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Identification of driver genes, whose mutations cause the development of tumors,

is crucial for the improvement of cancer research and precision medicine. To

overcome the problem that the traditional frequency-based methods cannot detect

lowly recurrently mutated driver genes, researchers have focused on the functional

impact of gene mutations and proposed the function-based methods. However, most

of the function-based methods estimate the distribution of the null model through the

non-parametric method, which is sensitive to sample size. Besides, such methods could

probably lead to underselection or overselection results. In this study, we proposed a

method to identify driver genes by using functional impact prediction neural network

(FI-net). An artificial neural network as a parametric model was constructed to estimate

the functional impact scores for genes, in which multi-omics features were used as

the multivariate inputs. Then the estimation of the background distribution and the

identification of driver genes were conducted in each cluster obtained by the hierarchical

clustering algorithm. We applied FI-net and other 22 state-of-the-art methods to 31

datasets from The Cancer Genome Atlas project. According to the comprehensive

evaluation criterion, FI-net was powerful among various datasets and outperformed

the other methods in terms of the overlap fraction with Cancer Gene Census and

Network of Cancer Genes database, and the consensus in predictions among methods.

Furthermore, the results illustrated that FI-net can identify known and potential novel

driver genes.

Keywords: cancer research, driver genes, functional impact, artificial neural network, multi-omics features,

hierarchical clustering algorithm

1. INTRODUCTION

Cancers have been known to be caused by the accumulation of mutations throughout the life
of an individual. Next-generation sequencing (Goodwin et al., 2016) technology provides a new
perspective on cancer research. Genomics sequencing data across all major cancer types are
available from a variety of cancer sequencing projects, such as International Cancer Genome
Consortium (Hudson et al., 2010) and The Cancer Genome Altas (TCGA) (Weinstein et al.,
2013). A tremendous challenge is to distinguish driver genes with mutations that are involved
in tumorigenesis. Sufficient identification of driver genes promotes the understanding of tumor
progression and ensures the efficiency of gene-targeted therapy for cancers (Chin et al., 2011; Shin
et al., 2017).
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Nowadays, numerous methods for identifying cancer driver
genes have been proposed. The frequency-based methods, which
pick out driver genes by counting the mutations in a cohort of
patients, were first developed. MuSiC (Dees et al., 2012) and
MutSigCV (Lawrence et al., 2013) are two popular frequency-
based methods. The main differences between these twomethods
are the statistics of the hypothesis test and the procedures for
estimating the backgroundmutation rate. Some other frequency-
based methods have also been studied rapidly after them, such as
Lanzos et al. (2017) andHan et al. (2019). Note that suchmethods
did not take genetic functions of mutations into consideration.
Thus, they have some known limitations, such as a high false
positive rate, and they often fail to detect driver genes with low
mutation frequencies (Bashashati et al., 2012; Koboldt et al., 2012;
Muzny et al., 2012). Based on the hypothesis that gene mutations
tend to converge on a few biological pathways, some pathway-
based methods attempt to identify cancer driver modules
consisting of multiple genes rather than individual genes using
some biological prior knowledge (Bashashati et al., 2012; Paull
et al., 2013; Leiserson et al., 2015; Gao et al., 2017; Hou et al., 2018;
Carlin et al., 2019). However, the application of these methods is
limited by the incompleteness of prior knowledge database.

The functional impacts of gene mutations reflect how the
mutations affect protein function and hence, potentially alter the
phenotype (Ng andHenikoff, 2003). To improve the sensitivity to
driver genes with low mutation frequencies, the function-based
methods that identify genes by assessing their bias toward the
accumulation of mutations with high functional impact were
proposed (Gonzalezperez and Lopezbigas, 2012; Ryslik et al.,
2013; Tamborero et al., 2013a; Jia et al., 2014; Portapardo and
Godzik, 2014; Mularoni et al., 2016; Wang et al., 2018). For
example, MSEA predicted driver genes by assessing whether a
protein domain has a higher mutation rate than the remaining
region of the protein (Jia et al., 2014). OncodriveFML identified
driver genes by comparing the average functional impact score
observed in each genomic region to the expected score calculated
by random sampling (Mularoni et al., 2016). rDriver developed
a Bayesian framework to detect driver genes based on both the
functional impact of mutations and the genome-wide expression
levels (Wang et al., 2018). The advantage of these methods is that
the identified driver genes show positive selection on protein level
rather than just mutation level. However, the experimental results
showed that function-based methods can still be improved. Some
function-based methods exhibit overselection, that is, detecting
too many driver genes. For example, MSEA (Jia et al., 2014)
identified 2,003 driver genes in pancreatic adenocarcinoma, and
iPAC (Ryslik et al., 2013) identified 16,799 driver genes in liver
hepatocellular carcinoma. Furthermore, the distributions of the
null model inmost of the function-basedmethods were estimated
using the non-parametric methods (e.g., Gonzalezperez and
Lopezbigas, 2012; Tamborero et al., 2013a; Jia et al., 2014;
Portapardo and Godzik, 2014;Mularoni et al., 2016), which could
make the methods sensitive to sample size (Whitley and Ball,
2002).

To tackle the problems mentioned above, we propose a novel
function-based method FI-net to identify driver genes. The
somatic mutation frequency of genes is affected by several factors

and varies across the genomic sequence (Martincorena et al.,
2012; Roberts et al., 2012). By making a similar hypothesis, we
first constructed an artificial neural network (ANN) model to
estimate the functional impact scores (FISs) of genes by using
genetic features from multi-omics data sources. The R-squared
for the ANN regression model in the 31 TCGA datasets ranged
from 0.5391 (brain lower grade glioma) to 0.9673 (colorectal
adenocarcinoma) with the mean being 0.8748. To evaluate the
local distribution of background functional impact score (BFIS),
we then clustered genes in the multi-omics feature space using
the hierarchical clustering algorithm. A gamma distribution
was further fitted in each cluster to obtain the background
distribution. Finally, the observed FISs were compared to the
background distribution to obtain the empirical p-values for
genes within each cluster. For multiple testing, q-values were
assigned to genes using the false discovery rate approach. Genes
that show significant bias (q-value≤ 0.05) were selected as driver
genes in a cohort of patients. To the best of our knowledge,
this study is the first research to build a mathematical model
for estimating the background distribution of gene functional
impact. We applied FI-net to the 31 TCGA datasets to verify the
performance of identifying driver genes. Overall, FI-net detected
the adequate number of driver genes in the 31 datasets. The
identified driver genes showed high deleterious mutation ratio
and high coverage in a cohort of patients and were enriched
for known cancer driver genes included in the Cancer Gene
Census (CGC) database (Futreal et al., 2004) and the Network of
Cancer Genes (NCG) database (Repana et al., 2019). Moreover,
we demonstrated that FI-net can identify potential novel driver
genes.

2. MATERIALS AND METHODS

The outline of FI-net includes (1) calculating the observed FISs
for genes on the basis of Mutation Annotation Format (MAF)
files and MutationAssessor (Reva et al., 2011), (2) building the
artificial neural network to estimate the FISs for genes based on
multi-omics features and estimating the background distribution
of functional impact score in each cluster obtained by the
hierarchical clustering algorithm, and (3) identifying driver genes
by comparing the observed FIS to the background distribution in
each cluster. The workflow of FI-net is shown in Figure 1.

2.1. Data
2.1.1. Cancer Mutation Data
We used the MAF files from TCGA (available at
https://tcga-data.nci.nih.gov/tcga/) to do the driver
gene analysis. For each mutation in the MAF file,
Hugo_Symbol, Chromosome, Start_Position, End_Position,
Variant_Classification, Reference_Allele, Tumor_Seq_Allele, and
Tumor_Sample_Barcode are essential information for analysis.

2.1.2. Functional Impact Score of Mutation
FI-net used the FISs from MutationAssessor (Reva et al., 2011),
which assessed the functional impacts of mutations based on
evolutionary conservation of the affected amino acid in protein
homologs. Significant score in MutationAssessor indicates the
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FIGURE 1 | The workflow of functional impact prediction neural network (FI-net) method. The observed functional impact scores (FISs) of genes are calculated on the

basis of mutation data from Mutation Annotation Format (MAF) file and the FISs of mutations from MutationAssessor. Then, the background distribution of FISs is

estimated by using the artificial neural network and hierarchical clustering algorithm with multi-omics features as input. Based on these, driver genes are identified by

comparing the observed FIS to the background distribution.

more likely functional impact of a mutation. The release 3 “MA
scores rel3 hg19 full” (available at http://mutationassessor.org/
r3/), containing the FISs for mutations in hg19 reference genome

(chromosome 1–22, X, and Y), were adopted. Note that other
methods evaluating the functional impacts of mutations [e.g.,
SIFT (Ng and Henikoff, 2003), GERP (Cooper et al., 2005),
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PolyPhen (Adzhubei et al., 2010), and CADD (Kircher et al.,
2014)] can also be used in FI-net. The overlap analysis for the
driver genes identified by FI-net using MutationAssessor and
CADD has been summarized in Supplementary Material.

2.1.3. Genetic Features From Multi-Omics Data

Sources
Twelve genetic features from multi-omics data sources
(genomics, transcriptomics, and epigenomics) were adopted to
build an ANNmodel, including

1. the expression level from Lawrence et al. (2013);
2. the DNA replication timing from Lawrence et al. (2013);
3. the chromatin compartment (HiC) from Lawrence et al.

(2013);
4. the length of genomic regions from Jiang et al. (2019);
5. the constraint score for non-synonymous mutations from

Samocha et al. (2014);
6. the hubness in a gene expression network from Lee et al.

(2018);
7. the gene’s known regulatory role based on gene annotation

databases from Lee et al. (2018)
8. the genomic copy number variation (CNA) from Lee et al.

(2018);
9. the methylation status from Lee et al. (2018);
10. the total mutation number among patients calculated by

local MAF file;
11. the deleterious mutation (including mutations with null and

non-silent effects) number among patients calculated by
local MAF file;

12. the standard deviation of functional impact score across
patients calculated by local MAF file.

Some genes missed the feature values, such as the expression
level and DNA replication timing. We proposed a method to
compensate the missing values as follows:

1. Let Di,j =
√∑

l 6∈(Si∪Sj)(vl,i − vl,j)2 denotes the distance

between gene i and j, where Si (Sj) is the set of features which
are missing in gene i (j), and vl,i (vl,j) is the feature l of gene
i (j). Let Ngk denotes the set of the K nearest neighbor genes
without missing value in feature k surrounding gene g. K
was set to 100 in this research.

2. The missing feature k of gene g, v∗
k,g

was compensated by:

v̂∗k,g =
1

K

∑

t∈Ngk

vk,t (1)

3. Each feature was centered and normalized as follows:

zk,g =

vk,g −
1

G

G∑

i=1

vk,i

√√√√√ 1

G− 1

G∑

j=1

(
vk,j −

1

G

G∑

i=1

vk,i

)2
(2)

where G is the total number of genes under study.

2.2. Calculation of the Observed FISs for
Genes
The calculation of the observed FISs for genes was divided into
the following three steps:

1. Obtaining the FISs from MutationAssessor (Reva et al.,
2011). The mutations in the MAF file were mapped to the
mutations in “MA scores rel3 hg19 full” file according to
the information of the loci of mutations and the reference-
alteration bases.

2. Compensating the missing FISs: Some FISs of mutations
cannot be evaluated by MutationAssessor. To this end,
the variant classifications (such as silent, synonymous,
nonsense, non-stop, and in-frame deletion) of mutations in
the MAF file were mapped to the corresponding mutation
effects (silent, non-silent, non-coding, and null) according
to the “mutation type dictionary file” from Lawrence et al.
(2013). Let Qj denotes the set of mutations with effect j of
which FISs are known. The missing FIS of mutation i with
effect j was compensated by the average FIS of mutations
with effect j as follows:

fmiss
i,j =

1

|Qj|

∑

k∈Qj

fk,j (3)

where |Qj| is the cardinality of Qj and fk,j is the FIS of
mutation k with effect j.

Note that methods evaluating the functional impacts
of mutations are always focused on the non-synonymous
somatic mutations, such as MutationAssessor (Reva et al.,
2011), SIFT (Ng and Henikoff, 2003), and PolyPhen
(Adzhubei et al., 2010). The FISs of synonymous and some
protein-affecting mutations, such as nonsense mutations
and small indels, may be missing, and the average FIS of
mutations with silent and null effect cannot be calculated
from MutationAssessor. In general, the impact of silent,
non-coding, non-silent, and null mutations on protein
increases gradually. Silent mutations do not affect the
amino acids of protein sequence, and they should be
assigned the smallest FIS. Non-coding mutations do not
alter amino acids, but they can promote tumor progression.
For example, 3′-untranslated regions (3′UTR) non-coding
mutations can alter microRNA (miRNA) binding efficiency
and consequently trigger loss/gain of gene function (Akdeli
et al., 2014; Wu et al., 2018). Non-silent mutations, which
alter the amino acids of protein, may have significant
functional impacts on protein and accelerate the progression
of tumors. For example, R132 mutation in IDH1 was found
to be associated with early gliomagenesis (Yip et al., 2012).
Null mutations including “nonsense mutation,” “splice-site,”
“frameshift deletion,” “frameshift insertion,” and so on can
cause continuous changes in amino acid sequence and have
more significant impacts on the organism. Based on the
above analysis, under the condition of the average FIS of
effect j cannot be calculated, the FIS of mutation iwith effect
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j was set to:

fmiss
i,j =





0 mutation effect j is silent

1 mutation effect j is non-coding

2 mutation effect j is non-silent

3 mutation effect j is null

(4)

3. Calculating the observed FISs for genes. The observed FIS of
gene g was calculated by:

Fobsg =

Mg∑

i=1

f
g
i (5)

whereMg is the number of mutations in gene g and f
g
i is the

FIS of mutation i in gene g.

2.3. Estimation of the Background
Distribution
2.3.1. Artificial Neural Network Model
As shown in the scatter plots of Figure 2,
Supplementary Figures 7, 8, there are non-linear relationships
between FIS and the multi-omics features. Besides, we reduced
the multi-omics features to 2-dimensional features using t-
SNE method (Laurens and Hinton, 2008). The scatter plots
in 3D space of Supplementary Figures 9–11 show that FISs
and the features after dimensionality reduction also have
non-linear relationships. Consequently, a feed-forward single
hidden layer ANN was used to build a non-linear regression
model on FIS by incorporating multi-omics features. Our
network architecture consists of three layers of interconnected
neuron units, including the input layer, the single hidden
layer of non-linearity, and the output layer. The multi-omics
feature matrix Z = (z1, z2, . . . , zG)T ∈ R

G×p was used as
the multivariate input, with G being the number of genes and
p = 12 being the number of multi-omics features. The feature
vector zg = (z1,g , z2,g , · · · , z12,g)

T for g = 1, 2, . . . ,G was passed
through the three layers according to:

Input layer : u(1) = y(1) = zg

Hidden layer :




u(l+1) =W(l+1)y(l) + b(l+1)

y(l+1) = f
(
u(l+1)

) (l = 1, 2)

Output layer : F̂g = y(3)

(6)

where u(l) is the input of layer l, y(l) is the output of layer l,
and F̂g is the estimated FIS of gene g. The parameters W(2), b(2),

W(3), and b(3) were trained by the back-propagation algorithm.
The single hidden layer contains 100 neurons, then W(2) ∈

R
100×12, b(2) ∈ R

100×1, W(3) ∈ R
1×100, and b(3) ∈ R. ReLU

function, f (x) = max(0, x), was used as the non-linear activation
function. R package h2o (http://h2o.ai/resources) has been used
to construct and set up the ANNmodel in this study. The number
of training epochs is 10.

2.3.2. The Distribution of Background Functional

Impact Score
Hierarchical clustering algorithm has been proven effective
across a range of applications, including genomic data analysis
(Aceto et al., 2014; Pagnuco et al., 2017; Won et al., 2020). For
estimating the local distribution of BFIS, we implemented the
hierarchical clustering algorithm to group genes with similar
multi-omics features together. Ward’s method (Murtagh and
Legendre, 2014), which is based on an error sum of squares
criterion, was used in the hierarchical clustering. It produced
clusters by minimizing the within-group dispersion at each
binary fusion. The Euclidean distance was used to measure the
distance between genes i and j as follows:

Di,j =
∥∥zi − zj

∥∥2
2

(7)

As shown in the histograms in Figure 3, most of the distributions
of estimated FISs in each cluster can be approximated by the
gamma distribution. Thus, a gamma distribution was fitted for
getting the local distribution of BFIS. The number of clusters
influences the background distribution, and hence affects the
performance of identifying driver genes. The number of clusters
Nc was set as follows:

Nc =

⌈
G

N

⌉
(8)

where G is the total number of genes under study, N is a
predefined expected number of genes in each cluster. The
performance of FI-net for different values of N (1,000, 2,000,
3,000, 4,000, and 5,000) is shown in Supplementary Material.
The number of identified driver genes increases as N increases,
and the proportion of overlap with the CGC driver list decreases
as N increases. In this study, N = 3,000.

As gamma distribution is a positively skewed distribution, we
removed the outliers with minor estimated FISs. To this end, 5%-
truncated estimated FISs instead of the entire data were used to
fit the distribution. In detail, estimated FISs below 5% quantile in
each cluster were removed. For clusters with non-positive FISs,
an overall adjustment was performed to guarantee that all FISs
are within the domain of gamma distribution. The estimated FIS
of gene g in cluster c with non-positive FISs was adjusted by:

F̂g ← F̂g −min
g∈Sc

F̂g + 0.01 (9)

where min
g∈Sc

F̂g is the minimum FIS in cluster c and Sc is the set of

genes in cluster c.
The shape parameter αc and the scale parameter βc of gamma

distribution in cluster c were estimated by maximizing the
following likelihood function:

L(̂αc, β̂c) =

Gc∏

g=1

f (̂Fg |̂αc, β̂c) (10)

with

f (̂Fg |̂αc, β̂c) =
β̂

α̂c
c

Ŵ(̂αc)
F̂α̂c−1
g exp

(
−β̂cF̂i

)
(11)
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FIGURE 2 | The scatter plots between functional impact score (FIS) and multi-omics features of 300 genes (randomly sampling) in breast invasive carcinoma (BRCA).

being the density function of the gamma distribution. Gc is the
number of genes in cluster c. Ŵ(̂αc) =

∫∞
0 e−xxα̂c−1dx(̂αc > 0).

2.4. Identification of Driver Genes
The identification of driver genes was performed in each cluster.
The p-values of genes with significantly low FISs (≤0) were set
to 1. Otherwise, to test the significance level of genes in cluster
c, the null hypothesis was set up as follows: the observed FIS
of gene i was assumed to obey the gamma distribution with
parameters (̂αc, β̂c) estimated in section 2.3.2. The p-value of gene
g was given by:

pg = 1−HC(F
obs
g , α̂c, β̂c) (12)

with

HC =

∫ Fobsg

0

β̂
α̂c
c

Ŵ(̂αc)
xα̂c−1 exp

(
−β̂cx

)
dx (13)

being the cumulative function of the gamma distribution.
The Benjamini–Hochberg false discovery rate algorithm was

further applied to assign a q-value for each gene. In each cluster,
genes exceeding the significance threshold (q-value ≤0.05) were
identified as driver genes. Finally, the identified genes in all of the
clusters were reported as driver genes by FI-net.

3. RESULTS

We applied FI-net to the 31 datasets from the TCGA project,
which have been summarized in DriverML (Han et al., 2019)
and DriverDBv2 (Chung et al., 2016). FI-net was compared
with other 22 associated methods, including NetBox (Cerami
et al., 2010), Simon (Youn and Simon, 2011), Dendrix (Vandin
et al., 2012), MDPFinder (Zhao et al., 2012), MEMo (Ciriello
et al., 2012), DriverNet (Bashashati et al., 2012), OncodriverFM
(Gonzalezperez and Lopezbigas, 2012), ActiveDriver (Reimand
and Bader, 2013), DrGaP (Hua et al., 2013), iPAC (Ryslik et al.,
2013), MutSigCV (Lawrence et al., 2013), OncodriveCLUST
(Tamborero et al., 2013a), CoMDP (Zhang et al., 2014),
DawnRank (Hou and Ma, 2014), e-Driver (Portapardo and
Godzik, 2014), MSEA (Jia et al., 2014), OncodriveFML (Mularoni
et al., 2016), ExInAtor (Lanzos et al., 2017), rDriver (Wang et al.,
2018), SCS (Guo et al., 2018), DriverML (Han et al., 2019), and
UniCovEx (Gao et al., 2019). The driver gene lists of the first
21 methods were obtained from DriverML and DriverDBv2.
UniCovEx was run using the default parameters, and all genes
in MAF files were taken as considered genes. Gene modules
[only the 50 modules with the highest comprehensive score in
each protein–protein interaction (PPI) network were considered]
output by at least 2 of the 3 PPI networks (HINT + HI2012,
iRefIndex, and Multinet) were selected as the final predictions.
All genes in the predicted gene modules were identified as
driver genes.
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FIGURE 3 | The histograms of the estimated functional impact scores (FISs) in breast invasive carcinoma (BRCA), glioblastoma multiforme (GBM), and acute myeloid

leukemia (LAML).

3.1. FI-Net Identifies the Adequate Number
of Driver Genes
Tumor heterogeneity is widespread, and the mutation frequency
and driver genes across patients with a given type of tumor are
various (Vandin et al., 2012; Lawrence et al., 2013). The tumor
heterogeneity inflates the number of putative driver genes, and
the number of driver genes may have some variability among
cancer types. However, the classic epidemiologic studies and
sequencing data analysis have suggested that a typical tumor
ordinarily contains 2–8 driver genemutations, and the remaining
gene mutations are passengers that show no selective growth
advantage for tumor (Armitage and Doll, 1954; Vogelstein et al.,
2013). Driver gene identification methods based on sequencing
data analysis is to reduce the scope of research for biological
experiment methods. It is crucial to obtain an adequate number
of driver genes for these methods. Too few identified driver
genes may miss some critical cancer targets, and too many genes
will cause difficulties for subsequent biological verification and

further studies. The numbers of identified driver genes across
the 31 datasets were summarized in Figure 4. The median of
driver genes among the 31 datasets ranged from 0 (MEMo)
to 1,740 (iPAC). Several methods exhibited underselection,
which means they detect too few driver genes. MEMo, SCS,
DawnRank, DriverNet, Simon, OncoDriveCLUST, NetBox, e-
Driver, and MutSigCV identified no driver genes in some
datasets. The interquartile range (IQR) of the numbers of driver
genes identified by some methods was huge. For instance, iPAC
detected 40 driver genes in acute myeloid leukemia (LAML)
and 16,799 driver genes in liver hepatocellular carcinoma with
IQR being 3,633. The number of driver genes identified by FI-

net in the 31 datasets ranged from 3 to 67 with median being
17. The driver genes predicted by FI-net have been summarized

in Supplementary Table 1. The IQR of the number of driver
genes identified by FI-net was 21, with nine datasets obtaining

fewer than 10 genes and eight datasets obtaining more than
30 genes.
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FIGURE 4 | The driver gene number (on a log-10 scale) of the 22 methods in the 31 TCGA datasets. The numbers of driver genes predicted by different methods

differ significantly.

3.2. FI-Net Is of Best Precision According
to Overlaps With CGC and NCG Driver List
With respect to Portapardo and Godzik (2014), Lanzos et al.
(2017), Wang et al. (2018, 2020), Gao et al. (2019), Guo et al.
(2019), and Han et al. (2019), the overlaps with the gene

lists from CGC and NCG database were used as criteria to

evaluate the performance of methods. To this end, the proportion
of overlap was denoted as the precision of a method. For

the method that identified fewer than three driver genes, the
precision was set to 0. The precisions in CGC and NCG of 23

methods in the 31 TCGA datasets are illustrated in Figure 5

and Supplementary Tables 2, 3. In the boxplot of Figure 5, the
methods were sorted for the mean of precisions. The top three
methods in CGC database were FI-net, DriverML, and DriverNet
with the average precision among 31 datasets being 53.01, 48.19,
and 39.38%, respectively. FI-net achieved a precision >50% in 14
of the 31 datasets. Therein, the precisions in brain lower grade
glioma and uveal melanoma were 100%. The top three methods
in NCG database were FI-net, DriverML, and UniCovEx with
the average precision being 88.20, 70.55, and 55.70%. All
driver genes identified by FI-net in eight datasets are in
NCG database.

3.3. FI-Net Identifies Driver Genes With
High Deleterious Mutation Ratio and High
Coverage
As mentioned in section 2.2, mutations can be classified
into four effects, including silent, non-silent, non-coding, and
null. Therein, silent mutations (synonymous mutations) in
the gene coding sequence, and non-coding mutations in the
flanking untranslated regions (UTR) and intronic sequences,
safely beyond functional splice site mutations show weak
selective growth advantage for tumor and can be considered
as background mutations (Lawrence et al., 2013). Non-silent
and null, which will affect the amino acids of protein or
even cause frameshift of the sequence, play major roles in
tumorigenesis. Based on a long history in the study of selection
in species evolution, Martincorena et al. (2017) proposed an
index, dN/dS, the normalized ratio of non-synonymous to
synonymous mutations to quantify selection in cancer genomes.
They demonstrated that genes, which show significant high
dN/dS ratio, tend to show positive selection in tumor cells.
The similar idea can also be seen in Lawrence et al. (2013)
and Tokheim et al. (2016). Tokheim et al. (2016) used a
ratiometric feature, the median ratio of non-silent to silent
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FIGURE 5 | The precisions in CGC and NCG of the 22 methods in the 31 TCGA datasets. Methods are sorted with respect to the mean of precisions.

mutations, to evaluate the performance of driver gene prediction
methods. Driver genes identified by Lawrence et al. (2013)
showed high ratios of the protein-affecting mutations to other
mutations. Inspired by these studies, we defined a ratiometric
feature, the ratio of non-silent and null mutations (deleterious
mutations) to total mutations in each gene. The ratios of
deleterious mutations for driver genes identified by FI-net have
been summarized in Figure 6 and Supplementary Table 4. The
average ratio of driver genes identified by FI-net among 31
datasets is 0.8455. Eighty-five in 609 driver genes were with ratio
being 1, that is, all mutations in these 85 genes are non-silent or
null mutations.

For each cancer dataset, all driver genes identified from a
cohort of patients with a given type of tumor can be seen as
a driver gene set. Driver gene set tends to show high coverage,
which means mutations in members of the driver gene set
recurrently occur in patient cohorts (Vandin et al., 2012; Xu et al.,
2019). The coverage of gene set S is the proportion of patients

with mutations in the genes of S to all patients under study and
can be defined as:

CovS =
1

m
|PS| (14)

with PS being the set of patients with mutations in the genes of
S and m being the total number of patients. The coverage of 31
driver gene sets [calculated by Equation (14)] identified by FI-
net in the 31 datasets ranged from 0.2011 to 1.00 with average
coverage being 0.8419 (Figure 7).

3.4. FI-Net Identifies Known and Potential
Novel Driver Genes
Genes identified by multiple tools simultaneously may be driver
genes, because the false positives of one method may be thrown
away by other methods (Tamborero et al., 2013a). A total of
609 driver genes were identified by FI-net in the 31 datasets,
and 576 of them were also detected by other methods. All
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FIGURE 6 | The ratio of non-silent and null mutations (deleterious mutations) to total mutations for driver genes identified by FI-net. Thirty-one boxplots show the

ratios of deleterious mutations in all genes identified in 31 datasets, respectively.

FIGURE 7 | The coverage of driver gene sets identified by functional impact prediction neural network (FI-net) in the 31 datasets.

Frontiers in Genetics | www.frontiersin.org 10 November 2020 | Volume 11 | Article 564839

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Gu et al. Identification of Cancer Driver Genes

driver genes identified by FI-net in 15 of 31 datasets were
also detected by other methods. For example, FI-net identified
known driver genes, DNMT3A, FLT3, NPM1, IDH1, IDH2,
TET2, TP53, RUNX1, CEBPA, NRAS, WT1, U2AF1, and KRAS,
in LAML, which were detected by at least 10 other methods and
presented in CGC and NCG database. FI-net identified PIK3CA,
TP53, MAP3K1, GATA3, KMT2C, CDH1, RUNX1, BRCA1,
BRCA2, FAT3,MAP2K4, PTEN, ATM, CROCCP2, USH2A, RYR2,
HMCN1, NEB, and FLG in BRCA. The first 13 genes were
presented in CGC database. All genes except CROCCP2 were
predicted by at least two other methods and presented in NCG
database. The overlap between FI-net and other three newest
methods OncodriveFML (functional-based method), DriverML
(frequency-based method), and UniCovEx (Gao et al., 2019)
(pathway-based method) in their predictions of LAML and
BRCA are shown in Supplementary Figures 19, 20.

According to Hou and Ma (2014), Portapardo and Godzik
(2014), and Han et al. (2019), the potential novel driver genes
always show the following properties:

1. they have not been detected by the driver gene detection
methods;

2. they were not presented in the CGC database;
3. they were supported to be related to the development of

cancers by convincing studies.

Although the driver genes identified by FI-net in ovarian
serous cystadenocarcinoma, prostate adenocarcinoma, and
adrenocortical carcinoma got the worst performance in terms of
the consensus with other methods. Note that 77.78, 82.35, and
83.33% of driver genes in these 3 datasets were also detected
by other methods. In ovarian serous cystadenocarcinoma, FI-
net identified TP53, NF1, BRCA1, BRCA2, MUC16, CSMD3,
FAT3, EGFR, RB1, CDK12, HMCN1, USH2A, CACNA1C, DST,
MUC17, DNAH5, LRP2, RYR2, PRKDC, SON, GPR98, ZFYVE26,
AHNAK2, GLI2, APOB, ZNF236, and ODZ1. Therein, the first
10 genes presented in the CGC database. The first 20 genes
were also detected by other methods. For the remaining genes,
GLI2 increases abnormally in benign tumors and ovarian cancer
tissues (Zhang et al., 2019), and regulates the survivin isoform
expression in ovarian cancer (Trnski et al., 2019). The other 6
genes, GPR98, ZFYVE26, AHNAK2, APOB, ZNF236, and ODZ1,
were all supported to be related to cancers by research (Hatano
et al., 2008; Sagona et al., 2011; Backes et al., 2015; Borgquist et al.,
2016; Lu et al., 2017; Talamillo et al., 2017). Even though these
seven newly identified genes were not known driver genes, they
met the three properties of novel driver genes.

3.5. Overall Performance
The efficiencies of 23 tools have been evaluated based on
the overlap fraction with CGC, NCG, and the consensus in
prediction of driver genes among methods. Genes identified by
several methods simultaneously can be considered as critical
driver genes (Tamborero et al., 2013b). Method consensus shows
the ability to identify the genes that are also identified as
potential driver genes by many other methods. For each method,
we calculated the fraction of predicted driver genes that were
predicted by at least one other method denoted as “consensus

No. 1” and by half of 23 methods (11 methods) denoted as
“consensus No. 2.” To measure the overall performance of
methods clearly, we summarized the average value among 31
datasets for these four criteria in Table 1. Each method is
accordingly ranked by these 4 criteria and the average rank is
shown. In cholangiocarcinoma and kidney renal papillary cell
carcinoma datasets, there are no common driver genes that were
identified by half of the methods. The average consensus value
among the remaining 29 datasets was calculated for consensus
No. 2. In summary, the top-ranked three methods are FI-net,
DriverML, andMutSigCV with the average rank being 1.75, 2.75,
and 5.75.

4. DISCUSSION

A key task in cancer genomics research is to identify driver genes
that contribute to the progression of cancer (Han et al., 2019).
The protein-affecting mutations in certain gene regions, which
reflects the functional impacts of genes, tend to be targeted in
the tumorigenesis (Tamborero et al., 2013a). The potential driver
genes show the bias toward the accumulation of the functional
mutations, including non-synonymous, missense, and stop site
mutations (Gonzalezperez and Lopezbigas, 2012; Tamborero
et al., 2013a; Portapardo and Godzik, 2014). Motivated by these
facts, the function-based methods were developed. However, the
existing function-based methods always estimate the distribution
of the null model using the non-parametric method, such as
random sampling, which is limited by the sample size (Whitley
and Ball, 2002). The background distribution estimated by non-
parametric method could probably be biased for the datasets with
small sizes. This estimation bias can increase the detection rate of
false positives. Meanwhile, the underselection and overselection
cannot be overlooked for driver gene detection methods. Nine
of 23 methods identified no driver genes, and 7 of 23 methods
detected thousands of driver genes in some datasets. The
large variance of driver gene number might bring significant
uncertainties for the further applications of these methods.

We proposed FI-net method to identify driver genes based
on functional impact prediction neural network. The neural
network model was widely used in the research of bioinformatics
and achieved excellent performance (Dwivedi, 2018; Eetemadi
and Tagkopoulos, 2019; Tsou and Wu, 2019). To tackle the
shortcomings of non-parametric estimation in the function-
based method, an ANN model with one single hidden layer was
trained to learn the non-linear relationship between the FISs and
the multi-omics features. Because ANN is a kind of parametric
models, FI-net can be expected to be robust against the change of
the data comparing with the non-parametric models. The multi-
omics features, such as expression level and the DNA replication
timing, have been reported to be correlated with the mutation
frequencies (Lawrence et al., 2013). Thus, the assumption of the
identical distribution of mutation frequencies for all the genes is
not proper in estimating the background distribution.

FI-net was proposed by fully considering the multi-omics
features of genes and the probabilistic characteristics of FISs. It
is known that the genes with different multi-omics features are of
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TABLE 1 | Overall performances of 22 driver gene prediction methods on 31 TCGA datasets.

Methods CGC

overlap

NCG

overlap

Consensus

No.1

Consensus

No.2

CGC

rank

NCG

rank

Consensus

No.1

rank

Consensus

No.2

rank

Average

rank

ActiveDriver 17.92% 38.51% 52.28% 2.03% 17 17 18 20 18

Dendrix 28.75% 42.26% 69.38% 19.11% 12 15 12 6 11.25

MDPFinder 28.82% 51.58% 79.34% 24.15% 11 6 8 2 6.75

Simon 29.25% 45.26% 62.13% 7.36% 9 11 14 14 12.25

NetBox 26.41% 54.26% 74.18% 11.10% 15 4 11 13 10.75

OncoDriveFM 26.52% 42.04% 76.92% 13.96% 14 16 10 9 12.25

MutSigCV 37.07% 51.30% 89.94% 18.24% 5 7 3 8 5.75

MEMo 17.07% 18.17% 18.71% 11.37% 18 22 23 11 18.5

CoMDP 6.70% 20.39% 37.89% 0.51% 22 21 19 22 21

DawnRank 31.66% 44.97% 36.60% 3.08% 8 12 20 18 14.5

DriverNet 39.38% 50.67% 59.15% 22.39% 3 9 16 3 7.75

e-Driver 36.07% 51.05% 78.85% 28.65% 6 8 9 1 6

iPAC 11.13% 29.16% 32.71% 1.38% 21 20 21 21 20.75

MSEA 13.36% 32.01% 64.81% 2.58% 20 19 14 19 18

OncoDriveCLUST 44.32% 21.61% 87.10% 19.38% 13 13 6 7 9.75

DrGap 18.81% 42.69% 88.79% 3.30% 16 14 4 16 12.5

DriverML 48.19% 70.55% 94.01% 20.38% 2 2 2 5 2.75

OncodriveFML 33.78% 48.03% 81.15% 11.02% 7 10 7 12 9

SCS 5.15% 1.32% 19.66% 0.23% 23 23 22 23 22.75

rDriver 38.18% 53.17% 87.89% 12.97% 4 5 5 10 6

UniCovEx 29.01% 55.70% 65.56% 3.52% 10 3 13 17 10.75

FI-net 53.01% 88.20% 95.18% 21.46% 1 1 1 4 1.75

The bold number indicates the best result.

various mechanisms. Thus, the identical probability distribution
cannot be assumed for all the genes. To solve this problem,
FI-net grouped genes with similar multi-omics features using
Ward’s clustering algorithm and identified driver genes in each
cluster. The similar idea can be found in MutSigCV, which built
bagels using three genetic features and estimated the background
mutation rate within bagels. Because the distribution of FISs was
approximately positive and skewed, we assumed that FISs in each
cluster obey a gamma distribution. As a result, the non-significant
genes can be properly filtered out.

We demonstrated that FI-net was of excellent performance by
using the TCGA mutation data. FI-net was proved to overcome
the problem of underselection and overselection and detect
adequate number of driver genes. The number of driver genes
in the 31 TCGA datasets varied from 3 to 67 with median being
17 and IQR being 21. For investigating the precision of detecting
driver genes, FI-net was compared with other 22 associated
methods on the percentage of overlaps with the CGC and NCG
database. FI-net ranked first among 23 methods with average
precision in CGC and NCG database being 53.01 and 88.20%.
Furthermore, most of the driver genes identified by FI-net were
of high deleteriousmutation ratio and high coverage. The average
deleterious mutation ratio of 609 driver genes was 0.8455. All
mutations in 85 driver genes were considered to be deleterious
mutations. The average coverage of 31 driver gene sets of FI-net
was 0.8419.

Some limitations should be acknowledged in this research.
First, we detected driver genes without considering the
interaction between genes in the expression regulation networks.
Genes known to regulate other genes or with many downstream
genes are more likely to drive disease, including cancer (Lee
et al., 2018). Some prior knowledge, such as the number of
downstream genes, should be taken into consideration in future
research. Second, driver genes were identified among a cohort
of patients with the same type of tumor. In future research,
the identification of patient-specific driver genes should be
embedded for precision medicine. Last but not least, we directly
used FISs of mutations from MutationAssessor, which made our
method lack systematicness and integrity. Tools for evaluating
the functional impacts of mutations always focus on the coding
region, such as SIFT and PolyPhen. Future research will explore
some advanced machine learning algorithms for predicting
the functional impact of mutations in both coding and non-
coding regions and integrate a user-friendly tool for identifying
driver genes.

Our study first introduced and successfully applied the
parametric model to estimate the distribution of BFIS by
using multi-omics features. Another novelty of this research is
estimating the background distribution and identifying driver
genes within clusters obtained in the multi-omics feature space.
Moreover, some false positives can be filtered by assuming
the null distribution as a long-tailed gamma distribution.
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This study may provide a new perspective for the function-
based methods.
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