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ABSTRACT

Analysis of rewired upstream subnetworks impact-
ing downstream differential gene expression aids the
delineation of evolving molecular mechanisms. Cu-
mulative statistics based on conventional differen-
tial correlation are limited for subnetwork rewiring
analysis since rewiring is not necessarily equiva-
lent to change in correlation coefficients. Here we
present a computational method ChiNet to quan-
tify subnetwork rewiring by statistical heterogeneity
that enables detection of potential genotype changes
causing altered transcription regulation in evolving
organisms. Given a differentially expressed down-
stream gene set, ChiNet backtracks a rewired up-
stream subnetwork from a super-network includ-
ing gene interactions known to occur under vari-
ous molecular contexts. We benchmarked ChiNet for
its high accuracy in distinguishing rewired artificial
subnetworks, in silico yeast transcription-metabolic
subnetworks, and rewired transcription subnetworks
for Candida albicans versus Saccharomyces cere-
visiae, against two differential-correlation based sub-
network rewiring approaches. Then, using transcrip-
tome data from tolerant S. cerevisiae strain NRRL Y-
50049 and a wild-type intolerant strain, ChiNet identi-
fied 44 metabolic pathways affected by rewired tran-
scription subnetworks anchored to major adaptively
activated transcription factor genes YAP1, RPN4,
SFP1 and ROX1, in response to toxic chemical chal-
lenges involved in lignocellulose-to-biofuels conver-
sion. These findings support the use of ChiNet in
rewiring analysis of subnetworks where differential
interaction patterns resulting from divergent nonlin-
ear dynamics abound.

INTRODUCTION

Network rewiring refers to changes of network over time
by either gain or loss of molecular interactions among dis-
tinct taxonomic entities (1). Rewiring of subnetworks, spe-
cific components in molecular networks, allows an organ-
ism to adapt to a defined environmental condition. Sub-
network rewiring alters molecule–molecule interactions as a
second-order change that occurs in either strength or topol-
ogy of molecular interactions. There must exist some input
to which a rewired subnetwork responds differentially from
the original subnetwork. We define the first-order change
of a subnetwork as working zone change characterized by
shift in the probability distributions of molecules in the sub-
network. A modified subnetwork response can be a conse-
quence of either first- or second-order subnetwork changes.
Modified metabolic network responses involving glycoly-
sis and pentose phosphate pathways have been defined for
a tolerant industrial yeast strain Saccharomyces cerevisiae
NRRL Y-50049 under toxic chemical challenges (2). Mech-
anisms of in situ detoxification by the yeast strain and key
regulatory elements involved in its tolerance were also iden-
tified (3,4). However, it remains unclear how upstream tran-
scription networks may have been rewired to impact down-
stream metabolisms that confer toxic tolerance on Y-50049.

Large-scale rewiring of transcription programs in re-
sponse to the loss of a cis-regulatory element was reported
to elicit contrasting anaerobic/aerobic growth in yeasts (5).
Variations in gene expression responses to stresses among
four yeast species have been confirmed to be associated
with the disparity of TATA boxes in promoter regions (6).
Extracellular signaling was also shown to impose post-
translational modifications on a transcription factor (TF)
that reverses its function from activation to repression of
gene expression (7). In fact, TF binding was found to be
ultra-sensitive to disruptive sequence variations among hu-
man genomes (8). These findings raise the possibility that
transcription network rewiring may have caused the out-
standing detoxification capability of microbial strains for
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advanced biofuels production (2,4). In this study, we aim to
discover rewired upstream molecular subnetworks that al-
ter expression of target gene sets functioning in downstream
biological processes at the genome scale.

By subnetwork, we mean a context-dependent component
of a larger network, such as an active transcription subnet-
work. A gene set refers to genes involved in a specifically
defined metabolic or signaling pathway. Using cumulative
rewiring statistics over a subnetwork, our rationale is to de-
tect subnetworks that are most rewired and also those with
individually weak but collectively strong rewiring signals.
We aim to uncover both linearly and non-linearly rewired
patterns in subnetworks that have been insufficiently ad-
dressed by existing approaches focusing mostly on linear in-
teractions.

Pathway analysis aims at revealing activities of func-
tional modules and is more robust to noise than gene-
centric methods. Although tens of existing pathway anal-
ysis methods (9,10) are all sensitive to pathway response
changes, most are unable to distinguish the source of change
from pathway stimuli (first-order) or subnetwork rewiring
(second-order). For example, evolved from early methods
for over-representation of GO terms (11–13), gene set en-
richment analyses (14–20) detect subnetwork activity by
cumulative statistics of differential gene expression. Multi-
variate analysis of variance (MANOVA) was proposed to
study differential expression of gene sets across conditions
by implicitly accounting for gene–gene dependence but not
rewiring (21). NetGSA (22) models gene–gene dependency
explicitly for differential gene expression analysis of sub-
networks, yet it assumed fixed gene-gene interaction coef-
ficients that do not allow for rewiring analysis.

Moving beyond first-order gene-set analysis, current
pathway analysis methods detect changes in second-order
molecular interactions. Draghici et al. (23,24) developed im-
pact analysis methods to compute perturbation factors to
evaluate changes in differentially expressed genes in a path-
way with respect to the topology of the pathway. SAMNet
(25) solves a multi-commodity network flow problem for-
mulated on the topology of protein and mRNA molecules
involved in multiple conditions. Network rewiring is indi-
cated by unequal flows passing through gene interactions
associated with each condition. A recent method EDDY
(26) statistically evaluates the difference in dependencies
among genes in a given set between two conditions based on
divergence of posterior probabilities modeled by Bayesian
networks. Although these subnetwork analysis methods use
both first- and second-order information from subnetwork
topologies, they are still not designed to annotate the cause
of altered subnetwork responses as being subnetwork input
or rewiring.

Encouragingly, we start to see methods that are specific to
subnetwork rewiring and enable one to separate the driver
versus passenger pathways. An early method (27) identifies
responsive subnetwork by maximizing a score based on co-
variance between genes in protein interaction subnetworks,
and responsive subnetworks can be independently inferred
for each condition and compared for rewiring. The gene set
co-expression analysis (GSCA) method (28) sums absolute
differential correlation of all gene pairs to obtain a subnet-
work dispersion index, but is non-specific to subnetwork

topology and favors those differential interactions in the
middle of a signaling cascade. Others use ranks of genes to
compute pair-wise correlation (29). The method COSINE
computes a score from both gene expression and gene inter-
actions to find condition-specific subnetworks (30), where
the gene interaction score is an expected F statistic derived
from correlation coefficients. DINA (31) detects gene inter-
actions using Spearman correlation coefficients and further
utilizes an entropy measure to determine rewiring based
on differences in the number of active interactions in each
condition. Most recently, the gene set network correlation
analysis (GSNCA) method (32) extended GSCA by assign-
ing heavy weights to emphasize hub genes with strong cor-
relations. However, all these subnetwork rewiring analysis
methods follow the principle of subtraction of interaction
statistics (33). Regardless of linear (e.g. Pearson correlation)
or non-linear (e.g. Spearman correlation) statistics, such a
principle is indiscriminate to many complex patterns that
indeed differ, as our results will demonstrate.

Production of advanced biofuels including cellulosic
ethanol poses major technical challenges for a sustain-
able bio-based economy (34,35). Development of the next-
generation biocatalyst with robust and tolerance charac-
teristics is a necessity for industrial applications. A robust
prototype of tolerant industrial yeast S. cerevisiae NRRL
Y-50049 was developed through evolutionary engineering
to in situ detoxify furfural and 5-hydroxymethylfurfural
(HMF), representative toxic inhibitory compounds liber-
ated from lignocellulose biomass pretreatment (3,36–39).
Strain Y-50049 is able to recover from a short lag phase
and completes fermentation in the presence of 20 mM
each of furfural and HMF (2). Its parental strain, in con-
trast, was unable to establish a viable culture after a 48-
h lag phase and eventually lost function. Although key
elements and modified detoxification pathway responses
of the tolerant yeast have been described (2,4,40, altered
global gene networks and pathways at the genome level
that regulate inhibitor tolerance remain largely unknown.
How the key regulatory gene YAP1 is wired to impact spe-
cific downstream metabolic pathways for yeast tolerance
is not clear. Yeast tolerance is a collective phenotype of
gene functions and gene interactions in the cellular regu-
latory system. Genetic variations, causing upstream tran-
scription subnetwork rewiring, consequently alter down-
stream metabolic pathway responses. Currently available
bioinformatics methods are insufficient to dissect compo-
nents of such adapted transcription networks. The lack of
this knowledge hinders genetic engineering and develop-
ment of the next-generation biocatalyst for advanced bio-
fuels production.

Previously, we reported a comparative chi-square anal-
ysis (CP� 2) for single-interaction rewiring (41). In this
work, we present a computational method ChiNet to de-
tect rewired subnetworks of multiple gene interactions in
transcription regulation of downstream metabolic path-
ways for the tolerant strain NRRL Y-50049. We ad-
dress three technical challenges: (i) developing subnet-
work rewiring statistics; (ii) approximating the null dis-
tribution of subnetwork heterogeneity; and (iii) incorpo-
rating known TFs and their target genes to enhance the
estimation of changes in network connectivity. We fur-
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ther demonstrate that ChiNet consistently outperforms
differential-correlation based approaches in 60 realistic in
silico yeast transcription-metabolic subnetworks. We also
benchmarked ChiNet showing its substantial advantage
over other rewiring analysis methods by simulated subnet-
works with 459 configurations of characteristics. We fur-
ther validated ChiNet for its high accuracy in distinguish-
ing known rewired transcription subnetworks for Candida
albicans versus S. cerevisiae, in comparison to differential-
correlation based subnetwork rewiring approaches. Finally,
we report transcription subnetwork rewiring anchored to
adaptively activated key TF genes that potentially impact
global adaptation of the tolerant yeast under toxic chemi-
cal stresses. This first insight into tolerant gene regulatory
network rewiring aids dissection of genomic mechanisms of
yeast tolerance and development of the next-generation bio-
catalyst for sustainable biofuels and a bio-based economy.
ChiNet is most suitable for analysis of high-throughput
omics data sets from not-well understood organisms and
determine the deviation of their molecular subnetworks
from related well-characterized organisms. It opens a new
avenue to study the evolution of functional subnetworks in
biological systems.

MATERIALS AND METHODS

The ChiNet method for analysis of subnetwork rewiring

We first give an overview of the ChiNet method, which de-
cides whether a subnetwork is conserved, or rewired in ei-
ther topology or interaction strength across two conditions.
In the comparative chi-square framework CP� 2 first intro-
duced in (41), rewired interactions were characterized by a
heterogeneity chi-square. CP� 2 can detect single strongly
rewired interactions, but was not designed to detect subnet-
work rewiring. In ChiNet reported here, we introduce cu-
mulative subnetwork statistics for subnetwork rewiring and
gamma distributions to assess their null distributions. The
strategy is illustrated in Figure 1. The input to ChiNet is
an inclusive subnetwork topology and observed data for
nodes in the subnetwork under two experimental condi-
tions. Subnetwork topology is a required input from ei-
ther prior knowledge or extracted from the data by other
means such as backtracking we will present. The subnet-
work topology can be extracted from a reference biolog-
ical network module of either the species in question or
its related species from KEGG Pathway (42) or other such
databases. ChiNet adapts the topology to select only ac-
tive interactions associated with current experimental con-
ditions. The output of ChiNet consists of subnetwork ho-
mogeneity, heterogeneity and total activity across all exper-
imental conditions. In our investigation of yeast tolerance
to toxic chemical compounds, heterogeneity χ2

D measures
subnetwork difference between the two yeast strains in re-
sponse to the chemical stresses, and homogeneity χ2

C for the
strength of subnetwork similarity. The total subnetwork ac-
tivity χ2

T represents overall activity for all conditions. The
three subnetwork statistics satisfy a decomposition rule cen-

tral to ChiNet:

Subnet total activity χ2
T = Subnet heterogeneity χ2

D

+Subnet homogeneity χ2
C (1)

which implies that knowing any two statistics can deter-
mine the third. We evaluate the significance of the three
statistics by gamma distributions to account for statistical
dependencies among interactions in subnetworks. Supple-
mentary Figure S1 illustrates that the gamma distribution
approximates the null distribution of subnetwork hetero-
geneity χ2

D better than the chi-square approximation, when
heterogeneity chi-squares of individual nodes in a subnet-
work are not all independent. If a subnetwork only contains
differentially expressed genes but is not detected as hetero-
geneous, its activity is most likely a consequence of differ-
ential signaling input rather than genetic variation within
the subnetwork. Then ChiNet still considers such a sub-
network conserved despite its differentially expressed genes.
When a subnetwork topology is dependent on the molec-
ular context and not specified in advance, we extract one
from a super network that contains all possible interactions
by the BACKTRACK-REWIRED-SUBNETWORKS algorithm.
Next we describe technical details of ChiNet.

By assessing subnetwork homogeneity and heterogene-
ity, ChiNet determines whether subnetworks of the same
set of nodes are conserved, or rewired in either interaction
strength or topology, across two or more conditions. We as-
sume subnetwork G is given with its node set V and edge set
E. Often a given subnetwork topology is a superset of all
known interactions which can be either active or inactive
in the current experiment. To use only active interactions,
ChiNet has an option to identify a subnetwork from G that
best fits to the current experimental data using a chi-square
method (43). This step can be replaced by other network in-
ference methods whose output network topology serves as
input to ChiNet.

In an interaction, we call the cause variables the parents
and the effect variable the child. Let �1 and �2 be the par-
ent sets of child node i under two conditions. We form a
pooled r(i) × s(i) contingency table: the r(i) rows are values
of parents in the union π1

⋃
π2, and the s(i) columns are the

values of child node i. Let [nj[l, m]] (j = 1, 2) be r(i) × s(i)
contingency tables using the same parent union for child i
under each of the two conditions. We measure interaction
homogeneity of child node i by Pearson’s chi-square

χ2
c (i ) =

r (i )∑

l=1

s(i )∑

m=1

(n1[l, m] + n2[l, m] − n̄c[l, m])2

n̄c[l, m]

(Interaction homogeneity) (2)

with vc(i) = (r(i) − 1) × (s(i) − 1) degrees of freedom (d.f.).
n̄c[l, m], the expected count in cell [l, m] under the null hy-
pothesis of parents and child being independent, is

n̄c [l, m] =

r (i )∑
u=1

(n1[u, m] + n2[u, m])
s(i )∑
t=1

(n1[l, t] + n2[l, t])

n1 + n2
(3)

where n1 and n2 are the sample size for each condition, re-
spectively. Next we assess interaction strength under each
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Figure 1. Comparative chi-square analysis of subnetwork rewiring (ChiNet). (a) Input. ChiNet requires two types of input: a subnetwork topology and
observed data (dynamic or perturbed) for elements in the subnetwork under different conditions. Here the input is a subnetwork topology of four nodes
and their observed values under two conditions. (b) Decomposition, the core of ChiNet. Using parent nodes in the subnetwork as candidates, the ac-
tive parents of a child are selected for each condition, doable by various network inference methods. We used best fit to data under each condition as
judged by the smallest P-value of chi-squares computed on contingency tables. Then a chi-square statistic measuring interaction homogeneity is com-
puted for a contingency table pooling all data. By subtracting the homogeneity chi-square from a total interaction chi-square (sum of chi-squares under
each condition)––the decomposition rule, we obtain a third chi-square measuring interaction heterogeneity. Summing up chi-squares of homogeneity and
heterogeneity respectively over interactions, we obtain subnetwork heterogeneity and homogeneity. (c) Output. Based on the statistical significance of
heterogeneity and homogeneity, the subnetwork in this example is determined to be rewired across conditions.

condition. Under the null hypothesis that parents and child
are independent, the two tables come from the same null dis-
tribution of the pooled table. This gives rise to the expected
count for each condition under the null hypothesis

n̄ j [l, m] = n j

r (i )∑
u=1

n1[u, m] + n2[u, m]

n1 + n2

s(i )∑
t=1

n1[l, t] + n2[l, t]

n1 + n2
(4)

A chi-square is computed using the observed and expected
counts for each condition by

χ2
j (i ) =

r (i )∑

l=1

s(i )∑

m=1

(
n j [l, m] − n̄ j [l, m]

)2

n̄ j [l, m]
, j = 1, 2 (5)

with v1(i) = v2(i) = (r(i) − 1) × (s(i) − 1) d.f., respectively.
Summing up interaction chi-squares over both conditions,
we define the interaction total activity of node i by

χ2
t (i ) = χ2

1 (i ) + χ2
2 (i ) (Interaction total activity) (6)

with vt(i) = v1(i) + v2(i) d.f.
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Our previous CP� 2 work on single interaction compara-
tive chi-square analysis (41) established interaction hetero-
geneity χ2

d (i ) for each node in a network as follows:

χ2
d (i ) = χ2

t (i ) − χ2
c (i ) (Interaction heterogeneity) (7)

which measures how far the interactions deviate from the
pooled version. We proved that χ2

d (i ) asymptotically fol-
lows a chi-square distribution with vd(i) =vt(i)-vc(i) d.f.
when no interactions exist across the conditions (41). Here,
parent/cause and child/effect variables are provided on the
input subnetwork topology to ChiNet analysis. When a
parent–child relationship is one-to-one with no time delay,
interaction heterogeneity chi-square statistic χ2

d (i ) is sym-
metrical with respect to the parent and the child. Thus,
χ2

d (i ) reflects changes in the parent–child relationship but
does not necessarily make a statement on causality. When
a many-to-one or a temporally delayed parent-child rela-
tionship is considered, χ2

d (i ) is asymmetric and may reflect
causal changes in such a relationship.

Now, we extend the three chi-square statistics from the
individual interaction level to the subnetwork level. Here,
the null hypothesis is no interactions in the subnetwork are
active under any condition. We first assume interactions in
a subnetwork are statistically independent with respect to
each node. We define, across all conditions, the subnetwork
total activity chi-square and associated d.f. by

χ2
T =

∑

i∈V

χ2
t (i ), vT =

∑

i∈V

vt(i ) (Subnet total activity) (8)

which is chi-square distributed with vT d.f. under the null
hypothesis. Under the same null hypothesis, we define the
subnetwork homogeneity χ2

C by

χ2
C =

∑

i∈V

χ2
c (i ), vC =

∑

i∈V

vc(i ) (Subnet homogeneity) (9)

χ2
C is chi-square distributed with vC d.f. Now we define the

subnetwork heterogeneity χ2
D by

χ2
D =

∑

i∈V

χ2
d (i ), vD =

∑

i∈V

vd (i ) (Subnet heterogeneity) (10)

which is chi-square distributed with vD d.f. All three sub-
network statistics are chi-square distributed, because the
sum of independent chi-square random variables is also chi-
squared with d.f. being the sum of d.f. for each node (44).
From Equation (7), it follows that we can decompose sub-
network total activity χ2

T into the sum of subnetwork het-
erogeneity χ2

D and homogeneity χ2
C. This gives us the sub-

network decomposition rule in Equation (1). We use pT, pC
and pD to represent the P-values of test statistics χ2

T, χ2
C and

χ2
D, respectively, calculated from a given sample.
In establishing the chi-square null distributions for the

above three subnetwork statistics, we have assumed interac-
tions in a subnetwork be statistically independent. Even in
an inactive subnetwork of connected nodes where we only
observe noise, however, the noise dynamics can be depen-
dent among the nodes. Thus, chi-square approximation of
the null distributions can be inaccurate. Chuang and Shih
(45) assumed individual chi-squares of 2 d.f. and estimated
their correlation coefficients to approximate the dependent
chi-square sum by a scaled chi-square distribution. When

sample sizes are limited, we found that individual inter-
action chi-squares of some nodes are not chi-square dis-
tributed. Additionally, estimation of the correlation matrix
of individual chi-squares tends to be inaccurate. To over-
come these issues, we present a gamma approximation for
the sum of dependent chi-squares using a bootstrap strat-
egy as shown in Supplementary Algorithm S1. CHINET-
GAMMA-BOOTSTRAP.

To correct for the statistical effect of simultaneous testing
on multiple subnetworks, we apply Bonferroni correction to
control family-wise error rate or Benjamini–Hochberg (46)
to control false discovery rate. Both are conservative in P-
value adjustment but computationally efficient. Finally, we
determine if a subnetwork is rewired or conserved based on
pD and pC. Let � be specified maximum acceptable type I er-
ror. The subnetworks are rewired, if pD ≤ �; or conserved, if
pD > � and pC ≤ �. It is useful to point out that two rewired
subnetworks may have strong heterogeneity and homogene-
ity at the same time; two conserved subnetworks can only
have strong homogeneity.

Performance evaluation of ChiNet and comparison with
other methods using simulated and experimental benchmark
datasets

We first evaluated the performance of ChiNet in refer-
ence to GSCA and GSNCA, two differential-correlation
based subnetwork rewiring methods, on simulated yeast
transcription-metabolic networks. Then we benchmarked
ChiNet, GSCA and GSNCA under 459 simulation settings
associated with four network characteristics: noise level,
sample size, complexity of dynamics (number of quantiza-
tion levels) and subnetwork sparsity (number of parents,
or in-degree, per child node). Both studies used a house
noise model (Supplementary Note S1). Finally, we evalu-
ated ChiNet, GSCA and GSNCA to identify rewired sub-
networks among mitochondria ribosome protein (MRP),
cytoplasmic ribosome protein (RP), rRNA genes and their
TFs using microarray gene expression data collected from
two yeast species fungus pathogen C. albicans and S. cere-
visiae. Full detail about the three performance evaluation
studies is described in Supplementary Notes S2, S3, and S4.

Biological experimental design and data collection

An industrial yeast strain S. cerevisiae NRRL Y-12632 and
its inhibitor-tolerant derivative NRRL Y-50049 obtained
through evolutionary engineering (Agricultural Research
Service Culture Collection, Peoria, IL, USA) were used in
this study. Experimental design, microarray gene expres-
sion, outlier processing, normalization, discretization and
gene selection are described in full detail in Supplementary
Note S5.

Backtracking upstream transcription subnetworks from
downstream metabolic pathways

To identify upstream transcription subnetworks that may
have induced downstream metabolic responses during
adaptive growth against biomass conversion inhibitors
in yeast, we backtrack shortest paths linking a differ-
ential transcription interaction to genes with differential
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metabolic responses in Y-50049. From YEASTRACT, we
identified 183 TFs and 42,524 TF-gene pairs of documented
transcription regulatory interactions. This constitutes the
known network topology for our study. Using this TF net-
work topology, we first build a super graph that fits the
data of the two strains the best using a chi-square test (43).
Then we detect all differential gene interactions between
the two strains. For every differentially expressed gene on
a given downstream metabolic pathway, we find a short-
est path to this gene from the closest upstream TF that
is involved in a differential interaction by Dijkstra’s algo-
rithm. A subnetwork is obtained by joining all such shortest
paths reaching a common metabolic pathway. Then we as-
sess by ChiNet if the subnetwork is statistically significantly
rewired across the two strains. The algorithm is presented
as Supplementary Algorithm S2. BACKTRACK-REWIRED-
SUBNETWORKS. The underlying assumption is that a dif-
ferentially expressed enzyme is caused by the most adjacent
rewired upstream transcription regulation.

Biological validation

For biological validation on tolerance impact of TF genes
detected by this study, we examined six single gene dele-
tion mutations from Saccharomyces Genome Deletion Sets
for growth response to challenges of 10 mM each of fur-
fural and HMF on a synthetic medium. A wild-type S.
cerevisiae strain BY4742 (MAT α his3Δ1 leu2Δ0 lys2Δ0
ura3Δ0) grown with and without the inhibitor challenges
served as a control. Each tested strain was grown on 4 ml
synthetic medium in a 15 ml tube at 30◦C with agitation of
250 rpm. Cell growth was monitored by absorbance at 600
nm. Cells grown without the inhibitor challenges served as
controls. Experiments were repeated for all tests.

RESULTS

Advantage of ChiNet by in silico benchmarking

We first demonstrate the capability of ChiNet to identify
nonlinear differential interaction patterns in in silico yeast
subnetworks. With 60 known yeast metabolic pathways in
KEGG Pathway (42) and their upstream transcription sub-
networks from YEASTRACT (47), we artificially created
60 pairs of rewired and another 60 pairs of conserved dy-
namic subnetworks using the generalized logical network
(GLN) model (43). From these models, we simulated dy-
namic data at different levels of noise. Here we compare
ChiNet, GSCA and its two variants, and also GSNCA.
Extending the original GSCA based on linear correlation,
the GSCA-order1 variant examines temporal dependencies
and the GSCA-Spearman variant integrates temporal de-
pendencies, subnetwork topology and non-linear correla-
tion. On data from each pair of subnetwork models, we
applied ChiNet, the GSCA cohort and GSNCA to deter-
mine if the pair of underlying subnetworks is rewired or con-
served. Figure 2 shows the advantage of ChiNet over the
GSCA cohort and GSNCA in receiver operating charac-
teristic (ROC) curves over a wide range of noise levels. The
area under the ROC curve (AUROC) of value 1 indicates a
perfect performance, 0.5 for a random guess and 0 for a sys-
tematic error. As the noise level inflates from 0.2 to 0.45, the

Figure 2. Advantage of ChiNet in detecting rewired upstream transcrip-
tion subnetworks for downstream metabolic pathways in yeast. The results
were obtained by applying ChiNet, GSCA and GSNCA methods on in
silico data simulated from 120 pairs of rewired or conserved dynamic sub-
networks from the known Saccharomyces cerevisiae transcription network
and metabolic pathways. A true positive is a pair of rewired subnetworks
detected as so; a false positive is a pair of conserved subnetworks detected
wrongfully as rewired. Thus, ChiNet demonstrates outstanding robustness
to noise over the GSCA cohort and GSNCA, evidenced by the increasing
advantage in area under the ROC curves over deteriorating noise. In the
shown four settings, quantization level (3), sample size (15 × 5) and num-
ber of parents (1) are all fixed. The noise levels are (A) 0.2, (B) 0.3, (C) 0.35
and (D) 0.45, respectively.

gain in AUROC by ChiNet over the GSCA cohort also in-
creases from 0.01–0.05 to 0.18–0.27; GSNCA did not func-
tion well, with AUROC notably less than ChiNet or GSCA
at all noise levels in this study. Thus this result demonstrates
potentially outstanding robustness of ChiNet to noise in re-
alistic biological networks.

To evaluate sensitivity of ChiNet, GSCA and GSNCA to
various subnetwork characteristics, we benchmarked their
performance by a second simulation study. We generated a
total of 91 800 pairs of subnetworks under 459 simulation
settings characterized by noise level, complexity of interac-
tion dynamics (as indicated by the number of quantization
levels), sample size and sparsity of network topology (as
indicated by the in-degrees of each node). Figure 3a illus-
trates ROC curves of the three types of methods at a spe-
cific simulation setting, demonstrating the notable strength
of ChiNet. The distributions and box plots of empirical AU-
ROC for each method are shown in Figure 3b and c. The
mean AUROC over all 459 settings in decreasing order was
observed at 0.77 for ChiNet, followed by 0.60, 0.63 and 0.64
for GSCA, GSCA-order1, GSCA-Spearman and 0.53 for
GSNCA, respectively.

Thus, ChiNet here demonstrates a large margin of effec-
tiveness over differential-correlation based methods.

The fundamental limitation of differential correlation
employed by GSCA and GSNCA is illustrated by an exam-
ple in Figure 4. As GSCA uses the dispersion index––the
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Figure 3. Advantage of ChiNet over the GSCA cohort and GSNCA on subnetwork rewiring with varying characteristics of noise level, complexity of
interaction dynamics (number of quantization levels), sample size and sparsity (in-degrees). In each of 459 simulation settings, 200 pairs of subnetwork
using generalized logical network (GLN) models were randomly generated: 100 pairs conserved and 100 pairs rewired. These form 200 pairs of trajectory
collection files as input to all four methods. (A) An example of ROC curves under one simulation setting, where each GLN contains 10 nodes of 4
quantization levels and two parents and 10 trajectories of 10 time points are simulated from each GLN at a noise level of 0.2. ChiNet performs the best
with the largest AUC of 0.996, substantially higher than the GSCA cohort and GSNCA. The original GSCA (AUC = 0.716) performed worse than both
GSCA-Spearman (AUC = 0.862) and GSCA-order1 (AUC = 0.865). GSNCA achieved the lowest AUC of 0.48. (B) Distributions of area under the
curves (AUCs), as empirical probability density functions of AUC for ChiNet, GSCA, GSCA-order1, GSCA-Spearman and GSNCA over 459 simulation
settings. A density function distributed toward 1 in AUC is desirable for good performance. ChiNet (blue) is evidently the best performer. Although at
high noise levels, all methods performed close to random guessing (AUC = 0.5), the density of ChiNet AUC is unarguably the lowest around AUC = 0.5
and the highest around AUC = 1, thus the best among the methods studied. (C) Box plots of the AUCs over the 459 settings. The ChiNet demonstrates
an evident advantage in the AUCs as judged by the quartiles. About 60–75% of examples have an AUC >0.7 but 75% of the AUCs of the GSCA cohort
or GSNCA are <0.7.

Figure 4. ChiNet overcomes a fundamental problem of differential-correlation based approaches for subnetwork rewiring. (a and b) Two 4-node ground-
truth subnetworks of zero Markovian order are differential because they have different generalized truth tables for both nodes E and F. Observed data from
both networks are also given. (c) ChiNet correctly declares the subnetworks significantly rewired (PD ≤ 0.05) by accumulating interaction heterogeneity
over each node. (d) GSCA wrongfully concludes the subnetworks are conserved, based on the sum of the squares of differential correlation coefficients
over all pairs of nodes being zero.
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summation of the squares of differences in pairwise corre-
lation coefficients between conditions––to evaluate network
rewiring, it can be insensitive to complex pattern differences
in rewired subnetworks. In this example, truly rewired sub-
networks scored an undesired zero dispersion index (Fig-
ure 4). Although GSNCA uses L1 norm and weighs dif-
ferential correlation discriminatively for each node in the
subnetwork, it still shares the same limitation with GSCA
as correlation coefficients are subtracted in both methods.
As a result, ChiNet outperformed the GSCA cohort and
GSNCA at a markedly large margin.

Validating ChiNet using transcription subnetworks rewired
between two yeasts

To understand how evolution may have rewired gene regu-
latory networks connecting TFs and their target genes be-
tween C. albicans and S. cerevisiae, we applied ChiNet to
gene subsets that contain either diverged or conserved se-
quence motifs in their promoter regions on a gene expres-
sion microarray compendium including 1011 S. cerevisiae
and 198 C. albicans samples (5). Loss of cis-regulatory el-
ements for MRP genes due to genome evolution has been
linked to rapid anaerobic growth in S. cerevisiae relative to
other aerobic yeast species (5). Although gene clusters cor-
responding to differentially correlated expression patterns
have been identified, expression patterns of these clusters
do not directly suggest TF-gene rewiring. Both rewired and
not-rewired genes expressed differentially between the two
species (Supplementary Figures S11, S12 and S14). Mean-
while, their known TFs are equally enriched in the two
species (Supplementary Figures S13 and S14). This implies
that analyzing gene set enrichment by differential expres-
sion without looking at interaction patterns here would not
logically lead to evidence for rewiring. Thus, we inspected
rewired interaction patterns in subnetworks.

Our analysis (Supplementary Table S1) shows that the
transcription subnetwork connecting MRP genes and their
TFs are highly rewired with a normalized subnetwork het-
erogeneity chi-square of 53 (P-value = 0) between C. albi-
cans and S. cerevisiae (Figure 5a). On the other hand, the
transcription subnetwork connecting cytoplasmic ribosome
protein (RB) and rRNA genes and their TFs are mostly
not rewired (Supplementary Figure S2) with a normalized
subnetwork heterogeneity chi-square of 10 (P-value = 4 ×
10−11). These findings by ChiNet are consistent with and
complementary to transcription regulation rewiring sug-
gested by the extent of sequence motif conservation (5). The
rewired MRP gene regulation most likely contributes to the
different capability for rapid anaerobic growth of S. cere-
visiae versus aerobic growth of C. albicans.

Using this dataset, we again found ChiNet remarkably
outperformed GSCA and GSNCA using the partially con-
firmed rewired and conserved genes between the two yeasts
as a gold standard (5) (see Supplementary Note S4). ROC
and precision-recall (PR) curves for all three methods (Sup-
plementary Figure S3 to S7) were plotted under five values
of subnetwork rewiring heterogeneity, which is defined as
the ratio of rewired genes to the total number of genes ex-
cluding TFs in the subnetwork. Figure 5b and c shows AU-
ROC and area under PR (AUPR) as a function of subnet-

work rewiring heterogeneity for the three methods. ChiNet
exhibits a highly consistent advantage over GSCA and
GSNCA at increasing subnetwork rewiring heterogeneity.
Contrary to the two simulation studies, GSNCA performed
better than GSCA here and demonstrates an advantage due
to the implicit use of subnetwork topology. The dramatic
under-performance of GSCA and GSNCA (Figure 5b and
c) can be partially explained by false positives introduced
by large differential correlations when the dynamic range
of genes in one condition is fully covered by a larger dy-
namic range of another condition. In Figure 5d, e, and f, the
expression pattern between transcription factor gene XBP1
and a target gene EBP2 (in the not-rewired gene group) in
C. albicans is almost entirely enclosed within the pattern of
S. cerevisiae. ChiNet did not score the two patterns high for
rewiring because they do not contradict each other. How-
ever, the large differential XBP1-EBP2 correlation of | −
0.51 − 0.11| = 0.62 would amount to falsely strong evidence
for a rewired interaction across the two yeasts. There are a
number of genes with overlapping dynamic interaction pat-
terns in the not-rewired gene group and thus led to the poor
overall performance of GSCA and GSNCA.

Globally rewired gene networks in the tolerant yeast

Applying ChiNet on transcriptome data of yeast in re-
sponse to furfural and HMF, we found that the tolerant
strain Y-50049 displayed significant alterations on gene reg-
ulatory networks at the global scale compared with its
parental wild-type strain Y-12632. At least 44 pathways
(Supplementary Table S2) were detected to significantly
involve rewired upstream transcription subnetworks (Fig-
ure 6).

The oxidative phosphorylation pathway was detected
to have the greatest differential expression between the
two strains as suggested by its highly significant working
zone change P-value (Supplementary Note S6). In addi-
tion to important central metabolic pathways, almost all
amino acid metabolic pathways were affected, which rep-
resent comprehensive alterations of biosynthesis activities
in the tolerant yeast. Other downstream pathways signifi-
cantly affected by their upstream transcription subnetworks
were involved in fatty acid metabolism and glycerolipid
metabolism.

Transcription factor gene YAP1 appeared to be the most
dominant regulatory gene for Y-50049 in adaptation to the
toxic compounds furfural and HMF. Its adaptive signa-
ture expression impacted at least 39 downstream pathways.
Among them, the glycolysis and pentose phosphate path-
ways showed high statistical significance in upstream tran-
scription subnetwork heterogeneity (Supplementary Table
S2). The pentose phosphate pathway has a highly signifi-
cant rewired upstream transcription network (P-value 1.97
× 10−14) between the tolerant yeast strain Y-50049 and the
wild-type (Figure 7). Eighteen TFs are involved and most
rewired TF-enzyme interactions originated from YAP1 and
IFH1.

Another key regulatory gene RPN4 was observed to be
adaptively activated and affected more than 20 downstream
pathways through enhanced activity of at least three down-
stream interactions of RPN4→YOX1, REB1→RAP1 and
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Figure 5. ChiNet uncovered rewired transcription subnetworks between Candida albicans and Saccharomyces cerevisiae and remarkably outperformed
GSCA and GSNCA. (A) The most strongly rewired transcription subnetwork from 23 mitochondria ribosome protein (MRP) genes (oval) and their TF
genes (diamond). The red edges represent ChiNet-detected transcription regulation rewiring in C. albicans and blue for those rewired in S. cerevisiae. The
green edges are detected conserved interactions in both C. albicans and S. cerevisiae. (B) AUROC as a function of subnetwork heterogeneity for the three
subnetwork rewiring methods––ChiNet, GSCA and GSNCA. (C) AUPR as a function of subnetwork heterogeneity for each method. (D–F) A not-rewired
interaction XBT1→EBP2 can be a false positive by differential correlation. The ovals indicate the interaction patterns in the two species respectively. The
interaction pattern of gene EBP2 and its TF XBP1 in C. albicans is almost fully covered by the interaction pattern in S. cerevisiae and did not show strong
evidence for rewiring.
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Figure 6. The rewired transcription network regulating metabolic pathways for tolerant industrial yeast Saccharomyces cerevisiae NRRL Y-50049. The
network is formed by joining rewired upstream transcription subnetworks to downstream metabolic pathways in the tolerant strain Y-50049 versus the
control during the lag phase of cell growth. Oval nodes represent over––(red) or under––(green) expressed transcription factors in Y-50049; the darkness is
proportional to the level of over- or under-expression. Boxes represent metabolic pathways. An edge from a transcription factor to a metabolic pathway box
denotes a significant interaction from the transcription factor to an enzyme-encoding gene on the pathway. Brown/Blue edges are statistically significantly
rewired/conserved interactions across the two strains. All subnetworks before joining have adjusted heterogeneity P-value PD ≤ 0.05.
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Figure 7. The rewired upstream transcription subnetwork in regulating the downstream pentose phosphate pathway in biomass conversion in Y-50049 yeast
strain versus the wild-type. In the rewired upstream transcription subnetwork identified by ChiNet (P-value = 1.97 × 10−14), orange edges are significantly
rewired transcription regulation; blue edges are significantly conserved transcription regulation; and short dashed edges are known transcription regulation
but may be inactive. Oval nodes represent known TFs: those over-expressed in Y-50049 are in red, darker for strongly over-expressed; those under-expressed
in Y-50049 are in green, darker for strongly under-expressed. In the downstream metabolic pathway, the square boxes labeled with enzyme commission
numbers represent enzymes. Those in green are annotated. Those with an accompanying orange box with gene name were measured in our gene expression
experiment. The open circles indicate metabolites. Edges associated with boxes and circles together represent enzymatic reactions. The pentose phosphate
pathway diagram is based on KEGG Pathway (42).

MAL33→ABF1. However, altered regulatory interactions
observed in Y-50049 genome adaptation were not limited
to enhanced gene expression. As indicated by the rewired
networks, regulatory genes with normally expressed and
downregulated expression may also serve regulatory func-
tions in adaptation to the furfural-HMF stress. The acti-
vated TF gene SFP1 rooted more than 30 downstream path-
ways, including major biosynthesis and central metabolic
pathways, through differential and conserved interactions
including several regulatory genes with downregulated ex-
pression (Figure 6). For example, downstream of SFP1, TF
gene IFH1 was observed to be repressed but led to activa-
tion of TYE7 and altered downstream interactions, includ-
ing many amino acid metabolism pathways. TF gene ROX1
also appeared to play an important role in the yeast adap-

tation involving at least 20 pathways. Under the challenge
of furfural and HMF, ROX1 was normally expressed medi-
ating both altered and conserved interactions of genes and
pathways. Downregulated TF gene CIN5, served as both a
regulon and a regulator, was linked to up-regulated gene re-
sponses and conserved pathway interactions.

We performed single-gene-deletion mutations on selec-
tive TF genes including YAP1, RPN4, MSN4, ROX1, SFP1
and CIN5 to confirm gene functions in response to the
toxic compounds. Strains with these mutations were all
able to grow normally on a minimum medium (Supple-
mentary Figure S8A). But when the medium was supple-
mented with furfural and HMF these strains were signifi-
cantly repressed or unable to grow compared with a wild
type control (Supplementary Figure S8B). For example,
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mutation strains with YAP1 knockout failed to grow on
an inhibitor-containing medium at 72 h. TF gene YAP1
activates response of anti-oxidant genes by recognizing a
Yap1p response element (YRE), 5′-TKACTMA-3′, in the
promoter region. YAP1 was identified as a major responsi-
ble regulator for yeast tolerance to the inhibitors (4,48–49).
Many genes showing induced expression possess the YRE
sequence in their promoter region. Most YAP1-regulated
genes were classified in a broad range of functional cate-
gories including redox metabolism, amino acid metabolism,
stress response, DNA repair and others. Modified responses
of glucose metabolic pathways for the tolerant yeast were
defined in detail involving many genes with reductase activ-
ity and four major cofactor regeneration steps (2,50). Re-
cent results of engineering efforts were consistent with these
findings (51,52). While a wild-type strain was repressed
to die under challenge of the toxic chemicals, the tolerant
strain equipped with the reprogrammed glucose metabolic
pathways detoxified the inhibitors in situ and produced
ethanol. Glycolysis is one of the central metabolic pathways
for cell survival and function. Our results of this study iden-
tified glycolysis as one of the most significant downstream
pathways likely to be affected by rewired regulation and co-
regulation of YAP1.

In addition to the indispensable YAP1, we found TF gene
SFP1 and RPN4 as key regulatory genes affect downstream
metabolic pathways such as pentose phosphate pathway
(Figure 7) and many amino acid metabolism pathways (Fig-
ure 6; Supplementary Table S1). A functional pentose phos-
phate pathway is necessary for yeast tolerance involving
both detoxification and damage repairs (2,53–59). In this
study, we found the tolerant response of this pathway was
mediated by altered RPN4 expression and through more
downstream regulatory interactions including REB1 and
RAP1. Chemical stress causes reactive oxygen species and
damages RNA and protein conformation leading to protein
unfolding and aggregation (54,60). Many candidate genes
were found to have a proteasome-associated control ele-
ment of Rpn4p in promoter regions and are potentially reg-
ulated by RPN4 (4,61–62). Adapted RPN4 expression by
the chemical stress in the tolerant yeast apparently played a
major regulatory role leading to a functional pentose phos-
phate pathway as suggested by this study. The highly sensi-
tive response of these gene deletion mutation strains to the
toxic chemicals further confirmed the essential roles of each
gene involved in the rewired programs for the tolerant yeast.
Our results suggest these TF genes are essential regulators
for the yeast survival against the toxic compounds.

DISCUSSION

ChiNet developed in this study is innovative in pooling sam-
ples from all conditions to one contingency table, where
conserved patterns reinforce each other while differential
patterns cancel out. This allows ChiNet to detect funda-
mental interaction pattern rewiring in subnetworks that
drive observed differential expression. Accurate detection
of subnetwork rewiring enables a specific component in a
network to be linked to changed biological function due to
evolution.

ChiNet consistently outperformed previously reported
methods based on differential correlation, including
GSCA, its variants and GSNCA in both simulation and
real experimental data studies. We observed that two
GSCA variants with more ground-truth information did
not improve much over the original GSCA, which was
unexpected. It is known that zero differential correlation is
neither a sufficient nor a necessary condition for the same
slope for two linear patterns (63). The overall similarity
in performance among GSNCA, GSCA and its variant
GSCA-order1 suggests that differential correlation may
constitute the bottleneck, despite the correct Markovian
order being used in GSCA-order1. The GSCA-Spearman
variant computes nonlinear Spearman correlation coef-
ficients with correct subnetwork topology, but was not
able to improve upon GSCA or GSCA-order1. A possible
explanation is that a pair of nodes indirectly connected via
a path can still be sensitive to differential correlation along
the path. In addition, non-linear correlation coefficients
may compress interaction patterns even further, resulting
in true differential interaction patterns mapping to a
similar value and becoming indistinguishable. For example,
all monotonically increasing patterns representing very
different interaction dynamics display equal Spearman
correlation coefficients. Although the recently developed
GSNCA method showed improved capability over GSCA
through implicitly integrated network topology, our results
suggest that summarizing an interaction pattern by corre-
lation coefficient followed by comparing the statistic across
conditions is fundamentally ineffective to capture diverse
interaction patterns that may share similar correlation
coefficient values.

Integration of the rewired subnetworks into a global net-
work (Figure 6) enabled us to zoom into a small num-
ber of highly involved TF genes as hubs. Although only
YAP1 has been elucidated to be activated in oxidative re-
sponses specifically due to furfural and HMF (64) as thiol-
reactive electrophiles (65), many of the hub genes, yet to be
studied for their biochemistry with furfural and HMF, are
known to be involved in various stress responses in yeast.
Another hub gene RAP1 coordinates IFH1 binding to ri-
bosome protein to regulate protein synthesis in response
to growth stimuli and environmental stresses (66). RAP1
also directly regulates YDR248C in the pentose phosphate
pathway (Figure 7). The protein product of PUT3, with
rewired links to the proline metabolism pathway, activates
PUT1 and PUT2 which encode enzymes of proline utiliza-
tion (67). Proline is a protectant against stresses includ-
ing freezing, desiccation, oxidation and ethanol in yeast
(68). MAL33 is activated at low glucose levels so that other
sources of sugar such as maltose and galactose can be uti-
lized (69). CIN5, with sequence homologous to YAP1, in-
creased resistance to Cisplatin when over-expressed in S.
cerevisiae (70). RPN4 promotes DNA repair, antioxidant
response and glucose metabolism under genotoxic stresses
(71). Direct evidence (72) implicated MSN2/MSN4 in in-
duction of NTH1 that controls trehalose hydrolysis under
heat and osmotic stresses. ROX1 is a transcriptional regula-
tor of oxidative responses and up-regulated about 30 genes
involved in cell stress under anaerobic conditions (73). To-
gether, the functional coincidence of these TF genes in vari-
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ous stress responses supports the global view highlighted by
our ChiNet analysis that ties these genes and their down-
stream metabolic pathways. The absence of a single up-
stream hub gene seems to imply that multiple genomic loci
may be responsible for the rewired transcription program in
Y-50049. Thus, such rewiring most likely confers tolerance
of toxic furfural and HMF on the yeast strain Y-50049.

Several considerations are to be made before applying
ChiNet to detect subnetwork rewiring. First, the sample
size needs to be sufficient such that the expected number
of samples in each contingency table entry is at least five.
Second, ChiNet discretizes molecular abundance to repre-
sent flexibly not-well-understood interaction patterns so as
to prevent biases associated with an unvalidated paramet-
ric model. Quantization despite sacrifice in data resolution
can be beneficial due to its noise removal effect, as demon-
strated in Supplementary Note S4 where the minimal quan-
tization level of two achieved the best performance in both
AUROC and AUPR. If interaction patterns already have
valid parametric models, information loss due to discretiza-
tion can be avoided by alternative methods. For example,
comparative dynamical system modeling (63) characterizes
interaction heterogeneity from continuous time course data
with nonlinear parametric models. Finally, ChiNet requires
a subnetwork topology in the form of a directed graph. If a
topology is unavailable but subnetwork rewiring analysis is
desired, one can use a network inference method as a first
step to reconstruct the topologies from observed data. Then
as the second step in this workflow, one applies ChiNet to
perform subnetwork rewiring analysis.

ChiNet is applicable to integrate both proteome and tran-
scriptome data. Specifically, one can use the protein abun-
dance of TFs as parent variables and RNA abundance of
target genes as child variables in contingency tables to com-
pute the interaction heterogeneity chi-square statistic de-
fined in Equation (7). On transcriptomic data alone with-
out protein activity information, the outcome of rewiring
analysis may be incomplete when post-transcription reg-
ulation leads to non-monotonic or even random transla-
tional patterns. For example, a recent study on the pro-
teogenome of human colon and rectal cancers revealed a
positive sample-wise mRNA–protein correlation but also
observed that mRNA abundance is not a reliable predic-
tor of protein variation for individual genes (74). How-
ever, highly positively correlated mRNA and protein abun-
dance were observed for most genes in fission yeast (75).
Our benchmark study using transcriptome data alone from
C. albicans versus S. cerevisiae by ChiNet highlighted sub-
network rewiring consistent with changed genotypes. The
value of ChiNet lies in pointing to such candidate subnet-
works for further investigation.

In conclusion, our benchmark studies have demonstrated
substantially improved subnetwork rewiring analysis accu-
racy of ChiNet over alternative methodologies. Further,
ChiNet revealed transcription subnetwork rewiring of the
molecular mechanisms underlying yeast tolerance and ro-
bust strains development for advanced biofuels production.
ChiNet is readily applicable to integrate transcriptomic,
proteomic and metabolomic data to understand network
rewiring fundamental to the evolution of biological systems.

AVAILABILITY

The ChiNet software is freely available to non-commercial
users at www.cs.nmsu.edu/∼joemsong/software/ChiNet.
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NCBI’s Gene Expression Omnibus (76) and are accessible
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