
was applied to assess the infiltration of immune cells
in COVID-19 specimens (33). The gene expression
levels in the specimens were sequenced with ssGSEA to
acquire an individual grade. We then summarized the
expression data of these genes for immunological analysis.
Consequently, we gained the enrichment of immune cells in the
individual specimen.

Statistics Analysis
Linear regression analyses were applied to determine the
relationship between m6A regulators. Kruskal-Wallis tests were
utilized to identify a discrepancy between clusters. All statistical
analyses were carried out with two-tailed tests, and the significant
value was considered p < 0.05. The R software was utilized to
perform relevant analysis.
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RESULTS

Landscape of the 26 m6A Regulators in
COVID-19
Based on the GSE157103 dataset, all samples were divided
into three groups (Non-COVID-19, ICU-COVID-19, and
Non-ICU-COVID-19). We identified the expression levels of
26 m6A regulators in these groups, of which 22 regulators
were differently expressed in these samples. The expression
landscape and heatmap of these differentially expressed
genes (DEGs) were presented in Figures 1A,B. According
to differently expressed analysis of m6A regulators between
COVID-19 samples and Non-COVID-19 samples, 18
DEGs were subsequently observed. Most of DEGs were
overexpressed in COVID-19 patients compared to non-
COVID-19 patients, including METTL3, METTL14, WTAP,
VIRMA, ZC3H13, RBM15, CBLL1, YTHDC1, YTHDF3,
HNRNPC, HNRNPA2B1, FMR1, ELAVL1, and FTO, and
several DEGs, such as RBM15B, IGFBP2, and IGFBP3 were
downregulated in COVID-19 patients. Some of DEGs may
be associated with the varying severity of COVID-19, such
as METTL3, FTO, and RBM15. The finding was consistent
with previous reports (17, 34, 35). We further conducted

GSVA analysis to explore the biological difference between
different groups. Compared to samples without COVID-19,
p53 signaling pathway, cell cycle, oocyte meiosis, and olfactory
transduction were obviously enriched in COVID-19 samples
(Figures 1C,D). Similarly, we observed that diverse signaling
pathways were more enriched in the ICU-COVID-19 samples
than Non-ICU-COVID-19 samples, such as oocyte meiosis,
ERBB signaling pathway, and TGF-β signaling pathway
(Figure 1E). These results demonstrated that identified signaling
pathways were potentially associated with the occurrence
and severity of COVID-19. A protein-protein interaction
(PPI) analysis was also performed to show the interactivity
of DEGs, which demonstrated that METTL3 and YTHDF3
were hub genes (Figure 1F). Additionally, the location of m6A
regulators on the chromosome was discussed and displayed
in Figure 1G.

Association Between Writers and Erasers
in COVID-19
We investigated the correlation between three types of m6A
modification, and the result was presented in Figure 2A.
Interestingly, m6A regulators of a different type, such as

FIGURE 5 | Consensus clustering of the 18 significant m6A regulators in COVID-19. (A) Consensus matrices of the 18 significant m6A regulators for k = 2. (B)

Differential expression analysis of the 18 significant m6A regulators in cluster A and cluster B. (C) Expression heatmap of the 18 significant m6A regulators in cluster A

and cluster B. (D) PCA for the expression data of the 18 significant m6A regulators that indicates an obvious difference in transcriptomes between the two m6A

subtypes. (E) GO analysis that investigates the potential mechanism underlying the effect of the 139 m6A-related DEGs on the occurrence and development of

COVID-19. *p < 0.05, **p < 0.01, and ***p < 0.001.
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METTL3 and HNRNPA2B1, can display cooperative activities
(coefficient = 0.86). We also discussed the possibility of
regulators co-expression, and observed a clear relationship
between FTO and additional regulators, with the greatest
relevance for METTL3 and FTO (correlation coefficient
= 0.83). This finding is consistent with PPI analysis and

provides a possible explanation for the regulation mechanism
of m6A regulators. To further investigate the relationship
between writers and erasers in COVID-19, we discussed the
expression levels of these regulators with linear regression
analyses. Significant positive correlations were observed between
METTL3, METTL16, RBM15B, VIRMA, and FTO in COVID-19

FIGURE 6 | Single sample gene set enrichment analysis. (A) Correlation between infiltrating immune cells and the 18 significant m6A regulators. (B) Difference in the

abundance of infiltrating immune cells between high and low METTL3 expression groups. (C) Differential immune cell infiltration between cluster A and cluster B. *p <

0.05, **p < 0.01, and ***p < 0.001.
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patients. COVID-19 patients with high expression levels of
FTO tend to display high levels of METTL3, METTL16,
RBM15B, or VIRMA (Figures 2B–E). Similarly, we also found
a close association between CBLL1, METTL14, METLL16,
RBM15B, ZC3H13, and ALKBH5. COVID-19 patients with
elevated expression levels of CBLL1, METLL16, and RBM15B
presented elevated expression levels of ALKBH5 while elevated
METTL14 and ZC3H13 expression demonstrated a negative
association with ALKBH5 (Figures 2F–J). Consequently,
we proved a clear association between diverse writers
and erasers.

Evaluation of the RF Model and SVM Model
We next constructed an RF and SVM model to identify
optimal m6A regulators from abovementioned DEGs to
predict the occurrence of COVID-19. Based on “Reverse
cumulative distribution of residual” and “Boxplots of residual”
(Figures 3A,B), the RF model with the least residuals were
established. As a majority of the specimens in this model
retained only small residuals, the predictive performance of
the RF model is extremely excellent. Then, we chose 500
trees as the variables of the current model based on the
relationship overview between the model error and the number
of decision trees, and this model presented a stable error
possibility (Figure 3C). We also ranked 18 DEGs depending
on their respective gene importance based on RF model,
and this result demonstrated that RBM15B and ELAVL1 had
a high priority in this model (Figure 3D). Additionally, the
ROC curves were established to assess the accuracy of these
models, and the AUC value also demonstrated that the RF
model has superior performance compared to the SVM model
(Figure 3E).

Evaluation of a Predictive Nomogram
Based on the abovementioned findings, 8 recommended m6A
regulators were utilized to develop a predictive nomogram
for predicting the incidence of COVID-19 (Figure 4A).
Interestingly, we observed that the expression level of
RBM15B was negatively correlated with the patients’ risk
score, and RBM15B may be a protective factor for COVID-19
patients. This result was consistent with abovementioned
analysis based on the expression difference in the patients
with different disease status. Calibration curves proved the
predictive accuracy of the nomogram (Figure 4B). The model
developed by the m6A regulator is always at the top of the DCA
curve (Figure 4C), indicating that COVID-19 patients were
clearly benefited from the decisions based on this nomogram.
Furthermore, the clinical impact curve also demonstrated
that the predictive robustness of this nomogram was reliable
(Figure 4D).

Analysis of Specific Subtypes Based on
m6A Regulators
Based on differently expressed m6A regulators, we performed
a consensus clustering algorithm to identify different subtypes
(Figure 5A), and COVID-19 patients were well-categorized
into two clusters when the cluster variable is 2. Cluster A

consisted of 80 cases, and cluster B consisted of 20 cases.
Subsequently, we detected the expression of these m6A
regulators in cluster A and Cluster B. METTL3, METTL14,
WTAP, VIRMA, ZC3H13, CBLL1, YTHDC1, YTHDF3,
HNRNPC, FMR1, HNRNPA2B1, and FTO presented increased
expression in cluster A compared to those in the cluster B,
while the opposite performance was observed in IGFBP2.
Meanwhile, RBM15, RBM15B, IGFBP3, ELAVL1, and IGF2BP1
displayed no significant differences between these clusters
(Figures 5B,C). PCA revealed that the 18 m6A regulators
could exactly classify the two m6A subtypes (Figure 5D).
Totally, 139 m6A-related DEGs were identified between the
two m6A subtypes. To explore the potential role of these
DEGs in COVID-19, the findings from GO enrichment
analysis revealed that the DEGs were particularly abundant
in cellular response and cell differentiation-related pathways
(Figure 5E).

We further conducted ssGSEA to assess the enrichment
of immune cells in COVID-19 specimens and discussed
the relationship between the m6A regulators and immune
cells (Figure 6A). METTL3 had positive associations with
various immune cells. Afterward, we investigated the
distinct enrichment of immune cells in patients with high-
or low-METTL3 (Figure 6B). The findings demonstrated
that patients with high METTL3 expression had obviously
enriched immune cells. Ultimately, we also discussed the
differential immune cell enrichment between the m6A subtypes.
We observed that cluster A displayed higher infiltrating
levels of immune cells, particularly T helper cells (Th1
and Th2), than cluster B (Figure 6C), which indicated that
patients in cluster A may have a positive immune response
for COVID-19.

Evaluation of the m6A Gene Signature
To prove the m6A subtypes, we performed the consensus
clustering algorithm to categorize the COVID-19 patients into
distinct gene subgroups based on 139 m6A-related DEGs
(Figure 7A). We observed that these genomic subtypes were in
accordance with m6A subtypes, and Figure 7B displayed the
differential expression of the 139 DEG. Afterward, the differential
expression of the 18 m6A regulators and infiltrating immune
cells between different gene clusters were also similar to those
in the m6A subtypes (Figures 7C,D). This result demonstrated
the rationality of the clustering algorithm. Moreover, PCA
was utilized to obtain m6A scores for individual specimens,
thus quantifying the m6A subtype. We also compared the
m6A score in the m6A clusters or gene clusters, and the
finding revealed the m6A score in cluster A or gene cluster
A was greater than that in cluster B or gene cluster B
(Figures 7E,F). Additionally, the correlation between the m6A
cluster, m6A gene clusters, and m6A scores were displayed in
Figure 8A.

Relationship Between m6A Subtypes and
Cytokines
The “cytokine storm” is an inappropriate immune response
that is the main cause of death in COVID-19, and many
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FIGURE 7 | Consensus clustering of the 139 m6A-related DEGs in COVID-19. (A) Consensus matrices of the 139 m6A-related DEGs for k = 2. (B) Expression heat

map of the 139 m6A-related DEGs in gene cluster A and gene cluster B. (C) Differential expression of the 18 significant m6A regulators in gene cluster A and gene

cluster B. (D) Differential immune cell infiltration between gene cluster A and gene cluster B. (E) Differences in m6A score between cluster A and cluster B. (F)

Differences in m6A score between gene cluster A and gene cluster B. *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 8 | Role of m6A subtypes in distinguishing COVID-19. (A) Sankey diagram demonstrating the relationship between m6A subtypes, m6A gene subtypes, and

m6A scores. (B) Differential expression levels of cytokines between cluster A and cluster B. (C) Differential expression levels of cytokines between gene cluster A and

gene cluster B. *p < 0.05, **p < 0.01, and ***p < 0.001.

cytokines and their inhibitors are now used in the clinical
treatment of COVID-19. To further determine the correlation

between m6A subtypes and COVID-19, we comprehensively
discussed the association between m6A subtypes and various
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cytokines. As displayed in Figures 8B,C, diverse cytokines
presented significant discrepancies in the m6A clusters and
genomic clusters. It is noteworthy that IL1B, IL7, IL8, and IL6ST
were overexpressed in the cluster A and gene cluster A compared
to cluster B and gene cluster B, consistent with existing reports.
This finding revealed that cluster A or gene cluster A is closely
correlated with COVID-19 characterized by multiple cytokines.

DISCUSSION

COVID-19 is an infectious respiratory disease with general
susceptibility in the population, and there are limited treatment
strategies for COVID-19 at present (36). To improve the
management and recovery of patients with limited medical
facilities, it is essential to clarify the pathogenesis of COVID-
19 and the associated susceptible population. Emerging evidence
demonstrated that m6A regulators participate in the diverse
biological behavior of SARS-COV-2 (18, 37). However, the
potential role of m6A regulators in the COVID-19 is still unclear.

In the present research, we comprehensively explored the
basic elements of m6A modification in COVID-19 patients.
The expression levels of m6A regulators were obviously
overexpressed in COVID-19 patients compared to in non-
COVID-19 patients. This different expression of m6A regulators
was also observed between COVID-19 patients with ICU
status and non-ICU status. These results indicated that m6A
modification may have a close correlation with development
and severity of COVID-19. We also performed GSVA to
identify COVID-19-related pathways and found diverse signaling
pathways may serve a critical role in the development of
COVID-19, and the exploration of these pathways may be
beneficial for clarifying the special mechanism of COVID-19.
We further discussed the intrinsic relevance of m6A regulators
in the patients with or without COVID-19, and a significant
association between m6A regulators in COVID-19 was observed.
Moreover, an RF model was constructed to identify 8 regulators
from differential expressed m6A regulators and thus predict
the occurrence of COVID-19. However, this model cannot
yet be validated in the absence of adequate information of
m6A regulators in the public databases. Additionally, univariate
analysis for feature selection had a possibility to ignore the
multivariate association in the feature selection process, and
multivariate analysis was further considered to identify optimal
DEGs. Previous reports have demonstrated that the selected
m6A regulators are responsible for the initiation and progression
of tumors, such as hepatocellular carcinoma, lung cancer, and
gastric cancer (32, 38, 39). Currently, there are few studies on
the correlation between these selected regulators and COVID-19.
This study provides a novel option for further genomic analysis
on these m6A regulators in the COVID-19 patients.

A multicomponent m6A methyltransferase complex (MTC)
consisted of a METTL3-METTL14 heterodimer core and
additional binding elements (40). MTC can promote m6A
modification to regulate the disease processes. A nomogram
based on 8 candidate m6A regulators was constructed to
guide clinical treatment for COVID-19 patients, and the

DCA curve demonstrated that COVID-19 patients may benefit
from the decisions based on this nomogram. We observed
that RBM15B, HNRNPA2B1, and VIRMA may be protective
factors in the development of COVID-19, and the opposite
performance was found in ELAVL1, RBM15, FMR1, IGFBP3,
and METTL3. RBM15 and its paralogue RBM15B bind the
m6A-methylation compound and mobilize it to appropriate
sites in RNA (41). RBM15 was markedly upregulated in
laryngeal squamous cell carcinoma and correlated with a worse
prognosis (42). METTL3 serves a critical role in various
cellular biological processes, such as promoting the anti-
tumor immunity of natural killer cells (43). As a prominent
subunit of the MTC, METTL3 facilitates the generation of
m6A. It is reported that METTL3 and RBM15 can modulate
intrinsic immune responses of the host cell during SARS-
CoV-2 infection in diverse cells (18). Similarly, the specific
role of VIRMA, ELAVL1, and FMR1 in COVID-19 was
mentioned in several studies (44–46). Numerous studies
demonstrated that the 8 selected m6A regulators may be
involved in the emergence and lymphocyte responses of COVID-
19 patients.

At present, the immune response activated by T cells may
benefit COVID-19 patients, and reduce the damage caused by
cytokine storms (47, 48). Based on DEGs between COVID-
19 and non-COVID-19, we found 18 m6A regulators for
subsequent analysis. Unsupervised cluster analysis of differential
expressed m6A regulators was performed to identify two distinct
modification subtypes in COVID-19 patients. m6A cluster A
presented activated T cell behaviors, while m6A cluster B
was marked by monocyte-related activity. Similar to the m6A
categorization, two genomic subtypes were established based
on DEGs between cluster A and cluster B, and we found
that gene cluster A displayed higher infiltrating levels of T
cells than gene cluster B, such as CD4+ T cells and natural
killer T cells. JAK-STAT pathway may participate in T cell
differentiation (49), and we observed that components in the
JAK-STAT pathway were more enriched in cluster A or gene
cluster A than those in cluster B or gene cluster B. Consequently,
these findings demonstrated that m6A cluster A and gene cluster
A with positive T cell activity to defend against SARS-COV-
2 could present a superior clinical performance. Furthermore,
the m6A score was identified to quantify the m6A subtype
for individual COVID-19 patients. Consistent with the above
results, patients in m6A cluster A or gene cluster A displayed
higher m6A scores compared to m6A cluster B or gene
cluster B.

Nonetheless, there are some limitations in the present
research. Since our findings have not been supported by clinical
specimens, the specific relationship between m6A regulator and
COVID-19 remains to be further confirmed. And this signature
will be evaluated and validated in future experimental studies.

CONCLUSION

Briefly, this research identified 8 recommended m6A
regulators and constructed a nomogram that predicts
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the susceptibility of COVID-19. Based on differently
expressed m6A regulators, we then determined two
m6A subtypes, and cluster B may be clearly associated
with COVID-19.
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