
Automated Identification and Location Analysis of
Marked Stem Cells Colonies in Optical Microscopy
Images
Vincenzo Paduano1,3, Daniela Tagliaferri2, Geppino Falco2,3*, Michele Ceccarelli1,3*

1 Bioinformatics Lab, Genetic Research Institute ‘‘G. Salvatore’’ (IRGS) c/o BioGeM s.c.a r.l., Ariano Irpino, Avellino, Italy, 2 Stem Cell Research Lab, Genetic Research Institute

‘‘G. Salvatore’’ (IRGS) c/o BioGeM s.c.a r.l., c.da Camporeale, Ariano Irpino, Avellino, Italy, 3 Department of Science and Technologies, University of Sannio, via Port’Arsa,

Benevento, Benevento, Italy

Abstract

Embryonic stem cells (ESCs) are characterized by two remarkable peculiarities: the capacity to propagate as undifferentiated
cells (self-renewal) and the ability to differentiate in ectoderm, endoderm, and mesoderm derivatives (pluripotency).
Although the majority of ESCs divide without losing the pluripotency, it has become evident that ESC cultures consists of
multiple cell populations highlighted by the expression of early germ lineage markers during spontaneous differentiation.
Hence, the identification and characterization of ESCs subpopulations represents an efficient approach to improve the
comprehension of correlation between gene expression and cell specification status. To study markers of ESCs
heterogeneity, we developed an analysis pipeline which can automatically process images of stem cell colonies in optical
microscopy. The question we try to address is to find out the statistically significant preferred locations of the marked cells.
We tested our algorithm on a set of images of stem cell colonies to analyze the expression pattern of the Zscan4 gene,
which was an elite candidate gene to be studied because it is specifically expressed in subpopulation of ESCs. To validate
the proposed method we analyzed the behavior of control genes whose pattern had been associated to biological status
such as differentiation (EndoA), pluripotency (Pou5f1), and pluripotency fluctuation (Nanog). We found that Zscan4 is not
uniformly expressed inside a stem cell colony, and that it tends to be expressed towards the center of the colony, moreover
cells expressing Zscan4 cluster each other. This is of significant importance because it allows us to hypothesize a biological
status where the cells expressing Zscan4 are preferably associated to the inner of colonies suggesting pluripotent cell status
features, and the clustering between themselves suggests either a colony paracrine effect or an early phase of cell
specification through proliferation. Also, the analysis on the control genes showed that they behave as expected.
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Introduction

Over the past few years it has become evident that in vitro mouse

ESC cultures consist of multiple cell populations [1] with different

degrees of pluripotency [2,3]. The culture heterogeneity is mainly

to be addressed to ESC responsiveness to paracrine effects and

cell-to-cell interaction. This colony-relative cell position analysis

may result very useful to set up biological hypotheses that may lead

to the understanding of cell cycle, cell differentiation, and cell

meta-stable status, following the location pattern inside the colony

itself. Due to the amount of images that can be collected with

actual imaging technologies and the subjectivity of manual image

annotations, the development of automated high throughput

image annotation pipelines is an active research topic in

computational biology [4–7].

In order to monitor ESCs containing reporter genes which are

markers of ESC heterogeneity we developed an analysis pipeline

which can automatically process images of stem cell colonies in

optical microscopy. In our pipeline the colonies are first segmented

and the marked cells are then identified with an adapted filter [8]

based on Orientation Matching [9]. Thereafter, quantitative

information is extracted and statistical analyses are then performed

on the collected data in order to find out the preferred location of

the marked cells and if there is a statistically significant difference

with respect to a specific null model. The overall pipeline of our

procedure is depicted in Figure 1, where each step is detailed in

Materials and Methods.

Since heterogeneous expression is traditionally associated to

early cell fate decision occurring spontaneously in ESCs, we used

the developed pipeline to analyze the location of cells expressing

the gene Zscan4 within ESC colonies. Zscan4 [10] is a crucial

factor, responsible for maintaining chromosomal stability, it is

expressed heterogeneously in the conventional culture of murine

ESCs and as it is involved in telomere elongation [11]. Our

pipeline shows that cells expressing Zscan4 are not uniformly

located, rather they tend to localize near the colony center, which

suggests — we hypothesize — pluripotent cell status features.

Moreover the discovery that the cells expressing Zscan4 cluster

between themselves manifests a typical specification action of these

cells. In addition, as a validation of the developed method, we
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consider as ‘‘control genes’’ EndoA, Pou5f1, and Nanog, whose

location pattern can be predicted by previous studies. Pou5f1, a

marker of pluripotency, is expressed in undifferentiated ESCs in

the center of ESC colonies, with reduction or absence of

expression at the more differentiated, epithelioid edges of colonies

and isolated cells; EndoA, a marker of trophectoderm and visceral

endoderm, is detected in the flatter cells that surround undiffer-

entiated colonies whereas Nanog expression was rather heteroge-

neous compared to Pou5f1.

Materials and Methods

Culture Preparation
The mouse ES parental cell line E14Tg2a.4 derived from strain

129P2/OlaHsd [12] was cultured for two passages on gelatin–

coated feeder–free plates and subsequently maintained in gelatin–

coated six–well plates in complete ES medium: DMEM

(Dulbeccos Modified Eagles Medium, EuroClone), 15% FBS

(EuroClone), 1000 U ml-1 leukaemia inhibitory factor (LIF,

EuroClone), 1 mM sodium pyruvate (Invitrogen), 0.1 mM non-

essential amino acids (Invitrogen), 2 mM L-glutamine (Invitrogen),

0.1 mM b-mercaptoethanol, and 500 U ml-1 penicillin/strepto-

mycin (Invitrogen). RA was added as a DMSO (Dimethyl Sulfoxide)

solution at a final concentration of 1,5 mM to induce differenti-

ation. Control cells were treated with an equal volume of DMSO.

The cells were incubated at 37uC in 5% CO2; the medium was

changed daily and the cells were routinely split every 2 to 3 days.

Cells were then fixed in 4% PFA/PBS at 4uC overnight. After

digestion with proteinase K, the cells were hybridized overnight

with 1 mg digoxigenin–labeled riboprobe or biotin–labeled ribop-

robe at 60uC. The cells were then washed, blocked, incubated with

alkaline phosphatase–conjugated anti digoxigenin antibody or

streptavidin–AP conjugate, and incubated with NBT/BCIP

detection buffer for 30 min. RNA probe preparation 200 ng of

cDNA were PCR–amplified in 50 ml PCRs using SP6 (5–

GATTTAGGTGACACTATA–3) and T7 (5–TAATACGACT-

CACTATAGGGA–3) primers. PCR products were purified using

a QIAquick PCR purification Kit (Qiagen), eluted in 30 ml of

buffer, and quantitated using a NanoDrop. Digoxigenin–labeled

RNA probes were transcribed from the PCR product templates

using DIG RNA Labeling Kit (Roche) and the appropriate RNA

polymerase. Probes were purified through RNA column and

quantified by agarose gel electrophoresis or by running an RNA

6000 Nano Assay on a 2100 Bioanalyzer. Then 57 images were

captured at 2560|1920 pixel resolution in TIFF format at 10|

magnification in optical microscopy.

Colony Segmentation
Since we are interested in extracting cell locations inside the

colonies, the first step of our pipeline is aimed at detecting colonies

[13]. After a preprocessing step to remove the background and

uniform the light intensity conditions, we apply a segmentation

process where colonies in the image are segmented as disconnect-

ed single objects using a simplified two-dimensional version of our

previously developed Enhanced Interaction Model [14]. The

resulted binary image, containing the segmented colonies and the

background, is then enhanced through a cascade of morphological

operators. Different colonies are then processed through a

Watershed transform which returns as output the segmentation

for each colony in the image. The overall pipeline is depicted in

Figure 1, while the various steps are described in detail below. We

applied similar pattern analysis approaches in other biological

domains, such as the identification of structural chromosome

aberrations and carcinogenesis [15]. The main difference with the

procedure depicted in Figure 1 is the use of a variational method

to efficiently detect colonies and the setup of a statistical

framework to test biological hypotheses relative to the expression

behavior of genes of interest within Mouse ES Cells. The results of

the various steps are reported in Figure 2.

Background Removal. The original image J is passed

through a morphological top hat filtering for background removal

with a structuring element as a rolling ball B of radius rB and

height hB. The image is then adjusted with a CLAHE algorithm

[16], and the border intensity is enhanced and then blurred:

Figure 1. Process flow diagram for the proposed approach. A preprocessing step is used to remove the background and uniform the light
intensity conditions, then the segmentation process takes place with a two-dimensional version of the Enhanced Interaction Model. The resulting
binary image is then enhanced through a cascade of morphological operators. Different colonies are then processed through a Watershed transform
which returns as output the segmentation for each colony in the image.
doi:10.1371/journal.pone.0080776.g001

Location Analysis of Stem Cells from Images
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I~½J(x,y)(1{H(j+Jj{w))� � G(x,y) ð1Þ

where I is our final filtered image, G is a Gaussian filter of

dimension and standard deviation s, w is a threshold and

H is the Heaviside step function, so that 1{H(x{w)

~
1 xvw
0 x§w

�
and � is the convolution operator. The results

of the application of this process to a generic image is reported in

panel (b) of Figure 2.

Segmentation. To segment the colonies we use a simplified,

single contour, two-dimensional version of the Enhanced Interac-

tion Model [17] presented in [14] where an energy functional EI

associated to the image is defined as

Figure 2. Segmentation process. (a): original image, (b): background subtraction. (c): colony segmentation, (d, e): orientation matching. (f): output
image. Segmentation, identification and other outputs are shown overimposed on the original image (for a description see Figure 3).
doi:10.1371/journal.pone.0080776.g002
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EI ~lf

ÐÐ
V

jI(x,y){cf j2½1{H(Y(x,y,t))� dxdy

zlb

ÐÐ
V

jI(x,y){cbj2H(Y(x,y,t)) dxdy
ð2Þ

here V is the whole image domain, I(x,y) is the image to be

segmented, Y(x,y,t) is a level set function [18,19] whose zero level

is the segmenting contour and whose negative levels represent the

inside of the segmented object, H is the Heaviside step function as

above, so that if S is the segmented shape its intern

inside(S)~1{H(Y) , and so outside(S)~H(Y) , cf and cb are

the intensity means of the segmented foreground object and the

background respectively, and lf and lb are weighting parameters.

The evolution equation for Y is then obtained by deducing the

associated Euler-Lagrange equation:

L
Lt
Y(x,y,t)~d(Y)(lf jI(x,y){cf (t)j2{lbjI(x,y){cb(t)j2) ð3Þ

where d(x) is the delta of Dirac, and cf and cb become functions of

t:

cf (t)~

ÐÐ
½1{H(Y)�I dxdyÐÐ
½1{H(Y)� dxdy

cb(t)~

ÐÐ
H(Y)I dxdyÐÐ
H(Y) dxdy

and their values must be updated accordingly. The results of the

application of this process to a generic image is reported in panel

(c) of Figure 2.

Binary Enhancement. We obtain a binary image

S : R2?f0,1g containing only the segmented shapes by simply

calculating S~1{H(Y) . A dilation is performed in the image,

defined as:

S+D~ maxfS(x{g,y{j)j(g,j)[Ddomg ð4Þ

where D : R2?f0,1g is a morphological structuring element with

the shape of a disk with radius rD and where Ddom is its domain

[20,21]. Then the holes in the image are filled with a

morphological reconstruction, intending by hole a background

area that cannot be reached by filling in the background from the

edge of the image domain [22]. Finally, all the connected

components (objects) with very small areas are removed with a

morphological opening. The unique segmenting contour S is then

split into n contours Sn, one for each colony in the image through

a Watershed Transform [23].

Cell Analysis
Identification of the marked cells inside each colony can now be

performed: intra–colony stem cell location is in fact essential for

the future organism formation [24]. A preprocessing step uses a

Non-Linear Diffusion filtering to remove noise from the image

with a smoothing process, though preserving the borders that are

essential for the next spotted cell recognition step. Spotted cells are

roughly circular, and a circular object recognition approach is

needed to identify them. To achieve this, the filtered images are

processed with an Orientation Matching algorithm that identifies

circular and semi-circular objects within a range of desired radii.

In order to perform the search for spotted cells, a preprocessing

step is needed to soften the textures of the image and remove the

noise; after that it is imperative that the borders of the objects are

preserved: to do this a non linear diffusion operation is performed

[25–27].

Orientation Matching. We use the approach proposed in

[9] to identify spotted cells on the filtered image I . We first define

the image gradient +I as

+I~
LI(x,y)

Lx
,
LI(x,y)

Ly

� �
~(Ix,Iy) ð5Þ

We also define an artificial gradient built in the form of an

annulus A~ Ax,Ay

� �
which is centered in 0 with radii rm and rM

and having that each point in A has the same gradient length and

Table 1. Table of the parameters adopted for the analysis.

Zscan4 EndoA Nanog Pou5f1

cf (0) 0 0 0 0

cb(0) 255 255 255 255

lf 1.0 1.0 1.0 1.0

lb 1.0 1.0 1.0 1.0

rB 12.0 12.0 12.0 12.0

hB 4.0 4.0 4.0 4.0

25.0 25.0 25.0 25.0

s 2.5 2.5 2.5 2.5

w 0.75 0.75 0.75 0.75

rD 5.0 5.0 5.0 5.0

rm 6 4 10 10

rM 9 10 25 24

s 1 1 2 2

magnif. 10| 10| 40| 40|

resize 800|600 800|600 800|600 800|600

doi:10.1371/journal.pone.0080776.t001
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orientation pointing perpendicularly towards the annulus’ edge.

We now introduce the Orientation Matching function fOM

fOM (x,y)~
1

2pDr

ðð
A

Ix(g,j)Ax(x{g,y{j)zIy(g,j)Ay(x{g,y{j)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x{g)2z(y{j)2

q dgdj ð6Þ

where Dr~rM{rm (for more details see [28]). In the implement-

ed algorithm rm and rM were not used in a single annulus but as

extrema of smaller annuli of radii frmzks,rmz(kz1)sg where s

is a step value, k~1,2, . . . and rmz(kz1)sƒrM .

To set (6) in a more suitable form we introduce the normalized

gradient of I

Figure 3. Segmentation examples. (a, b, c): original images. (d, e, f): segmented colonies and identified spotted cells. Colonies are segmented
with different colors: in each one the central blue star point is the centroid while small green circles identify marked cells; the segment from the
centroid to the marked cell defines the normalization path, whose value is shown next to the small circle.
doi:10.1371/journal.pone.0080776.g003

Figure 4. Distribution for the statistical analysis on the Zscan4-marked ES colony image set. Distribution related to the distances from the
centroid compared to the null case distribution, with a statistical difference p-value of 3:132|10{16 with significance level a~0:001.
doi:10.1371/journal.pone.0080776.g004

(6)
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+I~ Ix,Iy

� �
~

Ix

j+I j ,
Iy

j+I j

� �
ð7Þ

and the normalized version of A

A~(Ax,Ay)~
A

R
~

Axffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2zy2

p ,
Ayffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2zy2
p

 !
ð8Þ

where R(x,y)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2zy2

p
is the distance from the origin of each

point inside the annulus (remember that A is centered in 0). So the

final formulation of fOM is

fOM~
Ix � AxzIy � Ay

2pDr
~

+I � A

2pDr
ð9Þ

Panels (d,e) of Figure 2 report a picture of the fOM for the selected

image.

Location Analysis
Data from the identified spotted cells are then collected,

relatively to each cell position inside the colony and to the other

spotted cell positions. A hypothesis testing statistical approach [29]

is then adopted to verify whether the marked cells have a preferred

location behavior. Since standard randomness tests do not

sufficiently take into account the biological problem, we perform

a more restrictive location analysis by using a sampling approach

that tries to model the underlying biological phenomenon to

generate the null hypothesis. In particular, we randomly generate

colonies to compute the sampling null distribution of descriptive

location parameters such as the distance from the centroid, and

the mutual distances between marked cells. The null distributions

are then compared against the observed data with the non-

parametric Kolmogorov-Smirnov test [30]. In order to drive

biological conclusions we set the confidence level a to be 0.001.

Indeed, here we have a large biological variation; so that when the

real dataset is small (as it was the case with one of our datasets) it

cannot be expected that the curves from real and null cases will

match closely even if the marked cells have a non-preferential

localization. This is because statistically with a small number of

data the observed distribution may differ slightly from the

theoretical, real distribution [29]; so we chose to be more stringent

with the confidence interval, and we then decided for a lower

value.

The generation of the null distribution is performed in the

following way: the real colonies are repopulated with points

appearing randomly, whose distributions (distance from centroid

and mutual distances) are then calculated. The points are

generated by calculating the bounding box of the colony and

randomly generate a (x,y) coordinate pair inside the box; the

points falling outside the colony are then discarded. For each

colony the points generated in the null case are ten times the

number of real points.

Before testing the hypotheses the segmented colonies are

normalized, i.e. transformed into a circular shape with unitary

radius; indeed, real colonies are semi-circular but not perfect

circles. Such transformation then keeps into account the distance

from the centroid and at the same time from the colony’s edge.

Let’s define as k~1,2, . . . ,n the number of each spotted cell into

Figure 5. Diagrams for the statistical analysis on the Zscan4-marked cells mutual distances. Distribution related to the mutual distances
compared to the null case distribution, with a p-value of 5:498|10{81 with significance level a~0:001.
doi:10.1371/journal.pone.0080776.g005
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the colony, as C~(Cx,Cy) the colony centroid and as

Pk~(Px,k,Py,k) the position of the cell k. We can now define

the distance of the cell k from the centroid:

dPC,k~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Cx{Px,k)2z(Cy{Py,k)2

q
ð10Þ

Let’s now define Ei : Y(Ei)~0 i.e. Ei~(Ex,i,Ey,i) are all the

points on the edge of the colony. We are interested in the edge

point �EEk which lies on the same semirect passing through Pk and

originating from C. To find �EEk we have to calculate

�EEk~ min
Ei

f(Py,k{Cy)Ex,i{(Px,k{Cx)Ey,izCyPx,k{CxPy,kg ð11Þ

The distance from the centroid C and �EEk is then

dEC,k~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Cx{Ex,k)2z(Cy{Ey,k)2

q
ð12Þ

Now the normalized distance of the point Pk (referred to a

unitary circle, see above) is calculated as

d̂dP,k~
dPC,k

dEC,k
ð13Þ

so that d̂dP,k[½0,1� . The next step is to compare the distribution of

the null case with that of the real case: we used the non-

parametrical Kolmogorov-Smirnov test [30] to compare the real

distances with the in silico one.

Following the Kolmogorov-Smirnov analysis, a direct classifi-

cation of the marked cells can be performed. If the colonies

expressing the gene of interest show that the location of the gene-

expressing cells is not statistically different from that of the null

case, its location pattern may be labeled as NON-PREFEREN-

TIAL; otherwise they can be classified as PREFERENTIAL since

they have a preferential intra-colony location. The difference from

the null case can be studied by the real case data distribution, for

example showing if they are closer to the centroid or to the edge by

comparing the means, obtaining the sub-labels INNER and

OUTER.

Clusterization of the marked cells is also valuable information

that may lead to precise biological hypotheses. In most cases it

may be deduced from a non-uniform intra-colony location, but we

tested it quantitatively. For each colony the mutual distances

between cells were calculated as

dk1,k2
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Px,k1

{Px,k2
)2z(Py,k1

{Py,k2
)2

q
ð14Þ

for every possible pair of cells k1 and k2. They were then

normalized in ½0,1� by dividing for the major axis of the colony

d̂d~
dk1,k2

MA
ð15Þ

where MA is the major axis. Distribution of mutual distances in

the real cases are then compared to null cases; the overlapping of

the distribution curves implies a non clusterization, while the

opposite means that marked cells appear in definite groups. This

adds the sub-labels CLUSTERED and NON-CLUSTERED.

Application
A MATLAB script pack which implements the proposed

method and is capable of a full automated analysis has been

developed and it is available at http://bioinformatics.biogem.it/,

together with the images reported in the Results Section. A flow

diagram of the proposed approach is shown in Figure 1 and the

results of the various steps are reported in Figure 2. All the

adopted parameters of the procedure, which were used in the

experiments, are reported in Table 1.

Figure 6. Fluorescence images. Union processing of two channels
for the fluorescence microscopy images (this is from the 40| nanog-
marked colony image set). (a): DAPI channel (blue), (b): Nanog channel
(green), (c): resulting image; it was preprocessed so the colors were
similar to those in the Zscan4 set so that the algorithm could be applied
immediately.
doi:10.1371/journal.pone.0080776.g006

Location Analysis of Stem Cells from Images
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Figure 7. Diagrams for the statistical analysis on the EndoA-marked ES colony image set. Distribution related to the distances from the
centroid compared to the null case distribution, with a statistical difference p-value of 5:028|10{4 with significance level a~0:001.
doi:10.1371/journal.pone.0080776.g007

Figure 8. Diagrams for the statistical analysis on the EndoA-marked cell mutual distances. Distribution related to the mutual distances
compared to the null case distribution, with a p-value of 2:621|10{2 with significance level a~0:001.
doi:10.1371/journal.pone.0080776.g008

Location Analysis of Stem Cells from Images
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Results

We proposed a method capable of 1) automatically segmenting

ES colonies and identifying marked cells of interest, and 2)

extracting quantitative location data and performing statistical

analyses which can lead to biological hypotheses about the cells of

interest behavior (see Figure 3 for examples of segmentation

results). We implemented the proposed approach in MATLAB

and tested it on a set of 57 optical microscopy images obtained

from culture of ESCs followed by in situ hybridization. Images

were 2560|1920 pixel resolution in uncompressed tiff format at

10| magnification, acquired with a Zeiss microscope with 0.94

mm pixel resolution. Because the proposed algorithm becomes

computationally demanding on large images, they were resized at

800|600 pixel resolution during analysis to achieve better

performances. This standardization also allows to use the same

parameter settings for all the reported experiments. The colony

segmentation tended to extent a little outside the real colony edges;

to overcome this the distances in the interval 0:9,1½ � (i.e. at the

extremities of edges) were truncated. Also, due to the limited

number of images, a slight smoothing was performed on the

distribution curves to overcome individual case peaks in the

resulting distribution, using a moving average with windows size 3.

Our first aim was to validate the performance of the cell

detection method based on the Orientation Matching Transform,

explained in Materials and Methods, in terms of precision and

recall. In particular we manually collected a true table for a set of

images containing 903 marked cells. Our procedure resulted in

676 true positives, 227 false negatives and 8 false positives. Hence

we have a precision of 98.8% and a recall of 74.9%. Within this

context we are more interested in the rate of type I error (false

positives), since it can significantly alter the biological conclusions,

whereas the rate of false negatives is less relevant, since with a

sufficient number of samples the same conclusion could be

derived. Indeed, even if some marked cells are not detected, the

effect can be similar at having less images or samples; however

when the amount of detected cells (i.e. the data effectively

collected) is enough to draw conclusions at the chosen significance

level, we can reliably derive location preferences. In our case we

used a two-sample Kolmogorov-Smirnov test which requires a

number of samples in order of few hundreds [29] so our detected

cell number can be considered adequate for the statistical analysis

we are performing. For those reason we tuned the Orientation

Matching parameters in order to reduce the risk of type I errors; in

conclusion we consider the cell detection accuracy appropriate for

the biological question we are posing.

Location analysis of Zscan4
Zscan4 was an elite candidate gene because it marks a

subpopulation of ESCs – defined as mosaic-in-colony cells – in

regular culture condition on whose expression behavior the

analysis was carried out. No transcripts of the Zscan4 family are

detected in any cell types other than ESCs, thus being an ideal

gene to be studied under morphogenetic conditions. The

expression of Zscan4 starts during the first wave of transcription,

called zygotic genome activation (ZGA), and begins during the 2-

cell stage in mouse preimplantation development and marks a vital

transition from the maternal to the embryonic genetic program.

Preparation of the images of Zscan4 is described in detail in the

Materials and Methods section.

The images were processed with the proposed algorithm,

resulting that the cells expressing Zscan4 did not fit the null case

distribution, thus having a location preference and being classified

as preferential (Figure 4). Immediate observation of the mean on

the x axis location also suggested the sub-labeling of inner. The

Figure 9. Diagrams for the statistical analysis on the Nanog-marked ES colony image set. Distribution related to the distances from the
centroid compared to the null case distribution, with a statistical difference p-value of 2:465|10{3 with significance level a~0:001.
doi:10.1371/journal.pone.0080776.g009
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distribution of the distances d̂dP,k was different from that of the null

case, with a p-value of 3:132|10{16 from the Kolmogorov-

Smirnov test. The distribution mean is located closer to the center

of the colony than the null case mean, thus suggesting a more

central location of the cells expressing Zscan4. Also, clusterization

of the marked cells among themselves may be postulated because

of the same number of cells appearing more centrally in the

colony, where there is less space. This observation was confirmed

by the clusterization quantitative analysis: the mutual distance

d̂dk1,k2
distribution shows a significant difference with that of the

null case (Figure 5) with a p-value of 5:498|10{81. This sub-labels

Zscan4’s behavior as CLUSTERED. The significance level for all

the statistical tests was set as a~0:001.

Control Genes
Three other genes were selected as controls, EndoA (or Lrrk2),

Nanog and Pou5f1 (or Oct4). They all have known behaviors and

they have thus been chosen as control genes to test the proposed

pipeline: EndoA is known to be a differentiation marker and is

known to be expressed only on the edge of the colony [31]. Nanog is

a marker of metastability for the ESCs, it is thus expressed without

a preferential location inside the colony [32] and Pou5f1 is also a

metastability marker: its expression must be closely regulated,

causing otherwise differentiation inside the colony [33].

The EndoA-marked set was composed of 10 optical microscopy

images obtained from cultured ESCs followed with in situ

hybridization. Images were 2560|1920 pixel resolution in

uncompressed tiff format at 10| magnification. The Nanog-

marked and Pou5f1-marked sets were composed of 30 fluorescence

microscopy images each, showing cultured ESCs followed by in situ

hybridization. Images were 1300|1030 pixel resolution in best

quality jpeg format at 40| magnification. There were two

fluorescence channels: a DAPI channel for nuclei marking and the

specific fluorophore for the protein codified by the desired gene.

The two fluorescence channels were manually combined together

to have a single optical-like image to be passed to the algorithm

(see Figure 6), by merging the images and shifting the hues of the

channels. By doing so the images could be immediately passed to

the algorithm without much further parameter tuning. It has to be

noted that Nanog and Pou5f1 are peculiarly expressed in

undifferentiated ESCs, i.e. they are expressed everywhere inside

undifferentiated colonies.

The light field microscopy of Zscan4 experiments represented

RNA detection through in situ hybridization assay. We could not

perform immunofluorescence microscopy because there is no

commercial antibody available. We tried to detect Nanog and

Pou5f1 RNA signals through in situ hybridization but unfortunately

their RNA expressions were too weak to be detected by the

sensitivity of this technique. At this point we relied on a more

sensitive detection assay such as immunofluorescence of Nanog and

Pou5f1 proteins using commercial antibobies. Being capable to use

two detection assays based on RNA and protein respectively, and

having our results to be consistent between them, we can conclude

that our algorithm is general and flexible and thus not technique-

dependent.

As expected, the results for EndoA (Figure 7) show that the

marked cells distribution is classified as PREFERENTIAL (p-value

5:028|10{4), and the mean is also located towards the colony

edge, thus they are also sub-labeled as OUTER. Moreover, they

have no clusterization behavior, which is confirmed by the

quantitative mutual distance analysis that shows a distribution very

similar to the null case (Figure 8) with a p-value wa; this sub-labels

them as NON-CLUSTERED. The results about Nanog (Figure 9)

Figure 10. Diagrams for the statistical analysis on the Pou5f1-marked ES colony image set. Distribution related to the distances from the
centroid compared to the null case distribution, with a statistical difference p-value of 2:394|10{3 with significance level a~0:001.
doi:10.1371/journal.pone.0080776.g010
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show that its behavior is basically NON-PREFERENTIAL (p-value

wa); the same holds for Pou5f1, where the results are very similar

(Figure 10) showing a lack of location preference as behavior of the

marked cells.

For these two genes a quantitative analysis of clusterization

revealed, as expected, that they are NON-CLUSTERED with p-

values wa indeed, in these two cases those genes are expressed

everywhere in the colony and therefore marked cells appear very

dense, forming de facto a unique large cluster spread throughout the

whole colony.

Discussion

We presented a novel algorithm capable of automatically

identifying the location of cells expressing a gene of interest into

stem cell colonies and of executing automatic quantitative

measurements followed by a statistical analysis. We tested the

model on the Zscan4 gene, showing that it has a preferential

location behavior into the colonies and is preferably located

towards the colony centroid, so that the cells expressing Zscan4

tend to be clustered; all measurement were compared to a

completely location preference lacking in silico model.

Functionality and reliability of the proposed approach were

tested on three control genes, whose behavior is well-known:

EndoA, Nanog, and Pou5f1. The analyses showed that the results

were concordant with the expected behavior of those genes, thus

assessing that results from our approach are trustworthy. This is of

great importance because it allows us to put up biological

hypotheses about the role of Zscan4 on morphogenesis: first we

can state that Zscan4 is not expressed inside a stem cell colony

without a location preference, and that it is instead somewhat

bound to the internal sectors of the colony. In addition to the

above, Zscan4-expressing cells are also clustered between them-

selves; this is the most notable aspect about their appearance

behavior and may be related to morphogens (controlling or

controlled through the expression of Zscan4) that are diffused in the

morphogenetic process.

Similiar analysis may of course be carried out on other genes of

interest, enlightening location behavior of the cells expressing it,

thus leading to important clues in understanding their role in the

morphogenetic process of higher organisms.
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