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ABSTRACT Molecular imaging is an emerging technology that enables the nonin-
vasive visualization, characterization, and quantification of molecular events within
living subjects. Positron emission tomography (PET) is a clinically available molecular
imaging tool with significant potential to study pathogenesis of infections in hu-
mans. PET enables dynamic assessment of infectious processes within the same sub-
ject with high temporal and spatial resolution and obviates the need for invasive tis-
sue sampling, which is difficult in patients and generally limited to a single time
point, even in animal models. This review presents current state-of-the-art concepts
on the application of molecular imaging for infectious diseases and details how PET
imaging can facilitate novel insights into infectious processes, ongoing development
of pathogen-specific imaging, and simultaneous in situ measurements of intral-
esional antimicrobial pharmacokinetics in multiple compartments, including privi-
leged sites. Finally, the potential clinical applications of this promising technology
are also discussed.
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Noninvasive molecular imaging is a powerful clinical tool for the early diagnosis and
monitoring of various disease processes. Next-generation molecular imaging

promises unparalleled opportunities for visualizing infections, since molecular and
cellular alterations occur earlier than structural changes in a pathological process. This
rapidly developing technology has already become an essential tool in the field of
oncology, with similar potential for infectious diseases (1). Currently there are several
available molecular imaging techniques. Optical imaging with bioluminescent or fluo-
rescent biomarkers is widely used and has excellent sensitivity. However, it is generally
two-dimensional and importantly has limited depth penetration (�1 cm), restricting its
use to small animal models and surgical or endoscopic procedures in patients (2). Novel
methodologies recently developed, significantly enhance light microscopy capabilities.
The CLARITY technique replaces target tissue lipids with a water-based gel that renders
the tissue optically transparent enabling intact-tissue staining in nonsectioned tissue (3)
and high-resolution and detailed three-dimensional in situ imaging, however, as more
traditional methods, these methods rely on invasive tissue acquisition. Conversely,
nuclear-medicine-based molecular imaging utilizes “tracers” or “probes” labeled with
high-energy emission radionuclides, which can be used to target specific molecular
pathways deep inside the body (4, 5). Three-dimensional spatial localization of bio-
markers in nuclear medicine techniques is determined by measuring the source of the
radionuclide attached to the biomarker. Among the available molecular imaging
techniques, positron emission tomography (PET) is highly sensitive (pmol/liter) and can
be used to visualize a variety of in vivo biological processes (6). PET is often coregistered
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with conventional imaging such as computed-tomography (CT) or magnetic resonance
imaging (MRI) for anatomic reference (7). Advancements in technology, such as whole-
body PET (8), enable exquisite sensitivity (40�), increasing the clinical utility of PET.
Nonnuclear and clinically available MRI-based molecular imaging approaches such as
magnetic resonance spectroscopy (MRS) are also able to provide detailed structural,
functional, and metabolic information utilizing endogenous or exogenous contrast
agents, although with a lower sensitivity than PET. Finally, ultrasound and photoacous-
tic imaging are also being developed for molecular imaging applications with promise
for future applications to infections.

Molecular PET imaging allows the integration of molecular and physiological data
with anatomical information in individual patients. In oncology, clinical molecular PET
imaging enables early detection, real-time therapeutic monitoring, and the ability to
streamline drug development (9). PET utilizing 18F-labeled fluorodeoxyglucose (18F-
FDG), a glucose analog that is selectively taken up by cells with a high rate of glucose
metabolism, is a valuable clinical tool for predicting tumor response to treatment and
patient survival (10). However, 18F-FDG is nonspecific and accumulates in tissues with
increased metabolic activity regardless of the underlying pathology (i.e., cancer, inflam-
mation, infection). Therefore, target-specific PET probes for cancer are being developed
to allow for a more specific diagnosis (11). In drug development, molecular PET imaging
is particularly useful in target validation, whole-body target expression and heteroge-
neity, whole-body drug distribution, pharmacokinetics (PK) (e.g., drug penetration into
privileged sites such as the central nervous system [CNS] penetration), and pharmaco-
dynamic (PD) effects (12). Other areas in medicine also use molecular PET imaging. For
instance, PET is used for monitoring autoimmune and inflammatory diseases and
vasculitis (13). In cardiology, PET can evaluate cardiac metabolism (i.e., myocardial
viability, perfusion, inflammation) in heart failure (14). PET and other molecular imaging
approaches are increasingly being studied with patients to assess new biologic targets
and for their potential to assess patient-level risk prediction and treatments (15). Finally,
molecular imaging for the diagnosis and management of infectious diseases is gaining
momentum with technological advancements and a growing clinical need for holistic
and individualized information for patient care, not feasible with other current tech-
nologies.

UNDERSTANDING DISEASE PATHOGENESIS IN SITU

Understanding the pathogenesis of infectious diseases is essential in the develop-
ment and assessment of novel therapeutics. It would be particularly useful if the same
tools utilized in preclinical models could be also translated into the clinic and thus help
in the standardization of the readouts. PET imaging of live animals or patients to study
infections overcomes several fundamental limitations of current laboratory techniques
which are generally invasive and rely on tissue resection. Molecular imaging provides
holistic three-dimensional readouts and allows the study of biology in situ, with
relatively unaltered physiology and lack of processing or other artifacts that can occur
during resection and analysis of tissues (Fig. 1). It also allows longitudinal profiling in
the same subject at several time points to understand the changes in lesion pathology,
while reducing subject-to-subject variability.

Spatial heterogeneity. It is increasingly being recognized that many different
infectious lesions with distinct bacterial burdens, antimicrobial exposures, and local
biology can coexist in the same host (16–19). Molecular imaging can measure inter- and
intrasubject heterogeneity at a lesion, organ, or whole-body level. PET imaging can also
characterize these local heterogeneous microenvironments for pathogen dynamics,
immune response, and environmental cues. For example, hypoxia is considered to be
a major determinant of bacterial persistence in human tuberculosis (TB) (20). Therefore,
Harper et al. (21) used copper-64(II)-diacetyl-bis(N4-methyl-thiosemicarbazone) (64Cu-
ATSM), a PET tracer used to detect hypoxic lung lesions in a mouse model of TB and
confirmed these findings using postmortem analyses. While no tracer accumulation
was noted in nonhypoxic TB lesions in acutely infected or in control mice without
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lesions, a progressive, time-dependent tracer accumulation was noted in chronically in-
fected mice, which are considered hypoxic. A subsequent study with TB patients using
18F-fluoromisonidazole (18F-FMISO) PET imaging confirmed these findings (22). In another
study, Davis et al. (23) used single-photon emission computed tomography (SPECT) to
detect and localize an engineered Mycobacterium tuberculosis strain where a bacterial
thymidine kinase (TK) was introduced under the control of a strong mycobacterial
promoter (hsp60). TK phosphorylates 1-(2-deoxy-2-fluoro-�-D-arabinofuranosyl)-5-125I-
iodouracil (125I-FIAU), a nucleoside analog, leading to trapping and accumulation of
125I-FIAU in the M. tuberculosis Phsp60 TK strain. Thus, bacteria were specifically and
noninvasively detected in experimentally infected animals demonstrating heteroge-
neous bacterial burdens in visible TB lesions (23). Infection dynamics are closely related
to the host immune response (24), and Martin et al. used genome-encoded barcodes

FIG 1 Molecular imaging tools. (A) Traditional tools used to study infections such as microbiology, microscopy, and
molecular techniques (e.g., PCR and mass spectrometry), require tissue excision, which is prone to sampling bias,
and the measurements are also generally limited to a single time point. Molecular imaging can address some of
these limitations and complement traditional tools. Histology and imaging were adapted from Ordonez et al. (34,
86). (B) Comparison of the commonly available molecular imaging techniques. MRI, magnetic resonance imaging;
PET, positron emission tomography; SPECT, single photon emission computed tomography; CT, computed
tomography.
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to uniquely tag individual M. tuberculosis bacilli and quantitatively track the trajectory
of the infecting bacterium in nonhuman primates (25). By coupling this tagging
strategy with 18F-FDG PET/CT of lung pathology in macaques, they demonstrated that
a subset of TB lesions, distinguishable by imaging features, were responsible for the
majority of bacterial dissemination (25). 18F-FDG PET has also been employed to
monitor the heterogeneity of the host metabolic responses. In a nonhuman primate
model of cerebral malaria, 18F-FDG PET demonstrated decreased cerebral metabolic
activity. A diffuse and heterogeneous reduction of metabolic activity in the frontal and
temporal lobes was noted prior to evidence of neuropathological findings (26).

Temporal monitoring. PET imaging allows for repeated measurements to quantify
temporal changes in the same subject. Dormant bacteria are commonly believed to
inhabit established TB lesions, although this is controversial (27). Nonetheless, the
spatial location of dormant bacteria has never been demonstrated experimentally in
live hosts, and their precise location still remains elusive. Therefore, Murawski et al.
utilized sequential 18F-FDG PET/CT to monitor the spatial and temporal evolution of
individual pulmonary TB lesions in experimentally infected mice over the course of TB
treatment and subsequent development of relapse (28). They discovered that although
the majority of lesions developed in the same regions, several new lesions arose de
novo during reactivation TB within lungs regions with no lesions prior to TB treatment,
suggesting that dormant bacteria may also reside outside established lesions. Similarly,
serial PET/CT in M. tuberculosis-infected macaque lungs and a rabbit model of TB
meningitis also demonstrated that individual TB lesions are dynamic and change
independently during infection with different drug penetration and with lesions re-
gressing and egressing in the same host (29, 30). Figure 2A demonstrates the utility of
18F-FDG PET/CT to follow M. tuberculosis pulmonary lesions in a murine model of
pulmonary TB.

Repeat measurements can also be used to monitor treatment and provide prog-
nostic information. For example, 18F-FDG PET was successfully used to evaluate the
bactericidal activity of multidrug treatments in mice (31). In cynomolgus macaques with
latent TB, increased 18F-FDG PET pulmonary activity or extrapulmonary involvement
prior to measures that induce reactivation TB ([tumor necrosis factor alpha TNF-�]
neutralizing antibody) predicted reactivation TB with high accuracy (32). Activated
macrophages are the key components of TB-associated inflammation. Foss et al.
demonstrated that radioiodinated DPA-713, a synthetic ligand of the translocator
protein (TSPO) which is highly upregulated in activated microglia and macrophages, is
selectively retained within macrophages and phagocytic cells in pulmonary TB lesions
(33). In a subsequent study comparing 125I-DPA-713 SPECT with 18F-FDG PET in a
mouse model of pulmonary TB, 125I-DPA-713 SPECT was found to be a better predictor
than 18F-FDG PET of early bactericidal activities of TB treatments (34). 124I-DPA-713 PET
has also been utilized successfully to image neuro-inflammation in a rabbit model of TB
meningitis (35). Pathogen-specific PET tracers have also been utilized to rapidly monitor
response to antimicrobial treatments and detect therapeutic failures associated with
drug-resistant organisms (36, 37). In simian immunodeficiency virus (SIV)-infected
rhesus macaques 64Cu-labeled SIV Gp120-specific antibody was used for PET imaging
and was able to trace viral dynamics following antiretroviral treatment (ART) identifying
reservoirs of the virus even in monkeys controlling the infection (38). Complementing
this with in vivo tracing of CD4 T lymphocytes, could provide a comprehensive
evaluation of the response to treatment (39).

Molecular imaging to study antimicrobial PK/PD in vivo. While antimicrobials are
among the most commonly prescribed drugs, up to 50% are inappropriately utilized or
not optimized for efficacy (40). Antibacterial efficacy is determined by the susceptibility
of the microorganism to the antimicrobial, which is a feature of the organism and
commonly assayed using the MIC (41). However, the MIC does not account for the
heterogeneous in vivo microenvironments that may change the bacterial susceptibility
to the antibiotic as well as antimicrobial exposures achieved at infection sites in vivo.
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While MIC data in combination with clinical studies have been used to determine
antimicrobial breakpoints and antimicrobial dosing (42), they are based on measure-
ments of antimicrobial concentrations in plasma, which do not always accurately
correlate with intralesional or target tissue concentrations, nor take into account the
heterogeneity of different infected tissues in the same host (43). A low concentration
of the antimicrobial in the infected tissue may lead to treatment failure, require the
need for prolonged treatment durations, and promote the emergence of drug-resistant
organisms. Conversely, unnecessarily high antimicrobial concentrations can lead to
toxicities, organ injury, drug intolerance, and noncompliance (44). There is an urgent
unmet need to improve the current knowledge of antibiotic intralesional PK/PD prop-
erties to optimize antimicrobial use and facilitate new drug development (4). Liquid
chromatography-tandem mass spectrometry (LC-MS/MS) and matrix-assisted laser de-
sorption ionization (MALDI) are promising techniques that can provide detailed intral-
esional biodistribution but require invasive tissue sampling (45). However, these tech-
niques are prone to sampling errors and generally limited to single time points,
precluding the ability to measure PK parameters such as area under the concentration-
time curve (AUC) or changes in drug concentrations with treatment or progression of
disease (46).

FIG 2 Temporal monitoring. Imaging allows for repeat measurements to quantify temporal changes in
the same subject. (A) Serial 18F-FDG PET monitoring of individual TB pulmonary lesions in the same
mouse demonstrates dynamic and independent evolution. (B) Serial 11C-rifampin PET in a rabbit model
of TB meningitis demonstrates spatially heterogeneous brain penetration that rapidly decreased as early
as 2 weeks into treatment (adapted from Tucker et al. [29]). (C) 18F-FDS PET (bacterium-specific probe)
performed before and after initiation of antimicrobial treatment in a murine model of E. coli myositis can
rapidly monitor treatment efficacy, demonstrating a PET signal proportionate to the bacterial burden.
This method can also be used to detect therapeutic failures due to infections with multidrug-resistant,
extended-spectrum �-lactamase (ESBL)-producing E. coli (adapted from Weinstein et al. [36]).
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Whereas the use of PET for PK/PD assessments in oncology has facilitated efforts for
drug discovery and clinical translation (47), its application for infectious diseases is still
an emerging field (48). PET utilizing radiolabeled antimicrobials provides a noninvasive
solution to these challenges. For example, rifampin is a key first-line TB antibiotic
required for sterilization and also used to treat infections due to other bacteria such as
Staphylococcus aureus. However, even after 50 years of clinical use, we still do not know
how to optimally dose rifampin. Recently, Tucker et al. utilized 11C-rifampin, a radiola-
beled analog of rifampin to optimize treatments for TB meningitis (29). Sequential
11C-rifampin PET in a rabbit model of TB meningitis demonstrated limited and spatially
heterogeneous brain penetration that rapidly decreased as early as 2 weeks into
treatment (Fig. 2B). Similarly, in pulmonary TB, rifampin exposure was lower in infected
lesions and paradoxically lowest in cavitary walls, even though cavities have an
extremely high bacterial burden (107 to 109) and thus are a risk factor for transmission
(49, 50). These PET data support the ongoing efforts to develop high-dose rifampin-
based regimens to treat TB— especially those in privileged compartments (e.g., TB
meningitis or pulmonary cavitary TB) with limited and variable antimicrobial penetra-
tion (51, 52). Similar studies have been performed to evaluate intralesional concentra-
tion of existing or new antimicrobial (e.g., bedaquiline) to optimize antimicrobial
treatments (53, 54).

DEVELOPMENT OF PATHOGEN-SPECIFIC IMAGING TOOLS

Current radiopharmaceuticals to image infections rely on nonspecific pathophysio-
logical consequences of infection, such as increased capillary permeability, vasodilation,
and hyperemia, as well as adaptation of local metabolism (55). Similarly, while 18F-FDG
PET could be a valuable tool for the diagnosis and management of infectious diseases
(56), it is not specific for infection and cannot differentiate infection from other disease
processes, such as inflammation or cancer. Development of pathogen-specific tracers
has been challenging and, in the past, demonstrated variable results. Many pathogen-
specific tracers have relied on antimicrobial-derived radiopharmaceuticals (e.g., 99mTc-
ciprofloxacin [57]), or antimicrobial peptides with variable results (58), likely due to lack
of bacterial accumulation that is needed to reliably detect infections from the back-
ground tissues (59).

Bacterium-specific PET imaging. Mainstay clinical microbiology uses differential
bacterial metabolism, such as selective growth media, to differentiate bacteria in the
microbiology laboratory (60). Therefore, recent attempts utilizing small molecules
selectively metabolized by bacteria but not by mammalian cells hold promise. Ordonez
et al. presented a systematic discovery approach to identify and develop novel
bacterium-specific PET tracers based on selective metabolism (61). They performed an
in silico screen of 961 radiolabeled small molecules followed by bacterial uptake assays
of promising candidates and identified several potential bacterium-specific imaging
tracers such as para-aminobenzoic acid (PABA), which accumulated in all bacterial
species tested, D-mannitol, which accumulated selectively in Gram-negative and Gram-
positive bacteria but not mycobacteria, and D-sorbitol, which accumulated selectively in
the Enterobacteriales order of Gram-negative bacteria (Escherichia coli, Klebsiella pneu-
moniae, Yersinia spp., Enterobacter spp., etc.) which is the largest group of bacterial
pathogens in humans. Together, these afford a set of tools for the differential imaging
of bacteria in vivo.

Several investigators are utilizing this approach to develop bacterium-specific trac-
ers. For instance, maltose and maltodextrin are polysaccharides that are incorporated
with high specificity using the maltose-maltodextrin transport system present in mul-
tiple Gram-negative as well as Gram-positive bacteria but not in mammalian cells (62).
Several generations of tracers have been developed to target the maltodextrin trans-
porter system (63, 64). Most recently, 6�-18F-fluoromaltotriose (65) was shown to
selectively accumulate in an E. coli myositis and Pseudomonas aeruginosa wound
infection mouse models. Similarly, sorbitol, a sugar alcohol, is selectively taken up via
surface transporters, phosphorylated and further metabolized by Enterobacteriales (61).
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In vitro uptake of 18F-fluorodeoxysorbitol (18F-FDS), which can be easily synthesized
from 18F-FDG, demonstrated that the tracer accumulated �1,000-fold more in bacteria
than in mammalian cells. Moreover, 18F-FDS PET was able to specifically detect and
differentiate live bacteria (infected lesion) from sterile inflammation (heat-killed bacte-
ria) in a murine thigh myositis model as well as other animal models of infection (36,
66). Other recently developed bacterium-specific imaging agents include 11C-PABA,
2-18F-PABA, and 18F-fluoropropyl-trimethoprim (18F-FPTMP), which target the bacterial
folate pathway (37, 67, 68), radio-analogs of D-amino acids that are incorporated into
the bacterial cell wall (69), and siderophore-derived agents (70). 18F-FDS has been
administered to humans and found to be safe and well-tolerated (71, 85).

Since successful treatment often leads to rapid killing or inactivation of the patho-
gen much earlier than the resolution of inflammation or tissue destruction, pathogen-
specific imaging also holds promise for the rapid detection of therapeutic responses.
Antimicrobial resistance can be identified because the metabolic pathways utilized by
many bacterium-specific tracers are highly conserved in susceptible and multidrug-
resistant organisms (MDROs) (61). Therefore, based on the differential response to
antibiotics when treating susceptible versus resistant bacteria, many bacterium-specific
PET imaging tracers were able to rapidly identify infections due to MDROs without any
invasive procedures (Fig. 2C) (36, 37), with potential for clinical translation.

Virus-specific PET imaging. Attempts have also been made to image viral infec-
tions by utilizing antiviral molecules such as acyclovir and its derivatives (72). For
example, Buursma et al. used 9-[(1-18F-fluoro-3-hydroxy-2-propoxy)methyl]guanine
(18F-FHPG), a derivative of ganciclovir, in which one hydroxyl group is replaced with a
radioactive fluorine atom (73). 18F-FHPG is selectively phosphorylated by the herpes
simplex virus (HSV) TK and becomes trapped within infected cells. This method was
utilized to visualize HSV-affected brain regions in a rat model of encephalitis (73).
64Cu-labeled simian immunodeficiency virus (SIV) Gp120-specific antibody has been
utilized to study the viral dynamics and localization of SIV in viremic and antiretroviral
therapy-treated macaques using PET (38). In viremic macaques, PET signal was detect-
able in the gastrointestinal and respiratory tract, lymphoid tissues, and reproductive
organs. In contrast, antiretroviral-treated (aviremic) macaques had much lower signals
but which were still detectable in colon, select lymph nodes, small bowel, nasal
turbinates, the genital tract, and lung. In elite controllers, the PET signal was localized
to the small bowel, select lymphoid areas, and the male reproductive tract. Novel,
virus-specific PET tracers could also be developed by targeting specific metabolic
process required for the viral replication cycle (72).

Fungus-specific PET imaging. Fungal pathogens, including yeast such as Candida

spp. and molds such as aspergillosis, cause significant morbidity and mortality, espe-
cially in vulnerable hosts that are immunosuppressed. However, diagnosing these
infections may be challenging because they are particularly difficult to isolate, grow,
and manipulate in the laboratory. 99mTc-fluconazole as well as 99mTc-labeled peptides
have been utilized to detect Candida albicans infections in mice but not found to be
optimal tracers (74). Radiolabeled Aspergillus-specific monoclonal antibodies (MAbs)
also hold potential to provide a more specific tool for diagnosis (75). The Aspergillus-
specific mouse MAb mJF5 and its humanized derivative hJF5 are directed at the
extracellular galacto-mannoprotein antigens produced by all clinically relevant Asper-
gillus species (76). Administration of 64Cu-DOTA-labeled MAb mJF5 to neutrophil-
depleted A. fumigatus-infected mice allowed specific localization of lung infections
when imaged with PET (77). Siderophores produced by fungi, such as triacetylfusarinine
C (TAFC), which are selective for mold, have also been used as a pathogen-specific
imaging strategy for aspergillosis. Sequential PET/CT with 68Ga-TAFC in a rat model of
invasive pulmonary aspergillosis could detect infection much earlier than conventional
technique (78), although no subsequent studies have been reported using this tracer.
Recently, Lindeman et al. also reported the use of an advanced MRI technique, chemical
exchange saturation transfer (CEST) to measure the extracellular pH of tissues in vivo in
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murine models (79). While not specific for fungi, they demonstrated that the pH of lung
adenocarcinoma lesions were consistently lower than those in the granulomas (lesions)
developed due to coccidioidomycosis, suggesting an interesting methodology to
differentiate these distinct pathologies that otherwise can present with similar clinical
and conventional imaging findings.

CLINICAL TRANSLATION

PET is becoming a routine clinical tool and is proliferating in the United States and
abroad, although its application to infectious disease is mostly limited to 18F-FDG PET.
For example, 18F-FDG PET in patients with pulmonary TB demonstrated nonresolving
and intensifying lesions that correlated with the presence of M. tuberculosis mRNA in
patients’ sputa, even following treatment and cure (80). This indicates that even
apparently curative pulmonary TB treatment may not eradicate all organisms in many
patients, which was a novel finding. In a cohort of patients with multidrug-resistant TB
treated with second-line TB drugs for 2 years, quantitative changes in 18F-FDG uptake
2 months after starting treatment were associated with long-term outcomes, offering
valuable early prognostic information (81). Similarly, early pathological metabolic ac-
tivity noted on 18F-FDG PET, before initiation of antiretroviral therapy (ART), was
associated with subsequent development of HIV-related immune reconstitution inflam-
matory syndrome (IRIS) after initiation of ART (82).

However, there is need for the development and clinical translation of more
specific imaging tracers for infections. For example, 124I-DPA-713, a novel tracer for
macrophage-associated inflammation, has recently been translated to the clinic. 124I-
DPA-713 PET studies in healthy volunteers demonstrate that 124I-DPA-713 clears rapidly
from the lungs, with predominantly hepatic elimination, and is safe and well tolerated
in healthy adults (83). Human studies utilizing 11C-rifampin PET to study antimicrobial
distribution and optimize treatments for TB meningitis (29) and pulmonary TB (49) have
also been performed recently. Bacterium-specific imaging tracers are also being eval-
uated in clinical studies (71, 84, 85) and could help in establishing specific diagnosis of
deep-seated bacterial infections that are not easily amenable to detection by traditional
tools, monitor and prognosticate treatments, and optimize antimicrobial use. Early and
specific detection of infections as well as dual-tracer imaging approaches that could
provide accurate data on the class of bacteria causing the infections could help in
streamlining empirical antimicrobial choices. Additionally, pathogen-specific tracers
could also be used to specifically monitor the presence of viable bacteria and help in
determining the treatment duration. Validated tools could also be utilized for precision
medicine approaches for patients with complicated infections. Finally, since much of
our understanding of infections is derived from animal studies or from biopsy specimen
and tissue resection in humans, molecular imaging could enable basic research in
humans. Multimodality imaging could simultaneously visualize many different pro-
cesses (bacterial burden, antibiotic exposure, local microenvironment) and allow inte-
gration of cross-species data from animals to humans that is not feasible with current
ex vivo tools.
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