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Guillain-Barré syndrome (GBS), an immune-mediated demyelinating peripheral neuropathy, is characterized by acute weakness of
the extremities and areflexia or hyporeflexia. Experimental autoimmune neuritis (EAN) is a common animal model for GBS, which
represents a CD4+ T cell-mediated inflammatory autoimmune demyelination of the peripheral nervous system (PNS), and is used
to investigate the pathogenic mechanism of GBS. It has been found that macrophages play a critical role in the pathogenesis of both
GBS and EAN. Macrophages have been primarily classified into two major phenotypes: proinflammatory macrophages (M1) and
anti-inflammatory macrophages (M2). The two different macrophage subsets M1 and M2 may play a decisive role in initiation and
development of GBS and EAN. However, recently, it has been indicated that the roles of macrophages in immune regulation and
autoimmune diseases are more complex than those suggested by a simple M1-M2 dichotomy. Macrophages might exert either
inflammatory or anti-inflammatory effect by secreting pro- or anti-inflammatory cytokines, and either inducing the activation of
T cells to mediate immune response, resulting in inflammation and demyelination in the PNS, or promoting disease recovery.
In this review, we summarize the dual roles of macrophages in GBS and EAN and explore the mechanism of macrophage
polarization to provide a potential therapeutic approach for GBS in the future.

1. Introduction

Guillain-Barré syndrome (GBS) is an inflammatory demye-
linating peripheral neuropathy, characterized by acute weak-
ness of the extremities and areflexia. Acute inflammatory
demyelinating polyneuropathy (AIDP) and acute motor axo-
nal neuropathy (AMAN) are the common subtypes of GBS
[1, 2]. The pathological features of GBS include inflamma-
tion, demyelination, and axonal damage in the peripheral
nervous system (PNS) [2]. Currently, intravenous adminis-
tration of immunoglobulin or plasma exchange is the optimal
treatment approach [2, 3]. However, 3–10% of patients with
GBS do not survive while 20% live with severe disabilities
[4]. Although the pathogenesis of GBS is still unclear, it may
be associated with cellular and humoral immune responses
[4]. AIDP is related to CD4+ T cell-mediated inflammation
and macrophage-induced demyelination of the PNS, while

AMAN mostly involves the autoantibodies against ganglio-
sides [5]. Experimental autoimmune neuritis (EAN) is an
artificially induced demyelinating animal model that mimics
the pathological and immunological features of GBS [6, 7].
Similar to GBS, EAN is characterized by activated T cell and
macrophage infiltration into the PNS, broken blood-nerve
barrier (BNB) and inflammatory demyelination, and axonal
injury of the peripheral nerves [4, 7].

Macrophages present different phenotypes and con-
tribute to host immune response, metabolic homeostasis,
and tissue repair [8, 9]. Activated macrophages are generally
divided into two phenotypes, namely proinflammatory mac-
rophages (M1) and anti-inflammatory macrophages (M2)
[10]. Multiple lines of evidence suggest that the macrophages
have phenotypes with high plasticity, which could be altered
by appropriate signals in different pathological conditions
[11, 12]. Macrophages play either a proinflammatory or
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anti-inflammatory role in the different stages of GBS [7]. M1
macrophages are associated with inflammatory impairment
of the myelin sheath by promoting cellular cytotoxicity and
production of Th1 cytokines during the early course of GBS
[13, 14]. M2 macrophages, in contrast, are involved in the
recovery of disease and repair of myelin and axon by
facilitating Th2 immune response as well as the secretion
of anti-inflammatory cytokines in the later phase of GBS
[14, 15]. Increasing studies have demonstrated that the
switch of macrophage phenotype from M1 to M2 could
effectively ameliorate the severity of EAN [16–18].

2. An Overview of Macrophages

Generally, macrophages come from the embryonic progeni-
tors or blood monocytes and exist in various tissues of the
body. The phenotypic and functional properties of macro-
phages are determined by the signaling molecules they
encounter in the beginning.

As a remarkably heterogeneous cell type, macrophages
present with different names in various tissues of the body,
such as microglia in the central nervous system (CNS),
Kupffer cells in the liver, red pulp macrophages in the spleen,
osteoclasts in the bones, and macrophages in the alveoli
[11, 19]. As resident macrophages in the liver, Kupffer
cells are located in the periportal area of the sinusoids
and are able to endocytose pathogens and apoptotic cells
for host defense [20]. Alveolar macrophages are the
immune effector cells in the lungs, which can be recruited
into the alveolar space to facilitate the clearance of inhaled
pathogens and the secretion of inflammatory molecules
[21]. Microglia contribute to the maintenance of the neural
environment and clearance of the debris and dying neurons
in the brain by altering their morphology and releasing
different cytokines and mediators that exert proinflamma-
tory or anti-inflammatory roles [22, 23].

Macrophages exert multiple functions, including pre-
senting antigens and eliminating microbes and tumor cells
as well as remodeling tissues. Macrophages, with a broad
range of pathogen recognition receptors, are implicated in
innate and adaptive immune response by phagocytosis and
recognition of pathogen-associated molecular patterns [8].
During the immune response, the major histocompatibility
complex (MHC) I and II antigens are expressed and upregu-
lated by the macrophages responsible for antigen presenta-
tion. Moreover, macrophages participate in the activation of
T helper (Th) cells and the production of inflammatory
cytokines and chemokines [14]. They also express adhesion
molecules, which are involved in the recruitment of lympho-
cytes into the inflammatory lesions. In addition,macrophages
play a neuroprotective role by secreting neurotrophic factors
and reducing the inflammatory response [15, 24]. They
display a spectrum of functions and phenotypes depending
on the numerous cytokines and pathogens they encounter
in the microenvironment of the body [19].

Macrophages have been classified into two phenotypes
mirroring T cell polarization: proinflammatory macrophages
(or M1) and anti-inflammatory macrophages (or M2) [25].
M1 and M2 macrophages represent two extreme states of

macrophage activation. M1 macrophages mediate the host
defense and secrete proinflammatory cytokines and mole-
cules to cause tissue damage and disease development,
whereas M2 macrophages express high levels of anti-
inflammatory molecule to reduce inflammation and promote
disease recovery [10, 24]. The activation of macrophage,
from the resting state to the M1 state, is generally induced
by microbial products and proinflammatory cytokines and
molecules, such as lipopolysaccharides (LPS), interferon-γ
(IFN-γ), interleukin-1β (IL-1β), and tumor necrosis factor-
α (TNF-α) [26, 27]. M1 macrophages not only produce high
levels of proinflammatory cytokines and molecules, and
oxidative metabolites such as nitric oxide (NO) and reactive
oxygen intermediates (ROI) [27, 28], but also promote the
expression of MHC-II and costimulatory molecules [28].
Moreover, they exert strong microbicidal and tumoricidal
activities [10, 28]. IL-4, IL-13, IL-10, and immune complexes
(IC) drive the polarization of resting macrophage to the M2
phenotype [10, 27, 28], which supports tissue repair and sup-
presses destructive immunity. It upregulates the expression
of scavenger molecule receptor CD163 and mannose recep-
tor CD206 and increases phagocytic activity for pathogens
and apoptotic cells and the synthesis of trophic factors [27].
Activated M2 macrophages contribute to tissue remodeling
by producing high levels of IL-10, transforming growth
factor-β (TGF-β), and downregulating proinflammatory
cytokine expression [27]. M2 macrophages can be further
subcategorized into M2a, M2b, and M2c depending on their
inductive stimuli and secreted chemokines, which are
involved in the Th2 response, immunoregulatory activities,
tissue remodeling, and angiogenesis [29, 30]. Both IL-4 and
IL-13 induce M2a polarization, consequently recruiting Th2
cells into the lesions of inflammation or injury, thereby
mediating the Th2 response. M2b polarization is induced
by immune complexes (IC) and TLR agonists (LPS).
M2b exerts immunoregulatory effects and recruits regula-
tory T (Treg) cells, in addition to inducing their crosstalk
with B cells and promoting antigen presentation [31]. The
polarization of M2c is driven by IL-10 and characterized
by the suppression of immune responses and promotion of
tissue remodeling [27]. The heterogeneity of macrophages
is summarized in Table 1.

Several studies demonstrated that M2 macrophages
predominate during the recovery and the repair process,
which can improve the disease outcome. Increasing M2
macrophages in the acute phase is an effective therapeutic
strategy after ischemic stroke. The ability that M2 macro-
phages can infiltrate into injured brain parenchyma
through BBB is crucial for neuronal recovery. They mediate
anti-inflammatory and adaptive immune response, scavenge
debris, and promote angiogenesis, tissue remodeling, and
repair by secreting protective remodeling factors and anti-
inflammatory molecules [32]. Injecting M2 macrophages
into EAE rats significantly inhibited the severity of clinic
symptoms. The therapeutic effects of glatiramer acetate
(Copaxone), dexamethasone, and IFN-β in MS patients
may be due to promotingM2macrophage polarization partly
[33]. M2 macrophages may reverse the detrimental effects of
M1 macrophages and promote axon regeneration by
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secreting neurotrophic factors, supporting cellular phagocy-
tosis and Th2 cells differentiation and facilitating SC activa-
tion after spinal cord injury (SCI) and during the later
phase of EAE or wallerian degeneration [34–36]. Therefore,
shifting macrophage phenotypes toward M2 subtype may
facilitate repair in SCI and peripheral nerve injury.

The transition of macrophage phenotype in the local
environment could regulate the initiation, development, and
recovery of autoimmune and inflammatory diseases [37].
The functional diversity of macrophages can be attributed
to their ability to respond to different microenvironmental
stimuli via diverse pathways. Identifying the polarization of
macrophages and the associated pathways is essential to effec-
tively utilize macrophages as therapeutic targets in many
human diseases.

3. Effector Functions of Macrophages in GBS
and EAN

The exact role of macrophages in GBS and EAN is still
not well understood. But, ultrastructural studies revealed
that EAN is characterized by breakdown of the BNB, infil-
tration of T cells and macrophages into the PNS, and
demyelination [7].

The enhancement of BNB permeability and the migra-
tion of circulating inflammatory cells across the BNB are
critical steps in the early phase of the disease. Macrophages
contribute to this process by regulating the production of
cytokines, chemokines, adhesion molecules, NO, and matrix
metalloproteinases (MMPs) [7].

As the principal antigen-presenting cells (APC) and effec-
tor cells, macrophages play a pivotal role in the pathogenesis
of EAN by presenting antigens and promoting the Th1 polar-
ization [38]. Polarized Th1 cells in turn induce the activation
of M1. M1 can promote the expression of MHC-II, adhesion
molecules, ROI, and inflammatory cytokines, resulting in
inflammation, broken BNB, and demyelination [7].

Studies showed that the expression of MHC-II molecule
on macrophages was strongly upregulated in the demyeli-
nated peripheral nerves [39]. As mainly MHC-II positive
cells, macrophages present specific antigens to T cells and
promote T cell polarization within the PNS.

In addition, macrophages can express high levels of adhe-
sion molecules and chemokines to induce leukocyte infiltra-
tion into the space around neurons or axons [40].
Intercellular adhesion molecule-1 (ICAM-1), a kind of adhe-
sion molecule, was found to be upregulated on endothelial
cells in EAN and in the serum of patients with GBS. It is asso-
ciated with the recruitment and migration of immune cells
into the PNS in EAN/GBS [41]. Injecting antibody (1A-29)
against ICAM-1 into EAN rats could reduce the recruitment
of macrophages, inhibit interactions between immunocom-
petent cells, and attenuate the disease severity of EAN [42].
Substantially delayed degradation of neurofilament protein
and collapse of axonal profiles have been found in the distal
nerve segment of ICAM-1−/− mice. The authors proposed
that the absence of ICAM-1 could have impaired axonal
degeneration and regeneration in the injured peripheral
nerves [43]. ICAM-1 can be induced by inflammatory cyto-
kines such as IFN-γ, IL-1β, and TNF-α, which are expressed
by macrophages in demyelinated nerves, and is expressed by
the vascular endothelium, macrophages, and lymphocytes
[41]. Another adhesion molecule, involved in the pathogene-
sis of EAN and expressed by macrophages, is complement
receptor 3, which recruits macrophages into the peripheral
nerve by interacting with ICAM-1 [44].

Once adhesion is established, chemokines guide the
autoimmune cells into the PNS. Simultaneously, chemokines,
such as macrophage inflammatory protein 1α (MIP1α) and
monocyte chemoattractive protein 1 (MCP-1), are primarily
secreted by macrophages and contribute to the pathological
changes in nerve degeneration [45]. Neutralization of MIP-
1α and MCP-1 delays the onset of EAN and inhibits clinical
signs of EAN and macrophage recruitment [15]. Interest-
ingly, the change of MCP-1 levels may regulate the type of

Table 1: Macrophages polarize into M1 (proinflammatory) and M2 (anti-inflammatory) phenotypes.

M1 M2a M2b M2c

Stimuli
LPS; IFN-γ; TNF-α;
IL-1β; TLR ligands

IL-4; IL-13 IC; LPS IL-10

Cytokines
IL-1, IL-6, IL-12,

IL-23; IL-1β; TNF-α
IL-10; IL-Rα IL-10 IL-10; TGF-β

Chemokines
CXCL8-11; CCL2-5;

CCL18; CXCL1-3; CXCL6
CCL17;CCL18;
CCL22; CCL24

CCL1 CCL16; CCL18

Gene
expression

MHC-II; CD40;
CD80; CD86; iNOS
IL-12high IL-10low

Arg-1; CD163; CD206
MHC-II; CD86
IL-10high IL-12low

Arg-1; SLAM

Function

Th1 response
Microbicidal activity
Tumoricidal activity
Antigen presentation

NO; ROI

Th2 response
Allergy

Parasitic infection

Th2 response
Recruitment of Treg
cell immunoregulation

Recruitment of naïve
T cells; Immunoregulation;

Tissue repair

IFN-γ: interferon-γ; LPS: lipopolysaccharide; MHC-II: major histocompatibility complex II; IC: immune complexes; NO: nitric oxide; ROI: reactive oxygen
intermediates; TGF: transforming growth factor; TLR: toll-like receptor; TNF-α: tumor necrosis receptor-α; Arg-1: arginase-1; iNOS: inducible nitric oxide
synthase; IL: interleukins; SLAM: signaling lymphocytic activation molecule.
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immune cells that infiltrate into peripheral nerves of EAN. A
high level of MCP-1 favors monocytes and Th1 cell infiltra-
tion during disease progression and peak severity, while the
low level induces Th2 cell response in recovery phase [46].

Macrophages are involved in the demyelination of EAN/
GBS by releasing many proinflammatory cytokines including
TNF-α, IL-12, and IL-6. IL-12 is produced by macrophages
and DCs, and its levels parallel the disease severity in EAN.
IL-12 promotes the differentiation of Th1 cells, production
of IFN-γ, and proliferation of NK and T cells. Elevated levels
of IL-12 and its receptors were found on peripheral blood
mononuclear cells at the peak of AIDP [47]. Additionally,
upregulated IL-6 levels were found in the peripheral nerves
of EAN and in the serum and CSF of GBS patients. IL-6
is responsible for BNB disturbance and infiltration of
immune cells [47]. Enhanced expression of TNF-α in
serum and CSF was detected in the patients with GBS and
was correlated with disease activity [7, 47]. TNF-α mainly
frommacrophages plays a pathogenic role in EAN/GBS, such
as precipitating in the disruption of BNB, and involving in
degeneration and demyelination, which was evidenced by
application of neutralizing antibodies against TNF-α which
ameliorates the clinical sign of EAN [48]. Additionally, when
TNF-α, IL-12, or IL-6 were injected into the healthy periph-
eral nerves, respectively, these cytokines caused serious
inflammation, BNB breakdown, and marked demyelination
[15]. It is noteworthy that TNF-α can facilitate immune cells
across BNB in GBS by increasing MCP-1 and ICAM-1
expression [49]. Thus, macrophages may form a firm adhe-
sion between monocytes and endothelial cells by directly
expressing MCP-1 or indirectly inducing the production of
inflammatory cytokines.

Except the proinflammatory cytokines, toxic mediators
released from macrophages including inflammatory cyto-
kines, NO, and MMPs cause axonal loss and demyelination.
MMPs are mainly secreted from T cells and macrophages.
Expression of MMPs is increased in the progressive phase
of GBS and EAN, and this upregulation is correlated with
the breakdown of BNB and the release of TNF-α and IL-1β
in GBS. The MMPs facilitate the migration of inflammatory
cells and the demyelination in the PNS [50, 51]. NO is
produced by inducible nitric oxide synthase (iNOS) in
macrophages under the simulation by IFN-γ and TNF-α
and related to nerve demyelination in the peripheral neurop-
athies [52]. Therefore, a complex network of cytokines, che-
mokines, adhesion molecules, NO, and MMPs is mediated
by macrophages in GBS.

Besides the hematogenous macrophages invading the
myelin or axons, there are a considerable number of resident
macrophages within the endoneurium of peripheral nerve.
The resident macrophages of the PNS can rapidly respond
to nerve injury by phagocytosing myelin and expressing
MHC-II molecule before blood-derived monocytes infiltrate
the injury site [53].

In contrast, M2macrophages exert a neuroprotective role
in the pathogenicity of EAN [54]. Depletion of macrophages
compromises peripheral nerve regeneration [55, 56]. Further
evidence shows that injured nerves induce secretion of apoli-
poprotein E (apoE), nicotinamide adenine dinucleotide

phosphate oxidase 2 (Nox2), and collagen VI, which regulate
peripheral nerve regeneration by favoring macrophage M2
polarization and expression of high levels of arginase-1 and
CD206 [56–58]. M2 macrophages may contribute to the
spontaneous remyelination and regeneration of the axon
[40, 59] by promoting T cell apoptosis, suppressing inflam-
matory responses [15], clearing myelin and axonal debris
[24], and inducing the secretion of anti-inflammatory cyto-
kines such as IL-10 and TGF-β [30]. Macrophages are the
primary source of anti-inflammatory cytokines, including
TGF-β and IL-10, which are involved in the repair of periph-
eral nerve and found in CSF during the recovery of GBS.
TGF-β, as an immunosuppressive cytokine, can inhibit the
proliferation and activation of T cell and maintain Treg cells
[47]. IL-10 inhibits APC function and reduces proinflamma-
tory cytokine production andMHC expression. Additionally,
IL-10 can facilitate humoral immune responses and inhibit T
cell proliferation [60]. Studies have found that IL-10 and
TGF-β mRNA are upregulated in peripheral nerve during
recovery of GBS/EAN. Additionally, macrophages synthesize
other mediators, including lipocortin-1, IL-6, and TNF-α,
which may have anti-inflammatory effects under certain con-
text. Increased levels of lipocortin-1 were seen in the injured
sciatic nerves during the recovery phase of EAN. It is most
highly expressed in macrophages and lymphocytes and
exerts an immunosuppressive effect. IL-6 can reduce disease
severity by supporting Schwann cell (SC) differentiation
and myelin and axon repair, although it is elevated and pro-
motes the inflammation during EAN and in GBS patients as
mentioned previously [15]. Although more evidence is
needed, an anti-inflammatory role of TNF-α has been indi-
cated through several studies [47, 48]. Of that note, macro-
phages might induce the apoptosis of T cells by secreting
NO, TNF-α, and toxic radicals within the peripheral nerve
[15]. Furthermore, MMPs are also related to restoring the
integrity of the PNS [50].

M2 macrophages express abundant arginase (a com-
petitive enzyme of iNOS) and activin A, which induce
arginase-1 expression and inhibit the expression of iNOS,
resulting in less production of NO. M2 macrophages also
contribute to the axonal regeneration and remyelination
by secreting growth and differentiation factors. They foster
SC proliferation and axonal growth for peripheral nerve
repair [61] by releasing the nerve growth factor (NGF) and
laminin protein [62]. Oxidized galectin-1 (GAL-1/Ox) pro-
duced by SCs promotes axonal regeneration by stimulating
macrophages to produce axonal growth-promoting factor
[63]. Macrophages are essential for the regeneration of
peripheral nerve, removal of debris, and induction of SC
proliferation and factor secretion. They exert these effects
by secreting growth and differentiation factors and remodel-
ing the extracellular matrix components [61].

Thus, the different subsets of macrophages with multi-
ple roles, including phagocytosis, antigen presentation, and
lymphocyte activation, contribute to both axonal damage
and demyelination, as well as remyelination and tissue
repair at different stages of the EAN [15]. The functional
phenotypes of macrophages are altered depending on the
local microenvironment.
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Macrophage-mediated nerve destruction is the patholog-
ical hallmark of GBS [64]. In AIDP, two potential immuno-
logical mechanisms for macrophage-mediated invasion of
nerves have been proposed. According to the first hypoth-
esis, macrophages infiltrate into the basement membrane
of the peripheral nerve and target the antigens on the sur-
face of SC or myelin sheath for inducing SC injury by acti-
vated CD4+ T cells and inflammatory mediators [65–67].
Additionally, the inflammatory mediators, such as MMPs,
or toxic nitric and oxide radicals, are synthesized and
released by macrophages and boost the injury of SC and
invasion of the myelin sheath. An alternative hypothesis
proposes that antibodies may induce macrophages to the
myelin or axonal sites of antigen binding and enhance
phagocytosis of macrophages by Fc/complement receptors
in antibody-dependent macrophage cytotoxicity or by acti-
vating the complement-dependent manner [68, 69]. Com-
plement deposition on the outer surface of SC and elevated
complement levels in serum and CSF have been found in
the AIDP form GBS. It causes the early vesicular changes
of myelin and the accumulation of macrophages and
demyelination [70]. The pathological features of AMAN
differ from AIDP. AMAN is characterized by axon dys-
functions with little demyelination by anti-GM1 antibodies
and complement-mediated attack on the axolemma of the
nodes of Ranvier [71]. Macrophages infiltrate into the
periaxonal space between SC axolemma and the axon,
leaving the myelin sheath intact [72].

In summary, macrophages not only contribute to the
initiation and development of demyelination in GBS by
boosting inflammatory events in the PNS, but also play a
neuroprotective role by suppressing inflammation, elimi-
nating debris, and promoting PNS repair in the course
of EAN and GBS (Figure 1). These properties of macro-
phages may provide a potential target for the treatment
of GBS.

4. Transition of Macrophages into M2
Phenotype Ameliorates the Outcome of EAN

Diverse transcription factors, such as signal transducers and
activators of transcription 1/6 (STAT1/STAT6), interferon-
regulatory factor (IRFs), and peroxisome proliferator-
activated receptor-γ/δ (PPAR-γ/δ), can regulate M1/M2
polarization programs by interacting with the exogenous
and endogenous cellular signaling pathways in the micro-
environment [73]. Binding of IFN-γ to the cell surface
receptor can promote microbicidal activity and proinflam-
matory cytokine production via the Janus kinase/signal
transducer and activator of transcription (JAK/STAT)
pathway [27, 74, 75]. It has been recognized that JAK/
STAT signaling is essential in the production of IL-1β,
IL-6, IL-12, IL-23, and iNOS and phosphorylation of
STAT1 and STAT3 [27, 76, 77]. In contrast, STAT6
responds to IL-4 and IL-13 and to induce the polarization
of M1 subtype [78, 79]. IRF protein may regulate the mac-
rophage polarization. IRF3 and IRF4 contribute to the
polarization of anti-inflammatory subtype, while IRF5 is
associated with proinflammatory macrophage polarization

[80–82]. The transcription factor peroxisome proliferator-
activated receptor-γ/δ (PPAR-γ/PPAR-δ) can be activated
by STAT6, which induces the polarization of macrophages
to M2 subtype [27]. Another transcriptional regulator
KLF4 cooperates with STAT6 to drive polarization to M2
by sequestering coactivators of nuclear transcription fac-
tor-κB (NF-κB) [83].

As a mitogen-activated protein kinase (MAPK), c-Jun
N-terminal kinase (JNK) is associated with cell prolifera-
tion, transformation, differentiation, and apoptosis by
phosphorylating and deactivating STAT6 [84]. The phos-
phatidylinositol-3-kinase (PI3K)/Akt signaling pathway
activates mammalian target of rapamycin (mTOR) resulting
in the promotion of anti-inflammatory macrophage polari-
zation [85]. The signaling pathways involved in M1/M2
polarization are presented in Figure 2. In summary, the pres-
ent findings suggest that many factors are implicated in the
phenotypic and functional switch of macrophages, but the
mechanism of involvement of these factors in GBS requires
further studies.

The M2 macrophages exert a protective effect against
EAN and ameliorate the outcome of EAN by suppressing
neuroinflammation and promoting PNS repair [40, 86].
Alternatively, activated M2 macrophages can delay the onset
of the clinical symptom and reduce the severity of EAN.
Thus, manipulating the signaling pathways to induce macro-
phage polarization to M2 phenotype may prove to be an
effective therapeutic strategy for GBS. Increasing studies
have revealed that a variety of substances can regulate
the proinflammatory/anti-inflammatory subtype polariza-
tion status in experimental animal models. For instance,
compound A, as a ligand of glucocorticoid receptors from
plant origin, can favor the outcome of EAN by increasing
anti-inflammatory macrophages [86]. It has been demon-
strated that dimethyl fumarate (DMF) can exert neuro-
protective effects by switching Th1 immune response to
Th2-dependent immune response, increasing the levels
of anti-inflammatory cytokines such as IL-10 and IL-4,
suppressing the activity of NF-κB transcription factor,
decreasing circulating lymphocytes, and promoting the
apoptosis of activated T cells in MS and EAE [87].
Furthermore, DMF also exerts an antioxidant action by
increasing the expression of antioxidant enzymes via nuclear
factor erythroid-derived factor 2-related factor 2- (Nrf2-)
dependent intracellular pathways [88]. It has been reported
that Nrf2 exerts an anti-inflammatory and antioxidation
effects by inhibiting the transcription of NAD(P)H:quinone
oxidoreductase 1 (NQO1) and HO-1 [89]. HO-1 is involved
in a protective mechanism against inflammatory responses
and oxidative injury by affecting macrophage polarization
toward M2 phenotype [90]. Han et al. have reported that
DMF suppresses the infiltration of inflammatory cells
and demyelination in sciatic nerves by upregulating the
level of heme oxygenase-1 (HO-1) and Nrf2 to induce
macrophages to polarize toward the M2 type in EAN
rats [17].

The mammalian target of rapamycin (mTOR) inhibitor
RAD001 (everolimus) alleviates the symptoms of EAN and
reduces the inflammatory response by an Akt-mediated
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phenotypic shift in macrophages to M2 phenotype. RAD001
also increases the production of anti-inflammatory cytokines
IL-4 and TGF-β in the spleens of EAN rats [18]. Recently,
our study revealed that Bowman-Birk inhibitor concentrate
(BBIC), a soybean-derived protease inhibitor, decreases the
autoimmune response and severity of EAN by inhibiting
the transformation and proliferation of macrophages and T
cells. In addition, BBIC promotes macrophage polarization
to M2 subtype and upregulates the expression of anti-
inflammatory cytokines while downregulating the level of
proinflammatory cytokines in the PNS of EAN. BBIC might
induce M2 polarization by directly or indirectly increasing
IL-10 expression [16].

Understanding the dual role of macrophages and the
regulatory pathways, in physiological and pathological con-
ditions, may offer novel therapeutic strategies for treating
GBS. Further studies are required to further elucidate the
therapeutic benefits of modulating macrophage phenotype
for treating GBS.

5. Conclusion

Although we understand that macrophages play both detri-
mental and beneficial roles in the pathologies of GBS and
EAN, the role of macrophages in an autoimmune disease,
such as GBS, is more complex than that suggested by a simple
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M1-M2 dichotomy. A number of questions are yet to be
answered regarding how macrophages are recruited to injury
states, how macrophages are involved in PNS degeneration
and regeneration, how to shift the polarization of macro-
phages toward M2 phenotype, and how to improve the
outcomes of GBS. Thus, future studies are required to inves-
tigate the intricate role of macrophages in the pathogenesis
and treatment of GBS.

Additional Points

We carried out a comprehensive search of PubMed for
articles published using the following search terms: macro-
phages, Guillain-Barré Syndrome, experimental autoimmune

neuritis, and peripheral nervous system. We performed a
review of published articles.
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activate the Janus Kinase/signal transducer and activator of transcription/myeloid differentiation factor 88/nuclear transcription factor-κB
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