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The emergence of L-DOPA-induced dyskinesia (LID) in patients with Parkinson disease
(PD) could be due to maladaptive plasticity of corticostriatal synapses in response
to L-DOPA treatment. A series of recent studies has revealed that LID is associated
with marked morphological plasticity of striatal dendritic spines, particularly cell
type-specific structural plasticity of medium spiny neurons (MSNs) in the striatum.
In addition, evidence demonstrating the occurrence of plastic adaptations, including
aberrant morphological and functional features, in multiple components of cortico-basal
ganglionic circuitry, such as primary motor cortex (M1) and basal ganglia (BG) output
nuclei. These adaptations have been implicated in the pathophysiology of LID. Here, we
briefly review recent studies that have addressed maladaptive plastic changes within the
cortico-BG loop in dyskinetic animal models of PD and patients with PD.
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INTRODUCTION

Parkinson’s disease (PD) is characterized by severe, progressive degeneration of nigrostriatal
dopamine (DA) neurons, which results in motor deficits, including akinesia, rigidity, tremor
and postural dysfunction. These clinical manifestations can be ameliorated by pharmacological
stimulation of DA biosynthesis with exogenous supplementation of L-DOPA (i.e., levodopa),
the metabolic precursor to DA. Unfortunately, however, most patients who take L-DOPA also
experience adverse secondary effects, including L-DOPA-induced dyskinesia (LID; Voon et al.,
2009).

The striatum is the principal recipient of cortical efferents within the basal ganglia (BG). Hence,
it serves as a main entryway of information from the neocortex to the BG in the BG-thalamo-
cortical network. Furthermore, the striatum, which is composed of functionally and anatomically
distinct dorsal and ventral divisions, is also the primary target of DA neurons of the substantia nigra
pars compacta. In recent decades, impaired striatal function due to maladaptive synaptic plasticity
has been implicated mechanistically in several movement disorders, including LID (Picconi et al.,
2003; Paillé et al., 2010).

Recent methodological breakthroughs, such as bacterial artificial chromosome (BAC) and
optogenetic techniques, have enabled researchers to not only mimic features of motor disorders
in a controlled manner in relation to the extent of nigrostriatal degeneration, but also to further
delineate and examine the functions of the direct- and indirect-pathway medium spiny neurons
(MSNs; also known as spiny projection neurons) in the striatum (Cui et al., 2013; Fieblinger et al.,
2014).

Apart from affecting corticostriatal synaptic plasticity, L-DOPA induced adaptions
elsewhere in cortico-basal ganglionic circuitry have come to light (Cenci and Lundblad, 2006).
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Indeed, several studies have produced evidence suggesting
that maladaptive synaptic plasticity processes throughout the
cortico-basal ganglionic circuitry may be of critical importance
to the pathophysiology of LID (Prescott et al., 2014; Ueno
et al., 2014). The latest seminal studies addressing these plastic
changes in dyskinetic animal models and patients are discussed
below.

DA-DEPENDENT SYNAPTIC PLASTICITY
IN CORTICOSTRIATAL SYNAPSES

The neuronal population in the striatum consists in large
majority (∼95%) of MSNs, which are projection cells
characterized by the spiny cytoarchitecture of their dendritic
trees, where synaptic plasticity occurs (Cenci et al., 2011). Striatal
MSNs can be divided into two similarly sized populations based
on their axonal projections: direct pathway SPNs (dMSNs) and
indirect pathway MSNs (iMSNs).

Two forms of plasticity in corticostriatal synapses on MSNs
have been characterized extensively long-term potentiation
(LTP) and long-term depression (LTD). LTP and LTD describe
persistent changes in the efficacy of synaptic transmission
that are induced by repetitive activation of cortical excitatory
afferents. A unique characteristic of striatal MSNs is that DA
plays a critical role in both the induction and maintenance of
their neuroplasticity.

Activity-dependent LTD induction is associated with
the postsynaptic generation of endocannabinoids (eCBs).
This eCB-dependent form of LTD (eCB-LTD) is seen in
D2R-expressing iMSNs, but not D1R-expressing dMSNs
(Kreitzer and Malenka, 2007). Meanwhile, activation of D2Rs
on iMSNs restrains local type 2a adenosine receptor (A2AR)
signaling. Spike-timing-dependent plasticity experiments
have suggested that local A2AR activation can inhibit
both eCB synthesis and LTD induction (Shen et al., 2008).
Signaling via D2Rs and A2ARs appears to be linked to
eCB-LTD through cAMP/protein kinase A (PKA) and
regulator of G protein signaling 4 (RGS4; Lerner and Kreitzer,
2012).

LTP can be induced in MSNs by high-frequency stimulation
(HFS) of glutamatergic inputs that results in co-activation
of D1Rs and N-methyl-D-aspartate type glutamate receptors
(NMDARs; Calabresi et al., 2007; Surmeier et al., 2014). In
striatal MSNs, D1Rs co-localize with NMDARs and form
heteromeric complexes on dendritic spines (Fiorentini
et al., 2006; Calabresi et al., 2010). These D1R/NMDAR
complexes facilitate rapid trafficking of NMDAR subunits
and modulate the potentiation of NMDAR responses,
giving rise to activity-dependent synaptic plasticity changes
that involve PKA and dopamine- and cAMP-regulated
phosphoprotein (DARPP)-32-regulated phosphorylation of
the NR1 subunits of NMDARs (Fiorentini et al., 2008; Murphy
et al., 2014).

In experimental models of the LID, a form of synaptic
plasticity known as depotentiation has been observed;
depotentiation reverses LTP and may represent a homeostatic
mechanism (Picconi et al., 2003, 2008). Although the specific

mechanisms responsible for homeostatic depotentiation are
not yet known, several recent studies have provided important
pieces of information (Table 1). One of the most reproducible
observations has been that positive allostericmodulator,
which modulates M4Rs, enables depotentiation in dSPNs by
suppressing RGS4 signaling (Shen et al., 2015). Additionally,
extracellular signal-regulated kinase (ERK) signaling has been
reported to facilitate depotentiation under normal (unaltered)
conditions, but to oppose it under dyskinetic conditions
(Cerovic et al., 2015). Striatal synaptic depotentiation could
be restored in a subset of striatal MSNs by 5-HT1A/1B
receptor agonism with eltoprazine via a mechanism that
involved normalization of D1R-dependent cAMP/PKA and
ERK/mTORC signaling pathways and recovery of NMDAR
subunit balance (Ghiglieri et al., 2016). Mice lacking D-aspartate
oxidase (Ddo−/−) display high levels of free D-aspartate
and NMDA, which stimulate NMDAR transmission; a
low-frequency stimulation protocol failed to depotentiate
HFS-induced LTP in Ddo−/− mice (Errico et al., 2011).
Finally, nociceptin/orphanin FQ, the endogenous agonist of the
nociception receptor, has been shown to prevent D1R agonism-
induced ERK phosphorylation and loss of depotentiation in
MSNs (Marti et al., 2012). These findings provide insights into
the mechanism of striatal neuron depotentiation and could,
eventually, lead to novel therapeutic strategies for alleviating
LID.

CHRONIC L-DOPA-INDUCED
CORTICOSTRIATAL-SYNAPSE
ADAPTATIONS IN LID

In a DA-depleted striatum that is being supplemented with
L-DOPA, DA striatal levels can be preserved through sprouting
of DA terminals and decreased DA uptake by DA transporters
(Lee et al., 2008). Distinct degrees of DA denervation
affect the induction and maintenance of two distinct forms
of corticostriatal synaptic plasticity differently. Initially, DA
depletion affects NMDAR-dependent LTP exclusively; with
further depletion, sufficient to produce clinical symptoms, LTD
is also influenced (Paillé et al., 2010).

As PD degeneration advances, nigrostriatal neurons lose
their DA storage capacity, resulting in unregulated DA
release and large fluctuations in extracellular DA levels
(Rylander et al., 2010). The consequent large fluctuations in
extracellular DA concentrations contribute to the establishment
of further morphological and functional changes at both
pre- and postsynaptic levels. Considerable attention has been
devoted to the participation of persistent sensitization of
canonical signaling downstream of D1R in the development
and manifestation of dyskinesia. In striatal neurons, D1R
activates adenylyl-cyclase through G proteins (Gαolf). Increased
Gαolf levels has been associated with LID both unilateral
lesion mice model (Alcacer et al., 2012) and PD patients
who had received a chronic L-dopa treatment (Corvol et al.,
2004). Another signaling component leading to the abnormal
D1R-mediated transmission involved in LID is the adenylyl
cyclase type 5 (AC5), which is highly expressed in striatal
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TABLE 1 | Summary of maladaptive depotentiation plasticity in cortico-basal ganglionic circuitry in LID.

Brain area Reference* Synaptic mechanisms Methods Experimental conditions

d-Str Ghiglieri et al. (2016) cAMP/PKA, ERK/mTORC signaling
pathways, NMDAR subunit imbalance

Ex vivo, intracellular recordings with
electrodes, HFS, LFS

Unilateral 6-OHDA-induced lesion, LID rats

Shen et al. (2015) Abnormal M4R signaling pathway and
RGS4 activity in dMSNs

Ex vivo, intracellular recordings with
electrodes, HFS, LFS

Unilateral 6-OHDA-induced lesion, LID mice

Cerovic et al. (2015) Hyperactivation of Ras-ERK signaling
pathway in dMSNs

Ex vivo, intracellular recordings with
electrodes, HFS, LFS

Unilateral 6-OHDA-induced lesion, LID mice

Marti et al. (2012) N/OFQ and increased ERK
phosphorylation

Ex vivo, intracellular recordings with
electrodes, HFS, LFS

D1R agonist-induced LID rats

Errico et al. (2011) Abnormal high levels of D-Asp and
NMDA

Ex vivo, intracellular recordings with
electrodes, HFS, LFS

Unilateral 6-OHDA-induced lesion, Ddo−/−

LID mice
Picconi et al. (2003) Abnormally high levels of

phospho[Thr34]-DARPP-32
Ex vivo, intracellular recordings with
electrodes, HFS, LFS

Unilateral 6-OHDA-induced lesion, LID rats

GPi/SNr Prescott et al. (2014) NO In vivo, DBS Dyskinetic PD patients
Cortex Huang et al. (2011) NO In vivo, TBS Dyskinetic PD patients

∗All eight studies shown here reported depotentiation loss. d-Str, dorsal striatum; DBS, deep brain stimulation; HFS, high-frequency stimulation; LFS, low-frequency

stimulation; cAMP, cyclic adenosine monophosphate; PKA, protein kinase A; P-DARPP-32, phosphorylated dopamine- and cAMP-regulated phosphoprotein 32 kDa;

ERK, extracellular signal-regulated kinases; mTORC, target of rapamycin complex 1; RGS4, regulator of G-protein signaling 4; M4R, muscarinic M4 receptor subtype;

6-OHDA, 6-hydroxydopamine; N/OFQ, nociceptin/orphanin FQ; D-Asp, d-aspartate; TBS, theta burst stimulation; Ddo−/−, mutant lacking D-aspartate oxidase.

MSNs (Glatt and Snyder, 1993; Mons and Cooper, 1994).
Recently, Park et al. (2014) found that AC5 knock-out mice
exhibits attenuated LID by inhibition of cAMP as well as ERK
signaling. In addition, several lines of evidence indicate that
abnormal activation of PKA-mediated phosphorylation of
DARPP-32 at T34 (Picconi et al., 2003; Santini et al., 2007;
Lebel et al., 2010) and PKA dependent phosphorylation of
GluA1 at Ser845 (Santini et al., 2007, 2010) in dyskinesia
may have profound repercussions on synaptic plasticity
(Figure 1).

Newer evidence indicates that D1R do crosstalk to glutamate
signaling (mainly NMDA receptors), which are strictly correlated
to abnormal synaptic plasticity and motor behavior in L-DOPA-
treated dyskinetic rats. ERK dependent signaling and its
downstream targets, including molecules involved in the
regulation of protein translation and gene transcription, was
shown to be apparently hyperactivated in DA-denervated
striatum already by a single administration of L-dopa and
chronic L-dopa administration (Pavón et al., 2006). L-DOPA
produces pronounced activation of ERK1/2 signaling through
D1 class of DA receptors. Phosphorylation of ERK1/2 and
mitogen- and stress-activated kinase 1 (MSK1), a downstream
target of ERK1/2, was dose-dependently blocked by the D1R
antagonist, SCH23390 (Westin et al., 2007). Further to these
results, (Darmopil et al., 2009) revealed that genetic inactivation
of dopamine D1 but not D2 receptors inhibits LID and
suppress ERK phosphorylation, phospho-acetylation of Histone
H3 (pAcH3; a direct substrate of MSK-1) and FosB/∆FosB
accumulation. Recent evidence indicates that MSK1 could be
involved in LID. Genetic inactivation of MSK1 attenuated LID
and reduced the phosphorylation of histone H3 at Ser10 in
the striatum (Feyder et al., 2016). Similarly to ERK, dopamine
D1 receptor-mediated activation of the mammalian target of
rapamycin (mTOR) complex 1 (mTORC1) occurs in mice
that developed dyskinesia (Santini et al., 2009). Remarkably,
an upstream component of the mTOR pathway, the Ras

homolog enriched in striatum (Rhes), is critically involved
in the pathological upregulation of mTORC1 during LID
(Subramaniam et al., 2011).

In control condition, concomitant activation of DA
D2 receptors and blockade of A2A adenosine receptors
is able to reduce striatal glutamatergic transmission via a
retrograde action of endocannabinoid-dependent mechanism
(Tozzi et al., 2011). Alterations in A2A receptor expression
and signaling have been observed in PD patients undergoing
L-DOPA therapy (Calon et al., 2004; Ramlackhansingh et al.,
2011) and in experimental models of LID (Pinna et al., 2002;
Blandini and Armentero, 2012). Recently, G-protein-coupled
adenosine A2A, cannabinoid CB1 and dopamine D2 receptors
(A2A-CB1-D2 receptor heteromers) has been unraveled. This
heteromer, present in normal and DA-depleted striatum, is
however lost following acute or chronic treatment with L-dopa
in rats andmonkeys (Bonaventura et al., 2014; Pinna et al., 2014).

Early studies founded altered acetylcholine signaling in
dopamine depletion striatum resulting in a loss of feedback
control of acetylcholine release (Kayadjanian et al., 1999;
Ding et al., 2006). Notably, striatal cholinergic interneurons,
are involved in the D2/A2A and endocannabinoid-mediated
retrograde effects. Concomitant activation of D2 DA receptors
and blockade of A2A receptors reduces the firing rate of
these interneurons and primary motor cortex (M1) receptor
antagonism blocks the D2/A2A receptor-mediated modulation
of excitatory transmission in both dMSN and iMSN (Tozzi
et al., 2011). In 6-hydroxydopamine lesion mice, repeated
L-DOPA treatment increases basal firing rate and stronger
excitatory responses to dopamine in striatal cholinergic neurons
with increased phospho-ERK immunoreactivity in this neuronal
population (Ding et al., 2011). Taken together, these data suggest
increased dopamine sensitivity of striatal cholinergic neurons
contributes to the expression of LID.

An in vivo electrophysiological study demonstrated distinct
effects of chronic L-DOPA administration on dMSNs vs.
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FIGURE 1 | Maladaptive corticostriatal synaptic plasticity mechanism in L-DOPA-induced dyskinesia (LID). Excess of dopamine (DA) abnormally
stimulates D1 pathway with hyperphosphorylation of extracellular signal-regulated kinase (ERK) and uncontrolled activation of protein kinase A (PKA) that leads to
hyperphosphorylation of DARPP32, which blocks PP-1 causing loss of synaptic depotentiation. PKA/DARPP-32 and ERK/mitogen- and stress-activated kinase 1
(MSK1) signaling lead to phosphorylation of histone H3 in the nucleus, inducing changes in gene expression. Hyperactivation of ERK through convergent altered
signaling pathways brings to increased inhibition of tuberous sclerosis complex (TSC)1/2, and consequent disinhibition of Rheb/Rhes, leading to excessive increase
of signaling of mTORC1 that, in turn, exerts its long term effects through changes in protein synthesis. After chronic L-DOPA, cholinergic interneurons show
increased phospho-ERK immunoreactivity and higher firing rates with increased release of acetylcholine (Ach). Striatal cGMP signaling is declined and
activity-dependent LTD, which strictly relies on the nitric-oxide- (NO-) dependent activation of protein kinase G (PKG) is absent in LID.

iMSNs in DA-depleted rats. The dMSNs had abnormally
persistent cortically-evoked LTD, whereas the iMSNs exhibited
LTP, rather than LTD, in response to the same stimulation
(Belujon et al., 2010). Such findings suggest that LID might
be caused by cell type-specific altered induction of plasticity
in striatal MSNs (Calabresi et al., 2015). In a dyskinetic
state, the direct pathway exhibits only LTP, while the indirect
pathway exhibits only LTD. By contrast, in a parkinsonian
state, the indirect pathway exhibits only LTP and the direct
pathway exhibits only LTD. These pathophysiological changes
are associated with a loss of bidirectional plasticity, such that only
unidirectional changes in synaptic strength can occur (Thiele
et al., 2014).

Apart from the major direct vs. indirect divisions of the
striatal MSN population, the striatal circuitry can also be

divided biochemically into two striatal compartments known
as the striosomes (also known as striatal patches) and matrix.
It has been proposed that neurodegenerative dysfunctions
of the BG, such as LID, could involve a striosome-matrix
imbalance (Crittenden and Graybiel, 2011). A recent article
shows that electrically evoked dopamine release differs between
the striosome and matrix compartments in a regionally-distinct
manner. In the VS (ventral lateral striatum and nucleus
accumbens), dopamine release in striosomes is greater than
in the proximal matrix region, and in the DS (medial and
lateral), the opposite is true (Salinas et al., 2016). A recent
study reveals that neuromodulator substance P acting through
neurokinin-1 receptor (NK1Rs) can boost DA release within
the centers of striosomes, but diminish DA release in a border
region where striosomes and matrix interface (Brimblecombe
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and Cragg, 2015). If this notion were to be confirmed with
further studies, it could have explanatory implications for a
range of motor and nonmotor symptoms associated with BG
neurodegeneration.

STRUCTURAL PLASTICITY OF STRIATAL
DENDRITIC SPINES IN LID

The spiny dendrites of MSNs—the smallest processing
units of biochemical signals generated at corticostriatal
synapses—integrate synaptic afferents from different origins
(Chen and Sabatini, 2012; Yuste, 2013). PD patients exhibit
morphological changes in their striatal dendritic spines,
including spine loss (McNeill et al., 1988). Using two-photon
laser scanning microscopy and BAC transgenic mice, Day
et al. (2006) observed that DA depletion led to a selective
loss of spines and glutamatergic synapses on iMSNs, but not
dMSNs.

Accumulating evidence indicates that synaptic plasticity
consequent to morphologic changes in dendritic spines may
be key to resolving the mechanisms underlying both PD and
dyskinesia (Fieblinger and Cenci, 2015). Zhang et al. (2013)
observed that PD model rats have abnormally few synapses and
corticostriatal multisynaptic boutons (contacting dendritic shafts
or a shaft and a spine), whereas LIDmodel rats show a restoration
in the total number of corticostriatal synapses and high densities
of mushroom spines (enlarged postsynaptic densities receiving
multisynaptic excitatory input). It is unclear yet whether the
newly sprouted spines in the rat model form functional synapses.

Interestingly, iMSNs appear to re-grow spines that had been
lost due to loss of dopaminergic innervation (Fieblinger et al.,
2014; Suarez et al., 2014). The behavior of dMSNs following
DA depletion, however, is less clear. Both Fieblinger et al.
(2014) and Nishijima et al. (2014) did not see changes in
dMSN density following a DA-denervating lesion; rather, they
observed decreases in dMSN density in response to long-term
L-DOPA exposure. On the contrary, Suarez et al. (2014)
suggested that dMSN spine loss occurs after DA depletion,
with chronic L-DOPA having no effect. It is possible that these
discrepancies could be related to methodological differences,
such as differences in the models or neurotoxin injection sites
employed.

In summary, MSN dendrite atrophy should be regarded as
a potential therapeutic target for PD. Meanwhile, LID might be
the result of an L-DOPA induced mis-rewiring of corticostriatal
synapses (Zhang et al., 2013; Fieblinger et al., 2014). This
hypothesis should be examined further, especially with respect to
cell-type specificity and the corresponding changes in intrinsic
excitability (Fieblinger et al., 2014; Surmeier et al., 2014).

PLASTIC ADAPTATIONS IN OTHER
CORTICO-BASAL GANGLION-THALAMIC
CIRCUITRY IN LID

The synaptic and molecular rearrangements that occur in LID
have been relatively well studied in the striatum. However,
plastic adaptations occurring in other parts of the cortico-basal

ganglionic circuitry have received less attention. There is a
growing appreciation for activity-dependent synaptic plasticity
throughout the cortico-basal ganglionic loop.

The striatum is the major input station of glutamatergic
innervation arising from the cortex and the thalamus. However,
plastic adaptations occurring in thalamostriatal system have been
poorly explored, but are likely to play an important role (Smith
et al., 2014; Tritsch and Carter, 2016). Parker et al. (2016) find
that dopamine depletion selectively reduces thalamostriatal drive
in dMSNs mediated by AMPA rather than NMDA receptors.
Combination of in vivo pharmacogenetics and optogenetics, the
authors reveal that inhibition of thalamostriatal inputs rescues
PD motor behavior, implicating maladaptive synaptic plasticity
in the thalamus as playing a key role in dopamine depletion
animal.

Prescott et al. (2009) reported that extrastriatal DAmodulates
activity-dependent synaptic plasticity in the BG output neurons
of the SNr. HFS induced LTP-like potentiation of field-evoked
potential amplitudes when delivered with, but not without,
L-DOPA administration. Interestingly, in a more recent study,
the same research group suggested that the ability of BG output
nuclei to undergo depotentiation might be selectively lost in
patients who develop LID (Prescott et al., 2014). Their work
suggests that depotentiation in the SNr and GPi—the output n of
the BG—may suppress nonessential synaptic information while
integrating and normalizing signals that are to be relayed out to
the thalamo-cortical network.

Ueno et al. (2014) observed that intratelencephalic-type
pyramidal neurons (which project to dMSNs) in M1 of
LID model rats had enlarged spines and elevated miniature
excitatory postsynaptic current amplitudes. These morphological
and electrophysiological changes in intratelencephalic-type
pyramidal neurons inM1 could explain on a cellular level, at least
in part, the loss of depotentiation-like plasticity that occurs in PD
patients with LID.

Huang et al. (2011) found that depotentiation could not
be induced following HFS-induced LTP-like plasticity in the
M1 of PD patients with LID. Recent findings suggest that
alterations in cerebellar sensory processing function may be an
important contributor to maladaptive sensorimotor plasticity in
M1 (Popa et al., 2013). Kishore et al. (2014) proposed that loss
of M1 plasticity may reflect a loss of co-ordination among BG,
cerebellar, and cortical inputs, resulting in abnormal plasticity
of motor maps within M1 and, eventually, the involuntary
movements characteristic of LID.

CONCLUDING REMARKS

L-DOPA-induced changes in the plasticity of corticostriatal
synapses are key to understanding the pathophysiology of
LID. LID-associated changes in the synaptic and molecular
biology of the striatum have been well described, whereas
our understanding of activity-dependent synaptic plasticity
elsewhere in the BG-thalamo-cortical network in LID is relatively
undeveloped. Notably promising research areas moving forward
include cell type-specific structural plasticity of striatal MSN
dendritic spines, the mis-rewiring hypothesis for LID, and
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homeostatic adaptations in the intrinsic excitability and synaptic
connectivity of striatal MSNs.
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