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ABSTRACT

We introduce a new approach in this article to dis-
tinguish protein-coding sequences from non-coding
sequences utilizing a period-3, free energy signal
that arises from the interactions of the 3'-terminal
nucleotides of the 18S rRNA with mRNA. We
extracted the special features of the amplitude and
the phase of the period-3 signal in protein-coding
regions, which is not found in non-coding regions,
and used them to distinguish protein-coding
sequences from non-coding sequences. We tested
on all the experimental genes from Saccharomyces
cerevisiae and Schizosaccharomyces pombe. The
identification was consistent with the correspond-
ing information from GenBank, and produced
better performance compared to existing methods
that use a period-3 signal. The primary tests on
some fly, mouse and human genes suggests that
our method is applicable to higher eukaryotic
genes. The tests on pseudogenes indicated that
most pseudogenes have no period-3 signal. Some
exploration of the 3'-tail of 18S rRNA and pattern
analysis of protein-coding sequences supported
further our assumption that the 3'-tail of 18S rRNA
has a role of synchronization throughout translation
elongation process. This, in turn, can be utilized for
the identification of protein-coding sequences.

INTRODUCTION

The development of computational methods for the
identification of protein-coding sequences is one of the

primary research issues in computational biology. Most
computational methods for the identification of protein-
coding regions are based on various measures that find
the differences between coding regions and non-coding
regions [as reviewed in (1-3)]. The period-3 signals in
coding regions have been used as a measure to identify
protein-coding genes [4-9]. Some recent research efforts
including those by Tiwari et al. (9), Anastassiou (4) and
Kotlar et al. (7) involved the use of the discrete fourier
transform (DFT) to study the period-3 signal in coding
regions for the identification of protein-coding genes.
Tiwari et al. (9) used the magnitude of a period-3 signal
to construct a spectral content measure for the identifica-
tion. Anastassiou (4) improved on the former measure by
proposing the optimized spectral content measure that is
based on an optimization technique. Kotlar et al. (7)
incorporated a phase component to maximize a magni-
tude optimization for discrimination between coding
regions and random DNA sequences (equivalent to non-
coding regions). Gao et al. (10) used a ‘deviation’ of the
period-3 component from the sequence’s fractal ‘back-
ground’ to distinguish protein-coding sequences from
non-coding sequences. One suggested explanation for the
difference between coding regions and non-coding regions,
that may also explain the period-3 signal in coding
regions, is that there appears to be a relationship between
tRNA abundance and codon bias (one measure for the
difference between coding regions and non-coding
regions) in the coding regions (11-13). However, most
algorithms are based on the statistical analysis of the char-
acters of the DNA sequences without investigating the
underlying biological mechanisms.

The investigations of the role of the 3’-end of 16S rRNA
in prokaryotes during the translation processes (14-17)
have led us to investigate the role of the 3’-end of 18S
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rRNA during the translation process in eukaryotes. The
various regions of 18S rRINA have a base-pairing interac-
tion with mRNA during the translation initiation (18-20)
and the translation elongation (21-26). Demeshkina et al.
(23) proposed that the nucleotides of 18S rRNA surround-
ing mRNA codons at the human ribosomal A, P and E
sites are the most strongly conserved regions of the small
subunit RNA structure that correspond to nucleotides at
four positions of bacterial 16S rRNA. Furthermore, Weiss
et al. (27) indicated that the 3’-end of 16S rRNA scans the
mRNA and is very close to the decoding sites of A, P and
E sites during elongation. The interaction of the 3’- end of
16S rRNA-mRNA has been postulated to have a role of
synchronization with the correct reading frame during the
translation elongation, which has been used for the iden-
tification of coding regions [see reviews in (28,29)]. The
above observations therefore led to our hypothesis that
a prokaryotic-like interaction of the base-pairings between
the 3’-end of 18S rRNA and mRNA plays a synchroniza-
tion role with the correct reading frame during the trans-
lation elongation process (28,29).

We introduce a new approach to distinguish protein-
coding sequences from non-coding sequences utilizing
the interaction of the 3'-terminal nucleotides of the 18S
rRNA with mRNA in this article. We discovered a period-
3 signal in protein-coding regions by calculating the
variable free energy of hybridization of the 3’-terminal
nucleotides of the 18S rRNA with the mRNA as it
moves through progressive alignments during elongation
(28,29). However, the period-3 signal is buried under
strong background noise so that sequence identification
becomes difficult. Although cumulating over every three
nucleotides (28) is able to effectively emphasize the signal
while deemphasizing the noise (28,29), the experiments did
not explicitly designate how to distinguish protein-coding
sequences from non-coding sequences using the features of
the period-3 signal. We therefore propose a novel and
effective approach to identify protein-coding and non-
coding sequences in this article by extracting the features
from the phase and the amplitude of the period-3 signals,
utilizing the assumption that the interactions of the 3’- end
of 18S rRNA and mRNA plays a synchronization role
with the correct reading frame during the translation elon-
gation process.

METHODS AND MATERIALS

Previous studies describe proposed measures for gene pre-
diction based on either the phase or the amplitude of the
spectral content at the normalized frequency of 1/3 or at
other frequencies (4,9,7). We propose to use both the fea-
tures of the phase and the amplitude of the period-3 signal
in the coding regions, which is not in the non-coding
regions, to distinguish the protein-coding sequences from
the non-coding sequences in this article. We describe our
approach in detail in this section. We first construct a free
energy sequence by computing the free energy scores
between the 3’-end of 18S rRNA and a DNA sequence.
We next extract a period-3 signal using a cumulative sinu-
soidal wave method. We then describe the approach to

identify protein-coding and non-coding sequences using
the different features of the phase and the amplitude
of the period-3 signal. The experimental data are described
at the end of this section.

Calculation of free energy sequence

We calculated the free energies for the base-pairings
between the 3'- end of 18S rRNA and a DNA sequence.
We moved the 3’-end of 18S rRNA, 3-ATTACTAG-5,
downstream (in the 3’-direction) along the DNA sequence
one nucleotide at a time from the begining to the end,
generating a series of alignments. For each alignment, a
free energy score was calculated using a dynamic program-
ming algorithm (30,31). We then calculated a free energy
sequence, E = [eg, ey, ..., er], for all the alignments over
the whole gene sequence, where L is the length of the
sequence.

A number of researchers have used free energy as a
metric for studying the interactions of sequences.
Starmer et al. (32) reviewed and compared with
RNAhybrid and RNAcofold (33,34). Our free energy cal-
culation differs from those by Xia et al. (35) and Starmer
et al. (32) in that it considers bulge loops and asymmetric
internal loops, but it dose not consider the penalties for
terminal AU pairs [Please refer to Michael Zuker and
Patrick Stiegler, (36) for the definitions].

Period-3 signal from cumulative sinusoidal wave

Our analysis revealed a period-3 signal from the free
energy sequence of a DNA protein-coding sequence,
and we used a method, called the cumulative sinusoidal
wave, to extract the phase and the amplitude of a period-3
signal (28,29) as is described below. We first summed the
free energy modulo 3 over the first 3k nucleotides
(k codons). We then fitted a sinusoidal wave to the accu-
mulated free energy values. The cumulative amplitude
Ay and cumulative phase 0, (we call them amplitude and
phase for short from now on in this article) were obtained
from the cumulative binding energy sequence, and
were used to study the period-3 signal in the coding
regions, where k can be any number from 1 to the last
codon of the gene. The mathematical expressions are listed
below.
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where L is the length of a sequence in nucleotides. We
then subtracted the mean from the values of X, Y
and Z,. The removal of the mean is based on the mathe-
matical fact that we can always find a sinusoid wave for
any three equally spaced points provided the sum of
these three points equals to zero. Then we formed a



sinusoidal function using the data with the mean removed.
Thus, we have
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The resulting amplitude for the free energy signal from the
coding regions tends to be linearly increasing, and the
phase tends to be constant. The cumulative calculation
compensates for the weak signal to noise ratio (SNR)
due to performing the computations for each individual
codon (28,29). Therefore, whether a sequence has the fea-
tures of linearly increasing amplitude and constant phase
as discussed provides useful information to determine
whether a sequence is a protein-coding sequence or a
non-coding sequence. We will discuss this further in the
following section.

Sequence identification

We describe the detailed method for sequences identifica-
tion using the features of the amplitude and the phase of
the period-3 signal in this section. We observed the fea-
tures of the linearly increasing amplitude and the constant
phase from ~91 out of 106 protein-coding sequences.
However, we did not observe the same patterns in the
non-coding sequences (28). We illustrate such features as
in Figure la;. A protein-coding gene YRFI-3 has the well-
behaved features of the linearly increasing amplitude and
the constant phase. In contrast, a long enough non-coding
sequence, however, nests around the origin (difficult to
distinct by line style). Although we observed such features
in previous work, it is still unsolved as to how to identify a
protein-coding sequence or a non-coding sequence by
evaluating the features of the amplitude and the phase.
We next describe the method for extracting the features
from the amplitude and the phase in this section, and then
use these features to identify protein-coding and non-
coding sequences.

(i) Extraction of features for phase 0. (a) Figure la shows
a polar plot of phase 0 versus amplitude 4 for a protein-
coding sequence. We can derive the phase from Figure Ia,
and plot it versus position as shown in the top half of
Figure 1b. The phase has a large variation in the beginning
due to relatively smaller SNR. It converges to almost a
constant with very small variations as it moves to higher
codon positions due to the noise cancelation from cumu-
lation calculation (See Period-3 signal from cumulative
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Figure 1. The comparison of the polar plots for protein-coding gene
YRFI-3 and a randomly selected non-coding sequence.

sinusoidal wave section). However, the variations in
phase of the non-coding sequences continue to be large
even for higher codon positions. The phase versus position
plot for a non-coding sequence is also illustrated for com-
parison in the bottom half of Figure 1b. We observed a
similar trend in other protein-coding and non-coding
sequences. We therefore defined two variables, terminal
phase and phase variation, to define the different features
of phase between protein-coding and non-coding
sequences. Terminal phase is the phase of the cumulative
sinusoidal signal at the end of a free energy sequence. We
can use terminal phase to represent the general phase fea-
ture (or averaged phase feature) of an entire sequence,
because it results from the cumulation of a whole DNA
sequence (See Period-3 signal from cumulative sinusoidal
wave section). Phase variation measures variation of phase
of the cumulative sinusoidal signal at the different posi-
tions for a sequence (or the relation of phase variation
with the length of sequences).
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(b) We used the boundaries of 95% and 99.9% confi-
dence intervals (CIs) (37) to study the behavior of the
terminal phases for protein-coding sequences. We used
the popular statistical measurement 95% CI to study the
feature of a centrally distributed dataset. The use of
99.9%, instead of 100%, was to avoid the possible influ-
ence of rarely biased data from a given dataset. We con-
sidered the sequences with terminal phases within the
boundary of 95% as highly possible to be protein-coding
sequences, the sequences with terminal phases outside of
the boundary of 99.9% as non-protein sequences, and the
sequences with terminal phases between these two bound-
aries as uncertain sequences.

(c) Although the overall trend of phase tends to be
constant, there is some phase variations at the different
positions for a protein-coding sequence. Phase variations
for a protein-coding sequence appear to be larger at lower
positions, and tend to be smaller at higher positions.
However, the phase for a non-coding sequence appears
to be random, and so phase variations appear to be
random and large as well. We can observe such trends
the top half of Figure 1b. We therefore can define the
boundaries of the phase variations for protein-coding
sequences for eliminating non-coding sequences. We can
analyze phase variations by dividing the range of either
phase variations or positions into small slots, and then
determine the boundary of the ensemble behavior of the
sample data in each slot. We chose the division of phase
variations to avoid the possibility of having too small
sample size over each slot. We evaluated angle variation
using three measures. The distance to the mean D mea-
sures the absolute distance of a phase to the mean. The
first-order phase difference A6 measures the absolute
value of phase difference between the adjacent positions.
The second-order phase difference AAO measures the
absolute value of A6 difference, which corresponds to
direction changes of adjacent phases. All three measures
should converge to zero, as the phase moves to higher
positions, which will be consistent with the observation
the top half of Figure 1b. For each slot, we can find the
boundaries of three measures by finding the positions for
their corresponding upper bound one-sided 95% Cls.

(ii) Extraction of features for amplitude A. We can com-
pute the amplitude of the cumulative sinusoidal signal
(call it amplitude for short) for a protein-coding sequence,
and plot it versus positions as shown in the bottom half of
Figure 1b. We can observe that the amplitude is approxi-
mately linearly increasing as it moves to higher codon
positions. However, this is not the case for a non-coding
sequence, as illustrated in the bottom half of Figure 1b.
We therefore defined amplitude rate to measure the fea-
tures of the amplitude for protein-coding sequences, and
used the different features of amplitude rate to distinguish
protein-coding sequences from non-coding sequences. We
captured the position-independent amplitude feature by
the amplitude difference as

A(, k + win) — A(i, k)
win ’

where A(i, k) is the amplitude for gene i at codon position
k and win is the window size. The amplitude difference is
averaged further over the sample size N and the sequence
length. The average over sequence length is set for obser-
ving the contribution of amplitude rate at the different
positions of a sequence. The final expression then is
given below.

Len N .
A(i, k 4+ win) — A(i, k)
ARare = Len N4 Z Z win ’ !

where k is position number, N is the number of sequences
in the sample set and k = 1, 2, ... Len, where Len is the
maximum possible length investigated, and win =1, 10
and 27. The different window sizes, win = 1, 10 and 27,
were set for observing the relation of amplitude rate with
the different window size win. The maximum window size
win = 27 was set as one of the test window sizes because
the minimum length of an intron required for the proper
biological processing is around 80nt (80/3~27) (38).
We expect a higher amplitude rate for protein-coding
sequences than non-coding sequences based on their dif-
ferent amplitude features. We can use the usual data anal-
ysis principle of maximizing the correct prediction while
minimizing the false prediction to decide wether an ampli-
tude rate is for a protein-coding sequence or a non-coding
sequence.

(iii) Summary of the features to identify sequences. We
can identify sequences by summarizing the features for the
phase and the amplitude, the boundaries of 95% CI and
99.9% CI for terminal phase, one-sided 95% CI for three
measures of phase variation and the difference of ampli-
tude rates for the protein-coding and non-coding
sequences. We can consider a sequence as a non-coding
sequence, when either the terminal phase is outside of the
wider bound 99.9% CI, all three measures of phase varia-
tion are outside of their one-sided 95% CI boundaries, its
amplitude rate is too low to be a protein-coding sequence,
or all the non-positive conditions for terminal angle, angle
variation and amplitude rate hold at the same time. Non-
positive conditions for sequences include the cases when
terminal phases are between the boundaries of 95% CI
and 99.9% CI, some but not all of phase variation mea-
sures, D, AB and AAG are outside of their 95% CI bound-
aries, and amplitude rate can be either a protein-coding
sequence or a non-coding sequence. Otherwise, we con-
sider a sequence as a protein-coding sequence.

Experimental data

The protein-coding and non-coding sequences we used
for tests include three parts. (i) We obtained the
Saccharomyces  cerevisiae and  Schizosaccharomyces
pombe sequences from GenBank [ftp://ftp.ncbi.nih.gov/
genomes/Fungi/Saccharomyces_cerevisiae/ (25  July
2006)]. The protein-coding sequences are open reading
frames (ORFs) starting with a start codon ‘ATG’ and
ending with a stop codon either ‘TAA’, ‘TAG’ or
‘TGA’. The selected sequences are summarized in
Table 1. We selected the experimental ORFs as the



Table 1. Datasets for experiments
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S. cerevisiae S. pombe Fly Mouse Human
sc-Cod sc-Non sc-Pseu sp-Cod sp-Non fl-Cod  fl-Non mo-Cod mo-Non mo-Pseu hu-Cod hu-Non hu-Pseu
4670 5664 182 591 1997 4000 4000 4000 4000 4401 4000 4000 3576

The first row is specie names, the second row is dataset names and the third row is the number of sequences in each dataset.

protein-coding sequences, and picked the introns and
some intergenetic regions as non-coding sequences. We
put 4670 experimental ORFs for S. cerevisiae into dataset
sc-Cod, and 5664 non-coding sequences into dataset sc-
Non which includes 228 introns and 5436 inter-genetic
sequences (longer than 50 nt). Similarly, we put 591 experi-
mental protein-coding sequences into dataset sp-Cod, and
1997 non-coding sequences into dataset sp-Non which
includes 1121 introns and 876 inter-genetic sequences
(longer than 50nt). (i) We randomly selected 4000 pro-
tein-coding and 4000 non-coding sequences (longer than
50nt) from each of three species, fly (Drosophila melano-
gaster), mouse (Mus musculus), and human (Homo sapiens)
from UCSU genome (http://genome.ucsu.edu. Choose
‘Genes and Gene Prediction Tracks group’, and then
choose ‘flyBaseGene table” for fly and choose
‘xenoRefGene table’ for mouse and human). (iii). We
obtained 182 pseudo_ORFs from S. cerevisiae (http://
pseudogenes.org/), 3576 randomly selected pseudo_ORFs
from human (http://genome.uiowa.edu/pseudogenes/) and
4401 pseudo_ORFs from mouse (http://pseudogenes.org/)
for test. All of these sequences are summarized in Table 1.

RESULTS

We randomly divided 4670 experimental ORFs from data-
set sc-Coding into two subsets, 2000 ORFs and 2670
ORFs, to serve as the protein-coding training and test
sets. Similarly, we randomly selected 2000 and 2670 non-
coding sequences from dataset sc-NonCoding to form the
non-coding training and test sets. Therefore, the training
set consisted of 2000 protein-coding sequences (ORFs)
and 2000 non-coding sequences. The test set consisted of
2670 protein-coding sequences (ORFs) and 2670 non-
coding sequences. Repeating the above procedure another
four times, we obtained five training sets and their corres-
ponding five test sets.

Features of phase and amplitude

We used the data from the training sets to observe the
different features of the phase and the amplitude between
the protein-coding sequences and the non-coding
sequences. We then used the extracted features to distin-
guish the protein-coding sequences from the non-coding
sequences, using the approach described in Sequence iden-
tification of Methods and material section.

Distribution of terminal phases for sequences. We calcu-
lated the phases and then the terminal phases
for sequences in the training set using the method in
Period-3 signal from cumulative sinusoidal wave section.
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Figure 2. The comparison of the histograms for the terminal phases of
the protein-coding and non-protein-coding sequences. (a) The histo-
gram of the terminal phases for the protein-coding sequences, where
T, and T, mark the boundaries of 95% CI and 99.9% CI. (b) The
histogram of the terminal phases for the non-coding sequences.

The histogram of the terminal phases for the protein-
coding sequences from the training set is given in
Figure 2a. As observed, the terminal phases are distribu-
ted around a central value. However, the terminal phases
for the non-coding sequences from the training set are
randomly distributed over the whole range, as indicated
in Figure 2b, where some slightly focused regions in
Figure 2b may result from some DNAs with close
sequence structure. Similar plots were observed as given
in Figure 2 when we repeated the same procedure using
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Figure 3. The position boundaries versus the phase variations for three
measures of phase variation.

other randomly selected training and test sets. This obser-
vation is consistent with the general findings of Kotlar
et al. (7). The main difference is that the phases for
Kotlar et al. (7) are for A, T, C and G individually,
whereas the phases for our approach are from the combi-
national effect of A, T, C and G in the free energy signal of
the interactions of two sequences.

Relation of phase variation with sequence position. Phase
variation is an another variable we created to investigate
the relation of phase variation with position for sequence
identification. We obtained three position boundaries for
D, AB and AABO versus their phase variations, as given in
Figure 3, for the protein-coding sequences from the train-
ing set. From Figure 3, the position boundaries decrease
when the phase variation increases for all three lines (Pag,
line for A0, and Pang, line for AAO, are very close). This
verifies our anticipation that phase variation for protein-
coding sequences depends on sequence position. Phase
variation is bigger at lower positions (or short sequences),
and becomes smaller when it moves to higher positions (or
long sequences). However, the phase variation for non-
coding sequences appears to be randomly large at all
positions.

Amplitude Rate. Two groups of plots for amplitude
rate Apgue, With three different window sizes for each
group, are plotted in Figure 4 using Equation (1). We
plotted three Ay, for three window sizes win versus the
position, which are indicated on the top half of Figure 4,
using the protein-coding sequences. Similarly, we plotted
another three Az, for three window sizes win versus
position, which are indicated on the bottom half
of Figure 4, using the non-coding sequences. Obviously,
there is a distinctive gap between A4z, for the protein-
coding sequences and A g, for the non-coding sequences.
The plots between different window sizes, however, do not
show too much difference in A4 g,,.. We used the two values
R; and R, the bottom of the amplitude rates for the
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Figure 4. Two groups of amplitude rate plots for the protein-coding
and non-coding sequences.

protein-coding sequences and the average of the amplitude
rates for the non-coding sequences, for better maximizing
the correct prediction while minimizing the false predic-
tion of sequences identification using the method
described in Results section. The values of R, and R,
are 0.08 and 0.04 ,respectively, for the given data in
Figure 4. The amplitude rate for our method is equivalent
to the amplitude effects in Tiwari et al. (9) and
Anastassiou (4).

Sequence identification

We observed the differences of features above, from term-
inal phase, phase variation and amplitude rate, between
the protein-coding and non-coding sequences from
the training sets. We used [T}, T»], as indicated in
Figure 2a, to record 95% CI and 99.9% CI of terminal
phase, [ Pp, Pag, Pano] to record one-sided 95% Cls of
three measures, D, A0 and AAO, for phase variation, and
[ Ry, R»], as indicated in Figure 4, to record the different
amplitude rates for the protein-coding and non-coding
sequences. We then used these evaluated features to iden-
tify 2670 sequences in the test set using the approach
described in Sequence identification of Methods and mate-
rial section. We repeated this procedure another four
times. The identification results of five experiments were
averaged and observed by the different minimum length of
sequences for more explicit and detailed analysis. We
selected a series of minimum sequence lengths [17 50 85
171 200 342 440 500 800], where 85, 171, and 342 were
selected for comparison with the results by Gao ez al. (10).

The averaged experimental results for S. cerevisiae are
listed in Table 2. Ny and N, are the average number of
coding and non-coding sequences with minimum length
greater than n for S. cerevisiae over the five experiments.
Sensitivity (Se.) was defined as the proportion of segments
in the protein-coding genes set correctly labeled as
‘coding’; specificity (Sp.) was defined as the proportion
of segments in the non-coding sequences set correctly
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Table 2. Accuracy of the synchronization based coding-region identification algorithm on different coding/non-coding subsets

n codons S. cerevisiae S. pombe
Our work Gao et al. [10] for Our work
N, Se. (%) N> Sp. (%) N3 Ny Se./Sp. (%) Se./Sp. (%) Ns Se. (%) Ns Sp. (%)

17 2670 92.38 2670 73.39 - - - - 591 92.89 1997 75.79
50 2646 92.55 2396 78.27 - - - - 587 93.19 1782 83.09
85" 2579 93.15 1902 84.92 4067 4186 85.7 86.7 583 93.57 1601 87.73
1717 2325 94.15 877 94.41 3756 1948 89.89 89.4 510 95.29 1168 92.00
200 2219 94.61 722 95.57 - - - - 483 95.61 1021 92.81
3427 1663 95.53 314 97.89 2674 650 95.4 94.4 349 96.28 554 96.93
440 1263 95.74 215 98.79 - - - - 273 96.34 380 97.89
500 1054 96.14 178 99.1 - - - - 225 97.11 306 99.02
800 430 97.35 83 99.32 - - - - 78 98.72 121 100

"These are the results from Gao et al. (10).

labeled as ‘non-coding’. Accuracy was defined as the aver-
age of the sensitivity and specificity.

The sensitivity and the specificity for S. cerevisiae in
Table 2 indicate that we obtained very significant results
for our experiments. We can observe that the sensitivity
for S. cerevisiae is rather high, 92.38%, even when the
minimum length 7 is 17 codons. As the minimum length
n increases, the sensitivity is even higher. The specificity
tends to be smaller in the beginning as 73.39% when the
minimum length 7 is 17 codons, but increases quickly as n
increases and even larger than the sensitivity when the
minimum length n is around 171 codons. One suggested
explanation for the lower identification rates is that the
period-3 signal appears not to be so strong in the begin-
ning of the ORFs for S. cerevisiae (29). The significant
results suggested the feasibility of utilizing the biological
interactions between the 3'-tail of 18S rRNA and mRNA
and its resulting synchronization signal to identify protein-
coding and non-coding sequences. Alternatively, it sup-
ported our hypothesis that the interactions between the
3'-tail of 18S rRNA and mRNA may maintain the right
reading frame and produces a synchronization signal
throughout the translation elongation process.

Our comparison with the results by Gao et al. (10) are
illustrated in Table 2. N3 and N4 are the numbers of
coding and non-coding sequences with minimum length
greater than n for window size 512 and 218 nt for Gao
et al. (10) using S. cerevisiae. The datasets used by Gao
et al. include 4125 verified ORFs (fully coding regions or
exons) and 5993 non-coding segments (fully non-coding
regions or introns) (sequences dated 1 October 2003).
We instead used 4670 verified ORFs and 5664 non-
coding segments dated 25 July 2006, with 545 more ver-
ified ORFs. Gao ef al. (10) gave two groups of results with
the sliding window size w = 512 and 128 nt. For compar-
ison, the results for Gao et al. (10) are marked by ‘1’ in
Table 2. From Table 2, we can observe that both our
sensitivity and specificity showed higher identification
accuracy than the ones for Gao et al. (10) in all three
rows (with “f’) except the specificity when the minimum
length of sequences n is 85 codons. A larger portion
of short non-coding sequences in our dataset could be
one of the reasons for the lower specificity. Even so, our

accuracy, the average of the sensitivity and the specificity,
is still higher than that of Gao et al. (10) when n is 85
codons.

Kotlar et al. (7) compared the performance of four
measures that are based on the Fourier transform at a
frequency of 1/3 of the DNA characters for the identifi-
cation of the protein-coding and non-coding sequences.
Two measures from Kotlar ez al. (7) have the better per-
formance than the other two from Anastassiou (4) and
Tiwari et al. (9) according to the report from Kotlar
et al. (7). Kotlar et al. (7) used chromosome 16 of
S. cerevisiae for training, and their performance was
tested on the remaining 15 chromosomes. The best
result from the work of Kotlar et al. (7) is 93.0% with
sequence length 351 bp, in which their results evaluation
is equivalent to sensitivity in our tests. The sensitivity
of our tests, however, becomes higher than 93.0% when
n is 85 codons and larger, which suggests that our tests
give better or competitive performance if the influence
of the different dates and the division of datasets are
ignorable.

We tested S. pombe using the same procedure as
S. cerevisiae except that we used the training results
from S. cerevisiae. There are only 591 experimental
OREFs for S. pombe found in GenBank (http://www.ncbi.
nlm.nih.gov), which is not large enough to build a stable
training set. We therefore used the training from
S. cerevisiae to test the sequences in S. pombe, assuming
that they have the similar features of the synchronization
signal in protein-coding regions. We tested the
sequences for S. pombe five times using the training
from S. cerevisiae. The test sets of five experiments for
S. pombe were identical and included the 591 experimental
protein-coding sequences (ORFs) and 1997 non-coding
sequences. We therefore obtained the five test results for
S. pombe.

The results for S. pombe are shown in Table 2, where
Ns and Ng are the numbers of the coding and non-coding
sequences with length greater than n. We can observe a
similar trend but slightly better results than S. cerevisiae
in Table 2. The successful results for S. pombe suggest that
we can use the genes from S. cerevisiae as the training
for the tests for S. pombe due to the similar features of
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the synchronization signals between them. In general,
we need to be careful when using the training from one
organism to test genes for another organism (7). Since
many genes for S. pombe include multiple exons, the test
results suggest the feasibility of applying our method to
the other higher eukaryotic genes with more than
two exons.

We primarily tested some higher eukaryotic genes
as given in Table 1. The 3'-tail of 18S rRNA sequences
for these three species is the same tail as the one for
S. cerevisiae, ‘3'-ATTACTAG-5". Research indicated
that the variations for 18S rRNAs of eukaryotic genes
are less, and the 3'-tail of 18S rRNA is highly conserved
among species (39). The same identification procedure
used for S. cerevisiae was applied, and the identification
results are given in Table 1 of Supplementary Data. The
sensitivity (the percent of protein-coding sequences recog-
nized as protein-coding sequences) for all three species are
lower than the ones for S. cerevisiae and S. pombe, but the
specificity (the percent of non-coding sequences recog-
nized as non-coding sequences) for them tend to be
higher even when the minimum length of sequences in
test dataset n is as small as 17 codons. The complex bio-
logical mechanisms, including the 3’-tail of 18S rRNA and
other possible involved biological mechanisms, cooperate
to perform the exact identification of protein-coding
regions. Therefore, many features can contribute to the
different identification results between yeasts and higher
eukaryotic genes. These features can be analyzed from
both the rRNA side and protein-coding sequences side,
although each of them may contribute differently. The
differences of the biological mechanisms other than the
3/-tail of 18S rRNA during translation process may con-
tribute to the differences. Some differences may also be
resulted from the different structure of DNA sequences,
such as GC contents and the distribution of nucleotides
(more discussion is given in next section). Another possi-
ble reason includes the different lengths of the sequences.
The sequences are longer, a more stable prediction can be
conducted due to the cumulation calculation described in
Period-3 signal from cumulative sinusoidal wave section.
The standards chosen for sequence identification, as
described in Sequence identification of Methods and mate-
rial section, can also contribute to the lower sensitivities
and the higher specificities. There are also possible spaces
to improve the algorithm for increasing the identification
accuracy. Other possible reason includes some possible
un-verified genes extracted from UCSC genome (http://
genome.ucsc.edu). UCSC genome used some computa-
tional skills to select the genes with higher qualities.
However, we sclected the experimental genes for yeast
tests, which are verified and expected to have a higher
reliability. While our approach tends to reject any
sequence that does not satisfy our evaluations as a pro-
tein-coding sequence. However, the accuracy, the average
of the sensitivity and the specificity, for these species are
still very high, compared with the results in Table 2. More
explanation about the period-3, free energy signal and its
application to higher eukaryotic genes is needed in the
future work.

We also tested our approach on some pseudo_ORFs to
observe whether our approach is able to distinct protein-
coding sequences from pseudogenes. Pseudogenes are
defunct relatives of known genes that have lost their
protein-coding ability or are otherwise no longer expressed
in the cell. However, they may still have some gene-like
features such as promoters, CpG islands and splice
sites. What we concern here is whether period-3 signal
still exists in pseudo_ORFs. We tested pseudo_ORFs for
S. cerevisiae, mouse and human as listed in Table 1. Only
49 out of 182 yeast pseudo_ORFs, 1895 out 3576 human
pseudo_ORFs and 1562 out of 4401 mouse pseudo_ORFs
are considered to have the period-3 signal and therefore
recognized as protein-coding sequences. These results
make sense in that some of pseudogenes keep some fea-
tures of protein-coding sequences, although they are not
functional to be translated into proteins. For example,
when such dis-functionality is caused by stop codon, the
period-3 signal before the new stop codon is kept so that
a period-3 signal can be detected. Another example is
the pseudogenes without proper promoters. Because our
approach does not examine whether the promoters before
the start codon are intact or not, such pseudo_ORFs may
still be recognized as protein-coding sequences. However,
most of pseudogenes are recognized as non-protein-coding
sequences. Therefore, the period-3 signal is absent in most
pseudogenes.

Explanations of period-3 signal

The experiments showed that our approach performs well
for the identification of protein-coding sequences.
A question is then why the period-3 signal exists and
therefore can be used for sequence identification.
Research revealed that there appears to be a relationship
between the tRNA abundance and codon bias in the
coding regions (11-13). However, no essential explanation
has been explored for the period-3 signal. In this section,
we launch some discussion as to why the revealed period-3
signal from the interactions of the 3'-tail of 18S rRNA
and mRNA can work as an indicator of protein-coding
sequences?

We tested random sequences, instead of the 3'-tail of
18S rRNA, to observe whether the period-3 signal arises
only from the hybridization of the 3'-tail of 18S rRNA and
mRNA. We used a genetic algorithm (GA) to search the
optimal sequence since there will be totally 4% = 65536
candidate sequences for the exhaustive search. We selected
100 protein-coding sequences with strong period-3 signal
for test, based on a previous study that the ensemble signal
of a few protein-coding sequences can indicate a strong
dominate period-3 signal (29). We calculated the free
energy signal between a candidate sequence and a
protein-coding sequence, and then obtained SNR from
the ensemble free energy signal of 100 free energy
sequences [the same procedure can be found from (28)].
The results indicated that an arbitrary random sequence
instead of the 3'-tail of 18S rRNA will not produce a
period-3 signal. However, it is possible to obtain a dom-
inate period-3 signal if the chosen sequence is closely simi-
lar to the 3’ tail of 18S rRNA. The resulting consensus



sequence from the top 30 sequences is ‘3~ ATTACTAN-5"
with ‘3’-ACTA-5" in positions 4, 5, 6 and 7 completely
conserved. Slight variations on other positions, especially
on positions 1, 2 and 3 suggest that slight variations, such
as site mutations, may be tolerable. ‘N’ on position 8§
suggests that the nucleotide on that position may not be
important for interacting on mRNAs for synchronization
(please see the detailed discussion and description in
Supplementary Material). We then can conclude that the
3’-tail of 18S rRNA, instead of a random sequence, may
play a role in keeping synchronization throughout the
translation elongation process, and therefore contribute
to the period-3, free energy signal by interacting on pro-
tein-coding sequences.

We also analyzed protein-coding sequences (i) from the
difference of GC contents between protein-coding and
non-coding sequences and (ii) by randomizing protein-
coding sequences completely and partially. GC contents
is the percent of G plus C in sequences, and is found to
have the distinct values between protein-coding and
non-coding sequences. Therefore it has been used for the
identification of protein-coding sequences [as reviewed in
(3)]. The question is whether the different values of GC
content has a relation with the period-3 signal? We tested
GC contents in S. cerevisiae, and GC contents in true
positive, false negative, true negative and false positive
data sets are 0.3971, 0.3959, 0.3505 and 0.3532, respec-
tively. We can see that GC contents in protein-coding
sequences is higher than in non-coding sequences.
However, no obvious difference between the correctly
identified gene sequences and falsely identified gene
sequences. That is, 0.3971 compares with 0.3959, and
0.3505 compares with 0.3532. We did not find such differ-
ences for the tested genes from fly, mouse and human
either. Therefore, although GC contents is one of the dif-
ferent features between protein-coding sequences and non-
coding sequences, it may not contribute to the period-3
signal pattern directly. Some patterns inside protein-
coding regions instead may be important to generate the
period-3 signal.

We explored further by randomizing the protein-coding
sequences from five species, S. cerevisiae, S. pombe, fly,
mouse and human. We started to permutate the nucleo-
tides at either the first, the second or the third positions
within either the first, the second or the third positions,
then permutate the nucleotides within any two of the first,
the second and the third positions, and finally permutate
the nucleotides randomly at all positions. We did the
above tests within their own sequences and within all the
sequences. We then observed whether the period-3 signal
exists for the sequences that are permutated using each of
above schemes, using the method described in (29). The
results indicated that when we permutate the third posi-
tions of codons within the third positions, regardless
within their sequences or whole dataset wide, we are
able to observe the existence of the period-3 signal.
Therefore, the nucleotides at the third positions of
codons are important to the period-3 signal. However,
the strength of the period-3 signal changes when the
different permutations are executed. It seems that the
nucleotides re-order themselves to search the optimal
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organization for obtaining period-3 signal. More tests
are needed to understand the rules of nucleotides within
protein-coding sequences.

DISCUSSION

We proposed a method of identifying the protein-coding
sequences using period-3, free energy signal that arises
from the interactions of the 3'-tail of 18S rRNA and
mRNAs. We assumed that 18S rRNA has a synchroniza-
tion role with the right reading frame throughout the
translation elongation process. We analyzed the different
features of the amplitude and the phase of the free energy
signal from the protein-coding and non-coding sequences.
We then used these features to distinguish the protein-
coding sequences from non-coding sequences in the
test sets.

Our method performs well for the identification of the
protein-coding genes and non-coding sequences. The sen-
sitivity was >92% when the minimum length starts with
17 codons, and it increases as n increases. The specificity
increases faster than the sensitivity and becomes larger
than sensitivity when n is greater than 171 codons,
although it starts with a lower value. These results have
a relatively small standard deviation (SD) with 0.5%. The
results supported our assumption that the 18S rRNA may
play a synchronization role with the right reading frame
throughout the translation process.

Our method shows a better or competitive performance
in comparison with several methods that used period-3
signal. Our experiments indicated higher identification
accuracy than the results by Gao et al. (10). The accuracy
of our identification for S. cerevisiae increased above
93.15% with the SD <0.5% when n became larger than
85 codons. This is larger than the highest accuracy, 93%
with sequence length 351 bp, from the report of Kotlar
et al. (7). We therefore can conclude that we may have
developed an approach that has a better performance for
the identification of sequences than several other methods
reported in the literature if the influence of different dates
and division of datasets are negligible.

All experimental protein-coding genes in S. cerevisiae
and S. pombe were utilized for our experiments. The com-
petitive accuracies for the identification of the protein-
coding and non-coding sequences for S. pombe with
S. cerevisiae indicate that there have similar features for
the synchronization signal in the protein-coding regions
between these two species. The primary tests on some
randomly selected genes of fly, mouse and human sug-
gest that our method is applicable to predict genes for
higher eukaryotic genes. The test on some pseudogenes
further supported our claim that our approach is func-
tional in distinguishing protein-coding sequences from
pseudogenes.

Some explanations for the existence of the period-3
signal were explored. The optimal ribosomal sequence
search suggests that the 3’-tail of 18S rRNA, instead of
a random sequence, plays a role in synchronization during
translation elongation process. Some pattern analysis of
protein-coding sequences indicates that the nucleotides on
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the third positions are important in keeping the right pat-
tern for generating the period-3 signal. More analysis and
further exploration of the pattern analysis of protein-
coding sequences and its relation with the period-3, free
energy signal is needed in the future, especially for higher
eukaryotic genes.

SUPPLEMENTARY DATA
Supplementary Data is available at NAR Online.
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