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Abstract 

Radiotherapy efficacy is the result of radiation-mediated cytotoxicity coupled with stimulation of antitumor immune responses. We 
develop an in silico 3-dimensional agent-based model of diverse tumor-immune ecosystems (TIES) represented as anti- or pro-tumor 
immune phenotypes. We validate the model in 10,469 patients across 31 tumor types by demonstrating that clinically detected 

tumors have pro-tumor TIES. We then quantify the likelihood radiation induces antitumor TIES shifts toward immune-mediated 

tumor elimination by developing the individual Radiation Immune Score (iRIS). We show iRIS distribution across 31 tumor types is 
consistent with the clinical effectiveness of radiotherapy, and in combination with a molecular radiosensitivity index (RSI) combines 
to predict pan-cancer radiocurability. We show that iRIS correlates with local control and survival in a separate cohort of 59 lung 
cancer patients treated with radiation. In combination, iRIS and RSI predict radiation-induced TIES shifts in individual patients 
and identify candidates for radiation de-escalation and treatment escalation. This is the first clinically and biologically validated 

computational model to simulate and predict pan-cancer response and outcomes via the perturbation of the TIES by radiotherapy. 
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Introduction 

Radiation therapy is the single most utilized therapeutic agent in oncology
[1] , yet in the biology-driven medicine era, advances in radiation oncology
have primarily focused on improving physical dose properties. As a result,
the field of radiation oncology currently does not individualize radiation dose
prescription based on the intrinsic biology of a patient’s tumor. 

Tumors, which contain a diverse cellular architecture comprising
heterogeneous cancer cell populations, evolving vascular networks, and
immune cell infiltrates, increase the complexity of the tumor radiation
response [2] . An extensive body of literature has emerged describing the
immune-activating ability of radiation [3] . In fact, radiotherapy efficacy may
result from the combined effect of direct radiation-mediated cytotoxicity
and, possibly, the subsequent indirect stimulation of an antitumor immune
response. Functional tumor immunity encompasses 2 main conceptual
components: immune effector populations inducing tumor regression
(including natural killer (NK) cells, CD4 + helper T (Th) cells, CD8 +
cytotoxic T cells (CTL), M1 macrophages and mature dendritic cells
(DC)) and immune suppressor cells facilitating tumor escape (including
regulatory T (Treg) cells, M2 macrophages and tolerogenic DC) [4] . The
mechanisms regulating the balance of immune activation vs suppression
is the foundation for several clinically approved therapeutics preventing
autoimmune flares or enhancing antitumor immune responses, thus are
important to consider when integrating radiotherapy. A diverse range
of tactics are being investigated to modulate the immune response in
combination with radiotherapy [ 5 , 6 ] and though synergism has been
identified between radiotherapy and the immune system, it is not clear how
to optimally integrate radiotherapy in the era of immune-modulating agents
[7] . 

Despite the monumental preclinical and clinical efforts, it is impossible
to rigorously analyze all possible radiation doses with and without
immunotherapy while encompassing all possible dosing, sequencing, and
timing variables [8] . Recent advances in integrated mathematical modeling
may help provide a mechanistic understanding of the many biologic
modifiers and their interactions [9–13] . Mathematical modeling has a
long history in radiation oncology; the linear-quadratic model, biologically
effective dose calculations, tumor control probability and normal tissue
complication probability models are used daily in hospitals around the world
[1] . Simulating the highly dynamic tumor responses to radiation based
on individual patient properties holds promise for innovative translational
opportunities [14–20] . Similarly, significant inroads have been made in
mathematical modeling of tumor-immune interactions and immunotherapy
response prediction [21–30] , as well as understanding the local and systemic
mechanistic consequences of radio-immunotherapy combinations [31–34] . 

In addition to, and in synergy with mechanistic modeling, systems
biology, machine learning, and bioinformatics approaches have taken root in
radiation oncology [ 35 , 36 ]. The clinical response to radiotherapy occurs in
the evolutionary context of complex cellular ecosystems and varying intrinsic
differences in tumor cell radiosensitivity. Heterogeneity in radiosensitivity
between patients and different cancer types has been evaluated using the
radiosensitivity index (RSI), a 10-gene molecular radiation response signature
that has been independently validated across multiple human tumor types
[ 37 , 38 ]. There are significant data to support that radiosensitivity has at least
in part, a genetic basis, which we hypothesize acts in concert with the complex
and highly dynamic tumor immune milieu to dictate response to therapy.
However, radiosensitivity and immune signatures are almost exclusively
derived from static measurements. Integrating such signatures with dynamic
modeling may hold the key to better understanding, simulating, and
predicting radiation responses for individual patients. 

To explore this hypothesis, we developed an in silico 3-dimensional
agent-based model to study the relationship between the tumor-immune
ecosystem (TIES) and solid tumor response to radiotherapy, with and without
onsideration for patient-specific tumor radiosensitivity. The model explores 
he dynamic interplay between tumor cells and the influx/efflux of immune
ell populations during tumor growth and following fractionated schedules 
f radiation. In this model, the TIES is represented as a juxtaposition of
 balancing phenotypes, antitumor vs pro-tumor, which is based on the
roportion of suppressor and effector immune cell infiltrates within the
cosystem. We validate the in silico agent-based model by demonstrating
he TIES composition for all 10,469 clinical samples in our cohort is
haracterized by a phenotype of tumor immune evasion as predicted. Next, we
odel the impact of radiation on the TIES and demonstrate it predicts that

adiation can drive shifts in TIES composition to promote tumor elimination.
o validate this prediction, we develop a novel metric of individual Radiation
mmune Score (iRIS), which quantifies the likelihood radiation will induce
IES shifts toward immune-mediated tumor eradication. Furthermore, 

he distribution of iRIS scores in clinical samples is consistent with the
adiocurability of solid tumors. We also demonstrate that iRIS predicts both
he local control and overall survival of a cohort of 59 non–small cell lung
ancer patients treated with postoperative radiotherapy. 

aterials and methods 

Herein, we combine computational modeling with pan-cancer tissue 
nalyses to simulate tumor-immune interactions and predict radiation- 
nduced shifts in the tumor-immune ecosystem ( Fig. 1 ). 

atient tumor data set 

Patients were consented to the Total Cancer Care (TCC) protocol
IRB-approved, Liberty IRB #12.11.0023) [39] . Pathology quality control 
valuation of tumors was performed as part of the TCC tissue collection
rotocol, which includes percent malignant cellularity, necrosis and stromal 
ell presence. Tumor samples were assayed using the custom Rosetta/Merck
uRSTA_2a520709 Affymetrix gene expression microarray platform (GEO: 
PL15048). CEL files were normalized against the median CEL file using

RON [40] , which yields Log 2 intensity values per probeset. Principal
omponent analysis (PCA) of all samples revealed that the first component
as highly correlated to RIN value, suggesting an RNA quality difference

mong samples. A partial least squares (PLS) model was trained upon the fresh
rozen samples for which RIN was available and used to re-estimate the RNA
uality of all samples. Then the first component was removed to correct the
ignals for RNA quality. 10,469 fresh frozen macrodissected primary tumors
ere identified for the related analyses. 

on–small cell lung cancer cohort 

This cohort was obtained from archived tumors that were resected
etween 2000 and 2010 from patients in the TCC and Moffitt Cancer Center
atabase. All patients provided written informed consent tissue acquisition, 
olecular profiling and follow-up. We identified 59 tissue samples, which
ere surgically resected and pathologically confirmed, American Joint 
ommittee on Cancer version 6, stage IIIA-IIIB tumors. Each patient
nderwent postoperative radiotherapy. Time to locoregional recurrence and 
verall survival was assessed by determination of the treating physician based
n clinical source documentation. Gene expression data were obtained from
he TCC. 

STIMATE 

The ESTIMATE algorithm [41] was used to calculate tumor purity
rom gene expression of the primary tumor (Estimate R package v1.0.13).
ormalized gene expression probeset identifiers were mapped to Entrez 
eneIDs. As defined in the Estimate package, the data were filtered to only
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Fig. 1. Schematic of the modeling, data-collection, and radiation response prediction pipeline. 
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the common genes. A single probeset was then selected per gene by choosing
the probeset having the highest median expression across all tumors. 

CIBERSORT 

The HuRSTA array was reduced to the LM22 signature genes as
defined by CIBERSORT [42] by choosing a representative probeset that
detects the gene and has the highest median expression among matching
probesets. The CIBERSORT web tool ( https://cibersort.stanford.edu/index.
php ) was accessed on 2017-05-19 to generate signature scores (using quantile
normalization). 

Immune cell infiltrate normalized content abundance 

Immune cell infiltrate composition proportions from CIBERSORT
[42] were extracted in relative mode, where the proportions are relative to
the total immune cell fraction of the tumor. To normalize the content across
tumors, we scaled the ESTIMATE [41] immune scores such that the lowest
immune score was 0 (rather than negative) and analyzed multiple immune
cell infiltrate fractions by this adjusted immune score, to yield the Normalized
Content Abundance (NCA). 

Immune cell infiltrate PCA plots 

Relative immune cell infiltrate composition proportions (CIBERSORT
estimates) were used to compute principal components across the entire
TCC cohort using prcomp (R3.6.0) with scaling. The loadings and scores
were visualized using R packages ggplot2 (3.2.1), ggrepel (0.8.1), and ggpubr
(v0.2.3). 

Calculation of RSI 

RSI was calculated for each sample using the within-sample rank
coefficients as described [37] . The following 10 probesets, corresponding
to the originally defined HG-U133plus2 probesets, were used: merck-
NM_007313_s_at (ABL1), merck-NM_000044_a_at (AR), merck-
NM_004964_at (HDAC1), merck-NM_002198_at (IRF1), merck-
NM_002228_at (JUN), merck-BQ646444_a_at (PAK2, CDK1),
merck2-X06318_at (PRKCB), merck2-BC069248_at (RELA), merck-
NM_139266_at (STAT1), merck-NM_001005782_s_at (SUMO1). 

In silico agent-based model 

We developed a 3-dimensional (3D) multiscale agent-based model (ABM)
that simulates the interactions of cancer cells with antitumor immune effector
T-cells and immune-inhibitory suppressor cells. Each cell is considered as
an individual agent, and their behavior at any time is determined by a
stochastic decision-making process based on biological-driven mechanistic
rules (see refs. [43–49] for similar modeling approaches). Immune cells are
simulated on a 3D regular lattice divided into 200 × 200 × 200 nodes
epresenting a volume of 65 mm 

3 , with a lattice constant of 20 μm (average
ell diameter, [46] ). Cancer cells occupy an irregular 3D lattice that is
nitialized by randomly placing one lattice node inside each cube of the 
egular lattice for immune cells. These interconnected lattices are then used to 
imulate the infiltration of immune cells into the tumor bulk, thus avoiding 
ontact inhibition between immune and tumor cells. A Moore neighborhood 
s considered for nodes in the same lattice, i.e., 26 orthogonally and diagonally 
djacent lattice sites, where each node has 8 neighbor nodes in the opposing
attice given by the nodes surrounding it. 

Model simulations are initiated with a single cancer cell at the center of the
D simulation domain. At each time-step ( �t = 1 h), trafficking, motility,
ytotoxic function and suppressing activity of immune cells, as well as tumor 
ell processes are executed through an iterative procedure ( Fig. 2 ). Every time-
tep the state and dynamics of all cancer and immune cells are updated in
andom order to avoid order biases. When the tumor reaches a population of
0 5 cancer cells, the number of cancer cells, immune effectors and suppressor 
ells define the preradiation tumor-immune ecosystem (TIES). The direct 
ose-dependent cytotoxic effect of radiotherapy (RT) on all participating cell 
ypes is simulated using the established Linear-Quadratic (LQ) model [50–
2] . Model simulations continue after RT until either the immune system 

radicates remaining cancer cells, or recurrent tumors reach the pretreatment 
umber of 10 5 tumor cells. 

ancer cell dynamics 
Cancer cells proliferate, migrate or undergo programmed cell death 

apoptosis) at predefined intrinsic probabilities modulated by the local 
icroenvironment ( Fig. 2 A). Proliferation and migration attempts are only 

uccessfully executed for cells residing at a lattice node with at least one
acant adjacent node. During mitosis, the new cancer cell is placed on a
andomly selected free neighbor node. Similarly, cells migrate into adjacent 
acant lattice nodes with equal probability to simulate random walks and 
ell diffusion (Brownian motion). The ability of the tumor cell to proliferate 
nd move is temporarily lost due to contact inhibition, and this quiescent 
tate is abandoned as soon as at least one neighbor lattice site becomes free.
ancer cells that undergo programmed cell death with specified probability 

re removed from the simulation domain instantaneously. For demonstration 
urpose, we assume commonly used generic cancer cell parameters, including 
 cell cycle duration of 35 hr (which results in a proliferation probability
 p = 0.02 × 10 −2 per time-step ( �t = 1 h) [53] ), and apoptotic and
igration probabilities as p a = 4.17 × 10 −3 (approximately every 10 days 

54] ) and p m = 4.17 × 10 −1 (about 10 cell widths per day [55] ). 

mmune cell infiltration into the tumor microenvironment 
Immune cells arrive in the tumor microenvironment after extravasation 

rom the vasculature [56–58] . Blood vessels are assumed to be homogeneously 
istributed throughout the simulation domain, and immune cells enter the 
imulation at randomly selected free lattice nodes in the domain. At each 
imulation time-step t i , the number of effector and suppressor cells that are

https://cibersort.stanford.edu/index.php
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Fig. 2. Integrative in silico modeling defines the tumor immune ecosystem (TIES). (A) Cancer cell decision flowchart. (B) Immune cells motility process. C. 
Cell-cell interactions process. (C) Biologically defined mechanistic rules guiding tumor and immune cell interactions in the 3D agent based in silico model. A 

fixed starting malignant cell burden and varying proportions of effector or suppressor immune cell infiltrates were inputted into the model and 10 independent 
simulations resulted in D. Tumor immune evasion ( left panel ) or immune-mediated tumor elimination ( right panel ). Different populations of cells in the 
agent-based model are depicted as follows: red (proliferating tumor cells), tan (quiescent tumor cells), green (effector immune cells) and purple (suppressor 
immune cells). (E) Representation of the probability of immune-mediated tumor elimination (IMTE) based on individual tumor immune ecosystems (TIES); 
y-axis: ratio of malignant cell burden/effector immune cell infiltrate ( C 0 /E 0 ) ; x-axis: ratio of effector/suppressor immune cell infiltrate ( E 0 /S 0 ). Color coded: 
Percent of computer simulations that resulted in immune-mediated tumor elimination (IMTE). Red region, TIES characterized by tumor immune evasion; 
green region, TIES representing immune-mediated tumor elimination. 
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recruited in response to tumor burden ( ∇ E i , ∇ S i ) are given as: 

∇ E i = { r E · C i − E i i f ( r E · C i ) > E i 

0 , ot herwise (1)

∇ S i = { r S · C i − S i i f ( r S · C i ) > S i 
0 , ot herwise (2)

where (C i , E i , S i ) are respectively the number of cancer, immune effector, and
immune suppressor cells at time t i . By setting r E = E 0 / C 0 and r S = S 0 / C 0

we obtain the desired cancer-to-effector cell ratio ( C 0 / E 0 ) and effector-to-
suppressor cell ratio ( E 0 / S 0 ) at the beginning of radiation therapy as derivable
from patient tissues. 

Immune cell motility 
Immune cells migrate and infiltrate tumors via chemotaxis along cytokine

and chemokine gradients that are secreted by cancer cells or other immune
cells [59] . The mean velocity of immune cells in nonlymphoid tissues have
been estimated at 4–10 μm min −1 , with a peak velocity as high as 25 μm
min −1 in the lymph nodes [60–62] . Here, we set the mean immune cell
velocity to 10 μm min −1 , which results in a lattice move probability of
h r = 0.37 per min −1 . The waiting time for immune cell movement follows
an exponential probability distribution. Immune cell motility is updated 60
times (every minute) per simulation time-step ( �t = 1 h). Both effector and
suppressor cells move toward the tumor center of mass subject to at least one
vacant lattice node in their immediate neighborhood and direction ( Fig. 2 B).
Immune effector and suppressor cells only move while not performing
cytotoxic or suppressing functions, i.e., when not in contact with cancer cells
or effector cells, respectively. 

Immune cells select free neighbor lattice nodes with a certain probability
depending on their distance to the center mass of the tumor. The transition
probability for the directed movement of an immune cell from a lattice site r
to a free neighbor r’ is given by 

p 
(
r → r ′ 

) = 

e η�H 
∑ 

r ∈ V ( r ) e η�H 
, 

where V(r) is the set of free neighbor lattice nodes of r, �H = H(r’) -
H(r) , and H(j) is the distance of a lattice site j to the tumor center of mass
1 
N 

N ∑ 

i=1 
r̄ i . Here the vector ̄r i denotes the spatial coordinates of the lattice node r i 

occupied by a tumor cell and N is the total amount of tumor cells. A random
number is generated to select a free neighbor lattice site for movement,
which is determined from the set of probabilities into which the generated
number falls in. We fixed η = 0 . 25 , which results in a nondeterministic
biased random walk. 

Cell–cell interactions 
Accumulating evidence demonstrates cancer cells secrete a wide array

of different chemokines and chemotactic cytokines that recruit pro- and
antitumor immune cell subsets to the tumor microenvironment [59] . While
cytotoxic effector T cells have the potential to kill cancer cells by inducing
different forms of cell death, suppressor T cells suppress antitumor immunity
by inhibiting the cytotoxic responses of effector T-cells which is simulated as
removal of effector cells in the model [63] . Accordingly, effector T cells can kill
cancer cells by direct contact with probability p E = 0.03 per time-step, and
suppressor T cells can suppress effector-dependent responses by repressing
effector T cells when they are in contact at a probability p R = 0.01 per time-
step ( Fig. 2 C). Tumor cell killing and effector T cell inactivation probabilities
increase proportionally with the number of immune cells of the same types
in the immediate cancer cell neighborhood. The target cell is removed from
the simulation domain. 
ffect of radiation on tumor and immune cells 
The cytotoxic effect of radiotherapy on cancer cells was simulated by using 

he standard Linear-Quadratic (LQ) model [50–52] . The radiation dose D 

Gy) dependent surviving fraction (SF) is given by: 

SF ( D ) = e −ξ ( αD + βD 2 ) , 

here α (Gy −1 ) and β (Gy −2 ) are cell type-specific radiosensitivity 
arameters. Growth arrested cells are approximately 3 times more resistant 
o radiation than normoxic cycling cells [64] ; we set ξ = 1 and ξ = 1/3 to
espectively scale the radiosensitivity of proliferative and quiescent tumor cells 
s previously discussed [ 45 , 48 ]. 

As the simulated in silico tumors with 10 5 cells are about 6 orders
f magnitude smaller than clinically apparent tumors, simulating 7 
eeks of radiation will overestimate tumor control. With generic cancer 

adiosensitivity of α = 0.3 Gy -1 and β = 0.03 Gy - 2, the linear quadric model
redicts the survival after 30 fractions to be on the order of SF(2 Gy x 30) ∼=
e-10. Radiation with 10 fractions gives SF(2 Gy x 10) ∼= 

7e-4, about 6 orders
f magnitude less than 30 fractions. Thus, simulating 10 fractions on tumors 
ith 10 5 cells provides a comparable means to clinical radiation responses. 
hus, each RT dose in silico may be assumed to equate 3 actual radiotherapy
oses. For RT simulations for an individual NSCLC patient k , we set SF k (2
y) = RSI k . 

Immunosuppressive cells are intrinsically more resistant to radiation than 
ytotoxic effector T cells [ 65 , 66 ], in line with estimates of radiation-induced
ymphocyte death after increasing radiation doses in vitro [67] . From these 
ose-response curves we derive SF S (1.8Gy) = 0.81 and SF S (2.0Gy) = 0.79
or suppressor immune cells, and SF E (1.8Gy) = 0.63 and SF E (2.0Gy) = 0.61
or immune effector cells. 

adiation-induced recruitment of immune cells 
Radiation induces immunogenic cell death, and this releases immune- 

timulating signals and enhances T cell infiltration into the TME [ 3 , 6 , 68 ].
adiation-induced tumor cell death occurs during the first hours after 

rradiation [5] and is marked by increased infiltration and recruitment of T 

ymphocytes [69] . Radiation-induced effector and suppressor cells recruited 
t time t i is simulated by: 

E i = 

N RT ∑ 

j=1 

K T j ·
(
δE e −γ ( t i −t j ) 

)
, 

S i = 

N RT ∑ 

j=1 

K T j ·
(
δS e −γ ( t i −t j ) 

)

here N RT is the number of radiation fractions, and K Tj i s the amount
f cancer cells eradicated by radiation at fraction j delivered at time t j .
he parameters δE and δS describe radiation-induced recruitment rates of 

ffector and suppressor cells, and γ is the decay of radiation-induced immune 
timulation. Parameter values δE = 0.05 h −1 , δS = 0.01 h −1 and γ = 0.05
ere used for all model simulations. Model parameters are summarized in 
upplementary Table 1. 

Individual Radiation Immune Score (iRIS) : The TIES composition prior to 
herapy combines cancer-to-effector cell and effector-to-suppressor cell ratios 
ith the absolute number of suppressor cells. Effector (antitumor) immune 

ells were represented by CD8 T, activated CD4 memory T, activated NK, 
nd M1-polarized macrophage cells. Suppressor (pro-tumor) immune cells 
ere represented by regulatory T, M2-polarized macrophage and neutrophil 

ells. These immune cell types were chosen in line with previous literature 
4] and clean signal on PCA. Including all the immune cell infiltrate 
opulations following PCA stratification yields comparable results, but lower 
ignificance due to ambitious stratification. To correlate TIES composition 
ith radiation responses the individual radiation immune score (iRIS) score 
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Fig. 3. Validation of TIES model in 10,469 patient tumor samples across 31 tumor types. (A) Loading of principal component analysis (PCA) of the 
CIBERSORT-derived immune cell infiltrate composition across 10,469 tumors stratified as antitumor ( E ; effector) or pro-tumor ( S ; suppressor). Immune 
type nomenclature is listed in Supplementary Table 2. (B) The cellular composition (normalized immune cell infiltrate counts and malignant cell burden 
estimated by CIBERSORT and ESTIMATE, respectively) for each of the 10,469 tumors was derived and plotted onto the TIES map; all tumors localized in 
regions with a TIES leading to tumor immune evasion. 
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is defined as: 

iRIS = 

1 
2 

min ( d IMTE ) + log 10 ( S 0 ) , 

where d IMTE = 

√ 

( log 10 ( 
E 0 
S 0 

) − log 10 X ) 
2 + ( log 10 ( 

C 0 
E 0 

) − log 10 Y ) 
2 

is the
distance of preradiation TIES to the immune mediated tumor elimination
(IMTE) region, and E 0 , S 0 and - C 0 are the number of effector, suppressor
and cancer cells, respectively. The X and Y vectors are the coordinates of
all simulated points in the IMTE region in the immune contexture matrix.
d IMTE is specific to each patient sample, and independent on the number of
simulated points in the IMTE region. As the TIES map is a 2D projection, to
sufficiently weigh the contribution of the order of magnitude of suppressor
immune cells in iRIS, the effect of d IMTE is reduced by the factor ½. 

Results 

Agent-based model simulations identify 2 functional tumor-immune 
ecosystem phenotypes: Immune-mediated tumor elimination vs tumor 
immune evasion 

The TIES is a dynamic and diverse network of cellular and noncellular
constituents that either perpetuate or attenuate tumor growth. The absolute
numbers of effector and suppressor immune cells in conjunction with the
cancer cell burden were used to define the TIES (see Methods). Simulations
of tumor growth in various TIES reveal that in our model, the tumor-immune
ecosystem yields 2 functional phenotypes: TIES where tumors evade immune
predation ( Fig. 2 D, left panel ) and TIES where tumors are eradicated by
the immune system ( Fig. 2 D, right panel ). These distinct phenotypes are
characterized by the ratio of cancer cells to effector immune cells at the
beginning of the simulation ( C 0 /E 0 , y-axis) vs the ratio of immune effector
to immune suppressor cells ( E 0 /S 0 , x-axis). Outcome statistics (immune-
mediated tumor eradication; IMTE) for ten independent simulations for each
initial TIES ( C 0 , E 0 , S 0 ) identifies TIES compositions that will lead to IMTE
or will lead to tumor escape ( Fig. 2 E). 
alidation of TIES model in 10,469 patient tumor samples across 31 

umor types 

We hypothesized that clinically detectable tumors should exclusively 
resent with TIES representative of an immune escape phenotype. To
alidate the TIES model, we estimated the TIES for 10,469 solid tumor
atient samples across 31 tumor types, which were prospectively collected
hrough the Total Cancer Care (TCC) protocol [39] , by quantifying immune
ell infiltrate counts and malignant cell burden in each sample using
he CIBERSORT [42] and ESTIMATE [41] algorithms, respectively. The 
mmune cell infiltrates across all tumor samples were grouped into effector
nd suppressor types based on principal component analysis ( Fig. 3 A).
ll 10,469 tumor samples demonstrated a TIES with an immune evasion
henotype, as predicted by the in silico model ( Fig. 3 B, Supplementary Fig.
). Although the initial in silico model parameters ( Fig. 2 ) were derived from
he literature for a ‘generic tumor’, the derived TIES composition of all
umor samples across the 31 tumor types confirmed the model prediction
f a phenotype characterized by immune evasion. 

he agent-based TIES model predicts radiation-induced shifts in TIES 
omposition to drive tumor elimination: individual Radiation Immune 
core (iRIS) 

To explore the effects of radiation therapy on the tumor and its immune
icroenvironment, we extended the in silico agent-based TIES model to

ncorporate the cytotoxic impact of radiation on both tumor/immune cells
nd the influx/efflux of immune infiltrates ( Fig. 4 A, see Methods). In this
imulation, we initialized the growth of 2 tumors with an identical number
f cancer cells ( C 0 = 1.0 × 10 5 ), but different pretreatment immune cell
nfiltrates ( E 0 , S 0 ) and thus different distances of preradiation TIES to the
mmune mediated tumor elimination region, d IMTE . Both tumors were then
imulated to be exposed to 20 Gy of radiation in 10 daily 2 Gy fractions
equivalent of 60 Gy in 30 fractions for clinical tumor sizes) with identical
adiation response parameters (see Methods for details). The in silico agent-
ased TIES model visualizes the predicted shifts in the TIES composition
fter each radiation dose ( Fig. 4 B). Importantly, the model incorporates
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Fig. 4. Agent-based TIES model predicts radiation-induced shifts in TIES composition to drive tumor elimination: the individual Radiation Immune Score 
(iRIS). (A) Schema of biologically-defined mechanistic rules guiding tumor and immune cell interactions during exposure to radiation in the 3D agent based 
in silico model. (B) Modeled trajectories of TIES composition evolution of a given pretreatment TIES following radiation treatment. Each closed circle on the 
trajectory represents a radiation dose of 2 Gy/day. The simulation was continued until a total of 20 Gy was delivered over 10 fractions. This demonstrates that 
radiation causes shifts in the TIES, which result in different trajectories despite being equivalent closest Euclidean distances from the IMTE region (green). 
(C) The individual Radiation Immune SensitivityScore (iRIS) score for each tumor, which describes the specific position in the TIES map with respect to the 
shortest Euclidean distance from the IMTE region, penalized by the absolute number of suppressor immune cell infiltrates. A lower iRIS value represents a 
more radiation responsive TIES. (D) Violin plots depicting distribution of iRIS values, highlighting heterogeneity within and across tumor types. The black 
dot in each violin plot represents median iRIS value for each tumor type. Numbers to the right of each cancer type represents the sample numbers. Tumor 
type nomenclature is listed in Supplementary Table 3. 
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tumor repopulation and regression dynamics before, between and after
radiation doses. Interestingly, the in silico agent-based TIES model predicts
that in some circumstances, radiation shifts the TIES into a functional
phenotype driving immune-mediated tumor elimination. These tumors are
the most likely to be eradicated even if viable cancer cells remain after
radiation. Conversely, tumors that do not experience this shift in TIES
phenotype are predicted to regrow after completion of radiation, possibly due
to propagation of an immunosuppressive milieu. 

Furthermore, these simulations revealed that tumor compositions with
higher initial E 0 /S 0 ratios and less absolute number of suppressor cells ( S 0 )
are predicted to have a higher probability of being shifted by radiation to
the functional TIES phenotype that promotes immune eradication of tumor
cells. From these findings, we derived a new individual Radiation Immune
Score (iRIS), which quantifies the likelihood radiation will shift the TIES
composition to the immune-eradication TIES phenotype (see Methods). 
linical validation of iRIS 

The agent-based in silico TIES model predicts tumors with a high 
RIS (iRIS hi ) score are less likely to experience radiation-induced shifts to 
 TIES phenotype characterized by immune-mediated tumor eradication. 
n contrast, tumors with a low iRIS score (iRIS lo ) have a higher chance
f radiation promoting immune-mediated tumor eradication. To clinically- 
alidate iRIS, we generated iRIS scores for all patients in the TCC cohort
n = 10,469) and each tumor was placed on the TIES map ( Fig. 4 C). The
istribution of iRIS scores is presented in Fig. 4 D, which shows significant
eterogeneity within and across tumor types. Interestingly, prostate, cervical 
nd nonmelanoma skin cancers constitute 3 of the 4 tumor types with the
owest median iRIS scores. Importantly, these are all radiocurable diseases 
here radiation and surgery have equal oncologic outcomes based on clinical 

xperience. Gliomas (high and low grade) and sarcomas have the highest 
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Fig. 5. Clinical validation of iRIS in independent non–small cell lung cancer cohort. An independent cohort of 59 non–small cell lung cancer (NSCLC) 
patients treated with postoperative radiation at various doses (range: 42–70 Gy) were analyzed for locoregional control (LRC), failure (LRF) or overall survival 
(OS). (A) iRIS is not correlated with the total radiation dose delivered to the 59 NSCLC patients ( r = -0.24, P < 0.06). Color code: patient samples with 
locoregional control (LRC, green) and locoregional failure (LRF, red). (B) left panel, The inferred cellular composition (immune cell infiltrates and malignant 
cell burden) of each patient tumor was plotted onto the TIES map and actual clinical outcomes of LRC (green) and LRF (red) were evaluated with respect 
to their given TIES. Right panel, boxplots show patient tumors that achieved LRC had lower iRIS values compared to those with LRF ( ∗∗ represents P < 

0.01). (C) Kaplan-Meier estimates for OS demonstrate patients with tumors classified as iRIS lo vs iRIS hi have improved OS (HR: 0.54, 95% CI: 0.28–1.0; 
P = 0.04). Boxplots show that patients who achieved LRC have (D) higher E 0 /S 0 and E) lower C 0 /E 0 ratios than those with LRF ( ∗∗∗ P < 0.001). 
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median iRIS scores, which is also consistent with the radiation-resistant
phenotype of these tumors. Other observations consistent with clinical
experience include lung adenocarcinomas having a higher median iRIS than
lung squamous ( P = 9.6 × 10 −9 ). In breast cancer, the PAM50 molecular
subtypes, such as luminal A and B had the highest median iRIS scores,
whereas the HER2 and basal subtypes had the lowest median iRIS, which
were significantly different ( P < 0.001; Supplementary Fig. 2). 

iRIS correlates with radiotherapy outcomes in non–small cell lung cancer

As an independent clinical validation, we tested iRIS in a cohort of 59
non–small cell lung cancer (NSCLC) patients treated with postoperative
radiation. Patients received total radiation doses of 42 to 70 Gy in daily
fractions of 1.8 to 2 Gy. Total dose was prescribed based on clinical guidelines
and was independent of iRIS ( Fig. 5 A, r = -0.24, P = 0.06). As predicted,
patients that achieve locoregional control (LRC) had significantly lower
iRIS scores compared to patients with locoregional failure (LRF; P < 0.01;
Fig. 5 B). Furthermore, iRIS lo patients had improved overall survival (OS)
when compared to iRIS hi (HR = 0.54; 95% CI: 0.28–1.0, P = 0.04, Fig. 5 C).
Also, we found that patients who achieved LRC had higher pretreatment
E 0 /S 0 ratios (median 1.02 ± 0.74 vs median 0.51 ± 0.55, P < 0.001; Fig. 5 D)
and lower C 0 /E 0 ratios (median 2.62 ± 58.25 vs median 8.3 ± 18.16, P <

0.001; Fig. 5 E). 
he combination of iRIS and radiation sensitivity index, RSI, correlate 
ith favorable outcomes in patients treated with radiation 

To evaluate the immune microenvironmental role in radiation response 
ith cell-intrinsic molecular radiosensitivity, we combined iRIS with the 
SI, a radiation response signature that is agnostic to cancer type and
as been independently validated as a marker of radio-responsiveness 
cross multiple human tumor types [ 37 , 38 ]. Combining the RSI and iRIS
istributions across the 31 tumor types followed by stratification into
SI lo and RSI hi (median = 0.42) and iRIS lo and iRIS hi (median = 3.61)
y global medians respectively, visualizes separation of molecularly and 
mmunologically radiosensitive and radioresistant tumors on the in silico 
IES map ( Fig. 6 A). Classifying tumor types based on the proportion of
atients in the most favorable quadrant (e.g., iRIS lo /RSI lo ), demonstrates
ervical, prostate, and head and neck cancers have the highest proportion
f tumors in this quadrant, consistent with the high radiocurability of these
umor types in clinic ( Fig. 6 B). In contrast, gliomas and sarcomas had the
owest proportion of tumors in the iRIS lo /RSI lo quadrant, which is also
onsistent with known clinical radioresistance. 

In the NSCLC clinical cohort, patients with favorable radiation sensitivity
nd immune phenotypes (RSI lo /iRIS lo ) had significantly higher rates of LRC
s those with unfavorable (e.g., RSI hi /iRIS hi ) pretreatment conditions (83%
s 41%; P < 0.001). Similarly, patients with dual RSI lo /iRIS lo vs RSI hi /iRIS hi 

umor phenotypes have superior OS (HR = 0.38, P = 0.01; Fig. 6 C).
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Fig. 6. RSI and iRIS are mutually related to improved outcomes in patients treated with radiation. (A) Tumors were separated into quadrants by RSI lo and RSI hi 

(population median RSI, 0.42), as well as iRIS lo and iRIS hi (population median iRIS, 3.61) and represented on the TIES map. (B) Tumor types were classified 
based on the proportion of patients in the most ‘favorable’ quadrant (e.g., iRIS lo /RSI lo ). (C) Patient NSCLC tumors with dual RSI lo /iRIS lo phenotypes have 
improved OS (HR 0.38, 95% CI: 0.16–0.92; P < 0.01) compared to those with RSI hi /iRIS hi . (D) A RSI lo phenotype with an unfavorable TIES (iRIS hi ) or 
vice versa, cannot compensate for the other (HR 1.1, 95% CI: 0.4–3.1; P = 0.84). 
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Interestingly, an RSI lo tumor phenotype with an unfavorable TIES (iRIS hi )
or vice versa, does not connote improved OS ( Fig. 6 D); thus, both metrics in
combination correlate with patient-specific outcomes in this cohort. 

RSI/iRIS model-predicted minimum required dose for tumor control 

We then used the in silico model, informed with patient-specific
pretreatment TIES composition, RSI and iRIS to simulate the clinically
applied individual radiation dosing regimen (total dose applied in 1.8 to 2
Gy per fraction for a total of 42–70 Gy) to predicted RT-induced shifts in
TIES composition. For patients with immune ‘cold’ TIES (i.e., low effector to
suppressor immune cell ratios, or iRIS hi ) radiation does not perturb the TIES
sufficiently to promote immune-mediated tumor elimination, resulting in
LRF. For patients predicted to be controlled by radiation, RT facilitates shifts
toward more favorable TIES compositions that support tumor elimination.
If RT fails to eradicate all cancer cells, postradiation TIES composition
facilitates immune-modulated elimination of residual cancer cells that lead
to LRC ( Fig. 7 A,B). The highest prediction accuracy was achieved for
RSI lo /iRIS lo patients (82% correctly predicted), followed by RSI lo /iRIS hi 

(62%), RSI hi /iRIS hi (61%) and RSI hi /iRIS lo (58%) ( Fig. 7 C). We then used
the in silico ABM to predict the minimum required number of 1.8 Gy or 2
Gy RT fractions to eliminate the tumor. For selected RSI lo /iRIS lo patients,
as few as 6 to 10 fractions (10.8–20 Gy total dose) may be sufficient to
provide LRC via robust stimulation of antitumor immunity. For unfavorable
TIES compositions with RSI hi /iRIS hi , we found that up to 60 + fractions
( > 120 Gy total dose) may be necessary to sterilize every single cancer cell with
radiation ( Fig. 7 D). Of the analyzed 59 NSCLC patients, 6 patients (10%)
received RT within + /- 5 fractions of the RSI/iRIS calculated required dose,
0 patients (51%) are predicted to be candidates for RT de-escalation, and 
3 patients (39%) would require dose escalation by more than 5 fractions 
ased on RSI/iRIS ( Fig. 7 E). Analysis of the shifts in the TIES during
T for 3 select patients ( Fig. 7 F) and the corresponding change in cancer,
ffector and suppressor cell population over time indicate 2 different radiation 
rescription purposes: RT as an immune-stimulating agent with opportunity 
or de-escalated doses (tumors 1 and 2; Fig. 7 G,H) vs radiation as a purely
ytotoxic agent that has to eradicate every cancer clonogen without the 
upport of the immune system (tumor 3; Fig. 7 I). Consequently, many more
adiation fractions and a higher cumulative dose are required for tumor 3 
ompared to tumors 1 and 2. 

iscussion 

Mathematical modeling has become integrated into cancer biology and 
linical oncology to move from molecular reductionism to quantitative 
olism [9] . Prospective clinical trials are currently evaluating promising 
odeling-derived concepts in radiation oncology, including temporally 

eathered radiotherapy to reduce cumulative doses to organs at risk 
15] , and the use of a proliferation saturation index, PSI, to personalize
adiation fractionation [ 16 , 18 , 70 ]. Though laboratory techniques can
erform experiments in a controlled model, there is limitation to the 

ncluded variables, which results in an oversimplification of patient tumor 
iology. To address this complexity, we developed an in silico model of 
umor-immune interactions that simulates the diverse contexts in which the 
umor escapes immune surveillance and what immune environments can 
uccessfully control or eliminate tumors. 
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Fig. 7. Optimal patient-specific radiation doses to induce favorable TIES shifts. (A) Proof-of-principle simulation of radiation-induced shifts in the TIES 
composition. Big circles mark the TIES composition prior to radiation, smaller circles mark TIES composition after each radiation fraction (2 Gy x 10). 
After radiation, tumor-immune dynamics are simulated until the tumor either becomes extinct (green trajectories) or regrows to pretreatment size (red 
trajectories). (B) Model-predicted locoregional control (LRC, green) or locoregional failure (LRF, red) for the patient-specific radiation dose, RSI, and initial 
TIES composition for 59 NSCLC patients. (C) Model predictions of locoregional control (LRC, green) or locoregional failure (LRF, red) for 59 NSCLC 

patients. Percentages denote prediction accuracy for each quadrant of RSI lo/hi and iRIS lo/hi . (D) Model-derived minimum required number of radiation fractions 
to control individual patient tumors with their respective RSI, iRIS, and delivered dose per fraction (1.8 Gy/fx, circles; 2 Gy/fx, squares). (E) Model-derived 
difference in clinically prescribed number of fractions and model-derived minimum required number of radiation fractions to control individual patient 
tumors. (F) Simulated shifts in TIES composition of 3 individual patients marked in panel E. (G–I). Population dynamics for the 3 individual patients marked 
in panels E and F. Gray shaded background denotes times of radiation therapy. 
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While mathematical models of tumor-immune interactions and radiation
response are plentiful, here we demonstrate for the first time predictions
derived from an in silico agent-based model that are validated in 10,469
clinical samples across 31 cancer types. This agent-based model stratifies TIES
composition into the 3 E’s of immunoediting—tumor elimination, tumor-
immune equilibrium, and tumor escape [71] . Tumors that are clinically
apparent must have evolved to escape immune surveillance, and in our
analysis all clinical samples correctly mapped onto model-predicted TIES
compositions of tumor escape. 

Quantitative simulations of radiotherapy suggest that most protocols
will leave cancer cells behind. However, radiation-induced shifts in TIES
composition can provoke immune-mediated tumor elimination, whereas
unfavorable TIES with a large proportion of immune suppressive cells
will facilitate tumor regrowth and local failure. From these observations
we developed the iRIS score and demonstrated that favorable iRIS values
correlate with radiocurability across different clinical samples and cancer
types. These results challenge the prevailing dogma of intrinsic cancer
cell sensitivity to radiotherapy and suggest a significant role of the cell-
extrinsic immune environment mediation to radiation response. These
data complement preclinical observations of radiation-immune synergy, and
uggests that in patient tumors, radioresponse and TIES composition are
inked. 

Combination of iRIS as a cancer cell-extrinsic immune environment 
etric with cancer cell molecular radiosensitivity identifies RSI lo /iRIS lo 

atients as most radiocurable, which aligns with clinical observations of
ocoregional control in specific tumor types enriched in RSI lo /iRIS lo patients.

hile RSI lo /iRIS lo NSCLC had significantly improved overall survivals 
ompared to RSI hi /iRIS hi patients, survival curves of patients with mixed
henotypes (RSI lo /iRIS hi and RSI hi /iRIS lo ) did not separate. Taken together,
atient-specific responses to radiation may be a combination of the direct
ytotoxic effect of radiation, encoded in the cell-intrinsic RSI molecular
rofile, and the contexture of the immune microenvironment, encoded in
he iRIS model. 

Of importance, protracted fractionated radiation regimens may select for 
ore radiation-resistant (RSI hi ) tumors as the tumor evolves [72] . Combined
ith radiation-induced shifts in the TIES composition, radiation response 
ay in itself visualize a complex adaptive dynamic system. The inflamed
ilieu of a tumor [ 73 , 74 ] following radiotherapy facilitates or suppresses

umor growth, thus each patient tumor is unique and may require varying
pproaches based on underlying TIES and molecular composition. More 
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integrated radiobiological, mathematical, and radiation oncology studies are
needed to decipher how to best use radiation dose and dose fractionation to
steer TIES composition toward immune-mediated tumor elimination. 

This study provides the first step toward the ability to predict which
patients are prone to radiation-induced immune destruction, which patients
will require priming radiation to shift to a more favorable TIES composition,
and which patients have a resistant tumor immune environment where
radiation alone will be ineffective. Our findings strongly support the
notion that the pretreatment TIES composition and intrinsic radiosensitivity,
defined by iRIS and RSI, respectively, could be actionable tumor metrics
to evaluate when making these decisions. Herein we focused on qualitative
understanding of the pan-cancer TIES, without calibration and validation of
the model to individual cancer sites. Before any conclusions about treatment
adaptations can be drawn, future work will include rigorous model training
and testing for each cancer [75] . 

There are a plethora of active clinical trials exploring combinations of
radiation and immunotherapy, but as of yet, there is no consensus on how
both therapies should be integrated to optimize patient outcomes. This is a
major question to address in oncology as both therapies independently and
jointly may lead to adverse side effects with minimal oncologic benefit to the
patient. With over 300 ongoing clinical trials to date combining radiotherapy
and immunotherapy [76] , invaluable biological and clinical insights into the
immunogenic consequences of radiation are expected in the years to come. 

In conclusion, the presented work is the first step toward a conceptual
understanding of the contribution of cell intrinsic molecular radiosensitivity
and cancer cell-extrinsic immune environmental modulation of the radiation
response. To translate this work, rigorous calibration, validation, and
evaluation of predictive power for individual responses and outcomes for
specific tumor types are of utmost importance [1] , which will be the topic
of future work. 
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