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A B S T R A C T   

The ongoing outbreak of COVID-19 has quickly become a daunting challenge to global health. In the absence of 
targeted therapy and a reported 5.5% case fatality rate in the United States, treatments preventing rapid car-
diopulmonary failure are urgently needed. Clinical features, pathology and homology to better understood 
pathogens suggest that uncontrolled inflammation and a cytokine storm likely drive COVID-19’s unrelenting 
disease process. Interventions that are protective against acute lung injury and ARDS can play a critical role for 
patients and health systems during this pandemic. Nitric oxide is an antimicrobial and anti-inflammatory 
molecule with key roles in pulmonary vascular function in the context of viral infections and other pulmonary 
disease states. This article reviews the rationale for exogenous nitric oxide use for the pathogenesis of COVID-19 
and highlights its potential for contributing to better clinical outcomes and alleviating the rapidly rising strain on 
healthcare capacity.   

1. Introduction 

Coronaviruses (CoVs) are RNA viruses that primarily infect birds and 
livestock [1], but when they cross the species barrier, coronaviruses 
have been highly infectious and lethal to humans in the severe acute 
respiratory syndrome (SARS) outbreak in 2002, Middle East respiratory 
syndrome (MERS) outbreak in 2012, and in the current coronavirus 
disease 2019 (COVID-19) pandemic [2,3]. Up to the submission date, 
Johns Hopkins Center for Systems Science and Engineering has 
confirmed over 8.4 million cases and 453,900 deaths worldwide, more 
fatalities than in the SARS and MERS epidemics combined [4]. To date 
no registered treatment or vaccine for the disease exists. Various general 
treatments, from nutritional interventions to antivirals used for other 
diseases, have been reviewed and proposed [5]. Recent reports suggest 
that ventilator therapy may be ineffective and may even increase 
morbidity and mortality in severely ill patients [6]. The absence of a 
specific treatment and the high mortality rate dictate an urgent need for 
therapeutics that may control the replication and rapid spread of the 
virus. Here we review the potential for nitric oxide in limiting the 
density of virus within the lungs, preventing the onset and development 
of COVID-19 associated acute respiratory distress syndrome (ARDS) and 

treating ARDS. 

2. Pathophysiology of COVID-19 

Symptomatic patients with SARS-CoV-2 reportedly present with 
fever, dry cough, shortness of breath and myalgias. The mortality stems 
from rapid, severe progression to acute lung injury (ALI), ARDS, respi-
ratory failure, sepsis or cardiac arrest. Pathological reports from post-
mortem assessment describe bilateral diffuse alveolar damage with 
edema, pneumocyte desquamation, hyaline membrane formation and 
massive pulmonary embolism [7,8]. These pathological features 
resemble the pneumonia seen with SARS and MERS [9,10]. The overall 
nucleotide sequence of the current virus exhibits about 79% similarity to 
SARS-CoV-1, and more specifically, key structural components such as 
binding ability to the human angiotensin-converting enzyme 2 (ACE2) 
receptor are shared [11,12]. The overlap of pathology and genetic 
structure allows parallels from more established literature about the 
pathophysiology of SARS-CoV-1. In addition to viral overload, animal 
models have illustrated apoptosis of epithelium and endothelium and an 
array of inflammatory and immune responses leading to a cytokine 
storm. Subsequent vascular permeability and abnormal T-cell and 
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macrophage responses induce ALI and ARDS [13]. Hyper-inflammatory 
response and compromised vasculature are increasingly shown to spur 
multisystem dysfunction, including in the heart, kidneys, nerves and 
gastrointestinal tract [14]. Therapies that can modulate the inflamma-
tory cascade, immune response or cytokine storm may work to prevent 
the rapid progression to the ARDS and fulminant systemic organ failure 
that are driving mortality with COVID-19. 

Factors that contribute to the inflammatory and immune response 
include the nitric oxide/reactive oxygen species (NO/ROS) ratio, the 
activation of M1 macrophages and red blood cell (RBC) damage. A 
normal NO/ROS balance is crucial for normal vascular function. NO is 
an endothelium-derived relaxing factor that plays key roles in vascular 
signaling, regulation of blood flow and host defense [15]. ROS, such as 
superoxide, also serve as host defense and are induced during stress, 
such as viral infection [16]. An excess of ROS, such as in viral overload, 
activates M1 macrophages, recruits neutrophils and enhances produc-
tion of peroxynitrite in conjunction with NO in a potent response to the 
invading virus, with the collateral damage of endothelial dysfunction, 
permeable vessels and lipid membrane peroxidation [17]. M1 macro-
phages produce a large amount of highly reactive nitrogen- and 
oxygen-derived molecular species and proinflammatory cytokines, such 
as interleukin (IL)-2, IL-6, IL-8, interferon (IFN)-α/β and tumor necrosis 
factor (TNF)- α, that neutralize invading organisms but also compound 
the vascular damage [18]. Furthermore, inflammation-induced platelet 
activation, which can be lessened by NO, can lead to increased coagu-
lation, an important reported consequence of the disease [19]. Lippi and 
Mattiuzzi recently reported evidence of SARS-CoV-2 disrupting hemo-
globin in RBCs [20], likely triggering significant oxidative stress. Sub-
sequent hemolysis can result in anemia, but more importantly it can 
exacerbate the inflammatory process. Cell-free hemoglobin scavenges 
modulators of coagulation, such as endothelial NO, while released 
proinflammatory heme and iron can activate platelets [21,22]. 
Enhanced clotting and sluggish blood flow result in systemic hypoxia in 
oxygen-sensitive organs such as the kidneys [23]. Repolarization of the 
M1 population back to M2, promoted by NO, stops the proinflammatory 
insult to the tissues and initiates repair processes and clearance of 
debris. Unchecked M1 macrophage response creates an inflammatory 
cascade and cytokine storm that result in a buildup of cellular debris and 
edema due to the leaky vasculature, presenting in the lungs as ARDS 
[18]. 

Additional processes that enhance the progression toward an in-
flammatory cascade include the renin angiotensin system (RAS) and 
reoxygenation/reperfusion. Observations that SARS-CoV-2 uses ACE2 as 
the receptor binding domain for its spike (S) protein, with higher affinity 
than measured with SARS-CoV-1, have led to postulations about the role 
of the RAS in the novel virus’s pathophysiology [11,24–26]. The genes 
for viral entry and for ACE2 expression are highly enriched in nasal 
epithelium, implying a significant role for ACE2 in infectivity and the 
course of infection [27]. ACE and ACE2 serve opposing physiological 
functions. After ACE cleaves angiotensin (AT) I to angiotensin II, ATII 
binds its receptor to constrict blood vessels. ACE2 inactivates ATII and 
generates angiotensin 1-7 and promotes endothelial production of NO, 
both potent vasodilators and inhibitors of ACE [28]. Conversely, ACE 
inhibits NO production, promoting ROS and inflammation. The binding 
of SARS-CoV-2’s spike protein to ACE2 likely downregulates it and 
contributes to unchecked downstream effects of ACE, including 
increased vascular permeability and decreased anti-inflammatory me-
diators such as NO. This mechanism of dysregulation of the NO/ROS 
balance has been detailed with SARS-CoV-1 and translates to a potential 
area for intervention in the current pandemic [29]. Hypoxia/Reoxyge-
nation (H/R) and ischemia/reperfusion (I/R) both initiate the proin-
flammatory cycle through ROS- and heparinase-mediated degradation 
of the glycocalyx and endothelial lining [30–32]. In the setting of blood 
flow stagnation and microvascular emboli, ventilation and rapid resto-
ration of blood flow to sites that were hypoxic and ischemic may 
contribute to pathogenesis of ARDS. Anti-inflammatory molecules such 

as N-acetylcysteine can potentially attenuate cellular damage by ROS 
[33], and restoring NO/ROS balance may reduce cellular damage by 
reoxygenation and reperfusion. 

3. The rationale for nitric oxide use 

Nitric oxide (NO) is a gas produced from arginine in mammalian cells 
by three enzymes: neuronal (nNOS), endothelial (eNOS) and inducible 
nitric oxide synthase (iNOS) [34]. In host cells iNOS is commonly 
elevated during infection by viruses, and in SARS-CoV-1 infection, NO 
inhibits viral replication by cytotoxic reactions through intermediates 
such as peroxynitrite [35]. Nitrosation of reactive thiols on the surface of 
RBCs and on the beta chain of the hemoglobin tetramer stabilizes against 
hemolysis and oxidative damage, respectively [21,22], conferring NO’s 
potential in controlling SARS-CoV-2’s RBC-associated pathogenic pro-
cesses. Because SARS-CoV-2 infects endothelial cells, which are a major 
source of NO synthesis, the molecule is additionally well-placed to 
respond to viral attack. As discussed above, NO plays key roles in 
maintaining normal vascular function and regulating inflammatory 
cascades that contribute to ALI and ARDS when excessively activated in 
the context of declining endothelial function. Vasculature depleted of 
NO suffers from persistent inflammation and blunted delivery of oxygen 
and removal of toxic byproducts through stagnant blood flow into and 
out of hypoxic tissue [31,32,36]. NO supplementation under proin-
flammatory conditions prevents cytokine storm, restores the functional 
capillary density crucial for oxygen delivery and waste removal, pre-
vents H/R injury and protects oxygen-sensitive organs such as the kid-
neys (Cabrales & Friedman, Kaul & Friedman, unpublished data, 2020). 
When ARDS is already present, NO improves arterial oxygenation and 
blunts pulmonary hypertension by dilating pulmonary vessels in venti-
lated lung parenchyma [37]. These supportive changes at the physio-
logic level may translate to decreased ventilator support, improved 
density of lung infiltrates on chest radiography and persistence of 
therapeutic benefits after discontinuation of NO [38]. The vulnerable 
populations in the current pandemic may have lower levels of endoge-
nously produced NO. NO generated from eNOS drops off with age, and 
patients with chronic vascular inflammation, such as in type 2 diabetes, 
metabolic syndrome, chronic obstructive pulmonary disease, obesity, 
autoimmune disorders and hemoglobinopathies, may produce less eNOS 
[34,39,40]. Additionally, ACE activity relative to ACE2 activity may be 
elevated in patients with chronic vascular inflammation [41,42]. Older 
patients with vascular stressors from underlying chronic medical con-
ditions may exhibit inadequate vascular NO levels, increasing their 
vulnerability to H/R and I/R injury. Consequently, exogenous NO for 
targeted patient populations may be a treatment that can reduce viral 
load in the lungs, prevent the chain of events that rapidly destabilizes 
patients to ARDS and promote clinical recovery from ARDS. 

4. How to use NO for COVID-19 

Exogenous NO has been administered with inhalation and with 
donor compound pro-drugs relying on enzymatic activity [43]. Inhaled 
NO (iNO) for treatment of active ARDS was reported by Chen and col-
leagues during the 2003 epidemic, but existing literature shows mixed 
efficacy when expanding outside the SARS-CoV-1 disease model [38, 
44]. Systematic review and meta-analysis of randomized controlled 
trials have shown that iNO, does not reduce mortality when used ther-
apeutically in the management of ARDS [45,46]. Variations in dosing 
and treatment protocol may at least partly account for the differences in 
the literature. Additionally, the level of cellular debris and tissue dam-
age during active ARDS may be too overwhelming to allow for NO ef-
ficacy. Donor drugs with S-nitrosothiols containing molecules (RSNOs) 
have demonstrated antimicrobial and anti-inflammatory activity [47]. 
NO delivered with S-nitroso-N-acetylpenicillamine (SNAP) inhibits the 
replication cycle of SARS-CoV-1 in a concentration-dependent manner 
and reduces the post-translational palmitoylation of the S protein, 
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inhibiting S protein and ACE2 receptor interaction and subsequent 
membrane fusion [35,48,49]. This mechanism of action suggests an 
additional effect of preserving host ACE2 levels that may better regulate 
RAS and promote endogenous NO production as described above. NO 
releasing nanoparticles (NO-nps) demonstrate potential in limiting in-
flammatory cascades and ischemia reperfusion injury [50,51]. We pro-
pose that delivering modest, persistent amounts of iNO or RSNO at the 
early stages of COVID-19 infection might limit the progression toward 
ARDS and fulminant systemic failure, particularly in vulnerable patients 
who may have decreased levels of endogenous NO due to increased age 
or comorbid conditions. This approach should decrease viral replication, 
downregulate ACE, prevent the onset of any 
hypoxia-reoxygenation/ischemia reperfusion-based inflammation, con-
trol the cytokine cascade, allow for removal of cell debris, limit lipid 
peroxidation and concomitant cell damage, reduce detrimental vascular 
permeability and maintain proper blood flow. 

NO is one of several potential treatments included in the emergency 
expanded access program by U.S. Food and Drug Administration (FDA). 
Several innovators are pursuing the indication for NO in treating COVID- 
19. On March 30 Bellerophon Therapeutics announced the first treat-
ment of a patient with COVID-19 using their proprietary INOpulse® 
inhaled nitric oxide system [52], and on May 11 the FDA accepted its 
Investigational New Drug application to start a Phase 3 randomized, 
placebo-controlled study [53]. The biotherapeutics firm currently uses 
INOpulse for other cardiopulmonary indications, such as pulmonary 
hypertension associated with pulmonary fibrosis. Portable and designed 
to deliver NO in outpatient settings outside of the hospital, INOpulse 
could aid in preserving hospital and intensive care unit (ICU) capacity as 
the pandemic progresses. Through expanded access the FDA also 
recently approved VERO Biotech’s GENOSYL DS® iNO to treat patients 
with COVID-19 at home [54]. Currently used for persistent pulmonary 
hypertension of the newborn, GENOSYL is a tankless device that pro-
vides even more flexibility for healthcare resources by allowing home 
use of iNO. Zamanian et al. describe solely outpatient management of a 
patient with concomitant idiopathic pulmonary arterial hypertension 
and COVID-19 disease, reporting symptomatic improvement with 
GENOSYL DS® with no urgent care, emergency department or hospital 
visits [55]. Such delivery systems align with our proposal to harness 
NO’s potential in the early stages of COVID-19 infection. As groups 
continue to publish more results with their respective NO platforms, 
dosing and protocol variations should be examined in evaluating the 
studies. 

In addition to inhaled NO, donor compounds and nutraceuticals 
which boost NO production may also be possibilities in treating the 
novel virus. No trials with donor compounds or natural products like 
curcumin are currently underway, but due to the evidence of their ef-
ficacy in various models of cardiovascular dysfunction, donor com-
pounds should absolutely be explored for early intervention in COVID- 
19. Curcumin upregulates gene expression for anti-inflammatory 
response by activating nuclear factor erythroid 2-related factor 2 
(NRF2) [56–58], suggesting a reasonable avenue when exploring stra-
tegies to lessen unrestrained inflammation. Innovative delivery plat-
forms, such as NO releasing nanoparticles, can be particularly conducive 
in targeting the virus’s pathology in the respiratory tract before wide-
spread systemic manifestations. Successful results would be instru-
mental in improving patient outcomes and curbing the inundation of 
health systems. 

5. Conclusion 

With the emergence of COVID-19 as a pandemic with the ability to 
overwhelm the body and the healthcare infrastructure, patients have a 
pressing need for effective agents that can slow down the disease in their 
bodies and in their communities. While the search for a vaccine and 
targeted drugs continues, much of medical research is actively exploring 
the infection’s pathophysiology for points of plausible intervention. An 

exaggerated immune response and unchecked inflammation are likely at 
the root of severe illness. Nitric oxide has demonstrated promise in 
similar respiratory disease models in modulating the prominent 
inflammation, and the early reported proofs of concept urgently call for 
randomized control trials in treating COVID-19. Exogenous NO therapy 
geared toward the right population at the optimal stage of infection may 
be an accessible, compelling option for patients. If its efficacy is illus-
trated as therapeutics firms seek its indication for COVID-19, nitric oxide 
treatment can be pivotal in the world’s fight against this immediate 
threat to public health. 

Search strategy and selection criteria 

Data for this Review were identified by searches of MEDLINE, Cur-
rent Contents, PubMed, LitCovid and references from relevant articles 
using the search terms “nitric oxide”, “SARS”, “ARDS”, “Angiotensin”, 
and “COVID-19.” Information about therapeutics companies and FDA 
indications were obtained from official press releases reported in news 
sources. Only articles published in English between 1993 and 2020 were 
included. 
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