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Introduction: GATA binding protein 3 (GATA3) is a regulator of mammary luminal cell differentiation, and an
estrogen receptor (ER) associated marker in breast cancer. Tumor suppressor functions of GATA3 have been
demonstrated primarily in basal-like breast cancers. Here, we focused on its function in luminal breast cancer, where
GATA3 is frequently mutated, and its levels are significantly elevated.

Methods: GATA3 target genes were identified in normal- and luminal cancer- mammary cells by ChIP-seq, followed
by examination of the effects of GATA3 expressions and mutations on tumorigenesis-associated genes and
processes. Additionally, mutations and expression data of luminal breast cancer patients from The Cancer Genome
Atlas were analyzed to characterize genetic signatures associated with GATA3 mutations.

Results: We show that some GATA3 effects shift from tumor suppressing to tumor promoting during
tumorigenesis, with deregulation of three genes, BCL2, DACH1, THSD4, representing major GATA3-controlled
processes in cancer progression. In addition, we identify an altered activity of mutant GATA3, and distinct associated
genetic signatures. These signatures depend on the functional domain mutated; and, for a specific subgroup, are
shared with basal-like breast cancer patients, who are a clinical group with regard to considerations of mode of

Conclusions: The GATA3 dependent mechanisms may call for special considerations for proper prognosis and

Introduction
GATA binding protein 3 (GATA3) belongs to a family of
tissue specific transcription factors regulating cell fate
specification. Following binding to a consensus (A/T)
GATA(A/G) sequence, GATA proteins transactivate
their target genes either directly or through mechanisms
involving long range chromatin remodeling and DNA
looping [1,2]. GATA3 is expressed in a variety of tissues,
including the mammary gland, in which it is a key
regulator of luminal cell lineage differentiation from
mammary stem cells and maintenance of differentiated
luminal epithelium within the mature gland [3,4].

In breast cancer, GATA3 expression has been correlated
with estrogen receptor positive (ER+/luminal) phenotypes
[5-9], accounting for roughly two thirds of breast cancer
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cases [10], while loss of GATA3 expression is correlated
with ER-, less differentiated, invasive breast cancer [7]. Ac-
cordingly, ectopic expression of GATA3 results in reversal
of epithelial-mesenchymal transition (EMT), inhibition of
dissemination and metastasis, and induction of differenti-
ation in breast cancer cell lines and mouse models
[11-13]. Thus, the activity of GATA3 in ER-, basal-like
breast cancer (BLBC), has been largely attributed to nega-
tive regulation of genes associated with invasion and de-
differentiation [14,15]. These works and others [11,16,17]
suggest that loss of GATA3 expression is involved in the
aggressiveness of BLBC.

While the accumulating evidence points to tumor sup-
pressor functions of GATA3, in luminal breast cancer
GATA3 directly upregulates proto-oncogenes [1,18-20], in-
cluding the alpha subunit of ER (ERa) and co-regulates a
large set of ERa target genes, suggesting that, contrary to
the basal-like associated behavior, GATA3 may promote
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tumorigenesis in luminal breast cancer, either through ER
dependent processes, or possibly, independent of ER.

Such studies highlighting a major role for GATA3 in
breast cancer progression join sequencing studies demon-
strating frequent somatic mutations in GATA3 in luminal
breast cancer patients. These mutations are primarily within
the DNA binding domain (DBD) of GATA3 and may
modulate its activity [21-24].

These data combine to suggest that GATA3 is a master
regulator in breast cancer via numerous molecular mecha-
nisms, which may vary between BLBC and luminal breast
cancer. A systematic identification of molecular pathways
regulated by GATA3 would thus highlight and uncover
major processes governing breast cancer development.

Here, we aimed to acquire a systemic view of the role
played by GATA3 in luminal breast cancer progression.
Hence, we identified its target genes in normal mam-
mary and luminal breast cancer cells by chromatin immu-
noprecipitation coupled with massive parallel sequencing
(ChIP-seq). We thus found a range of GATA3-associated
mechanisms and a signature of genes which may be
involved in breast cancer development. Strikingly, we
found that a large proportion of GATA3 target sites are
unique to either normal or cancer cells, and, furthermore,
the regulatory effect of GATA3 is partially altered during
cancer progression, shifting from a tumor suppressor in
normal cells to a tumor promoting factor upon transform-
ation. We identified further modulations to GATA3 func-
tion by altered activity of mutant GATA3, and associated
genetic signatures in populations of luminal breast cancer
patients. These signatures depend on the functional
domain mutated and, for a specific subgroup, are shared
with BLBC patients. These combine to define a distinct
subpopulation, with possible clinical implications.

Methods

Analysis of gene expression data

Four independent datasets, available through the Gene
Expression Omnibus (GEO [25]) database and containing
gene expression and clinical data, were analyzed to iden-
tify biomarkers that could stratify breast cancer patients
by clinical status: Lu et al. (GEO accession GSE5460) [26];
Wang et al. (GEO accession GSE2034) [27]; Ivshina et al.
(GEO accession GSE4922) [28]; and Popovici et al. [29].
The Mann-Whitney U-test and Students t-test were per-
formed on all gene expression measurements through ER
status data to determine a genes stratification power.
Genes that had significant P-values (<0.05) were com-
pared in all four datasets to identify overlapping genes.

ChIP-SEQ

ChiP was performed on 8 10 7 cells, with 5 pg ChIP-grade
anti GATA3 antibody (SC-268X, Santa Cruz Biotechnology,
Dallas, TX, USA) per 1 10 7 cells, using a ChIP assay kit
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(Millipore, Billerica, MA, USA), according to the manufac-
turers protocol. The eluted and input DNA were sequenced
on SOLID (Life Technologies Applied Biosystems, Grand
Island, NY, USA) -read sequences from CHIP-seq libraries
were aligned to the human genome hg19 using Bowtie, allow-
ing no more than two mismatches per read and using only
the best reported valid alignments. To identify GATA3 bind-
ing sites, we used the Model-based Analysis for ChIP-Seq
(MACS) to call peaks from the CHIP-seq data with default
parameters. Extracted peaks showed at least three-fold
enrichment relative to control input for each sample. For an
notation, we used the ChIPpeakAnno, a Bioconductor R
package, which includes functions to retrieve sequences
around the peak and for finding the nearest site of interest,
and the Gene Ontology (GO) for the associated pathways.
Randomly selected binding sites were tested for sequence and
verified by ChIP coupled with real time PCR, demonstrating
the existence of a GATA3 binding site and binding affinities
corresponding to relative peak intensities (data not shown).

Cell lines

Human mammary epithelial cells (hMEC) were purchased
from LONZA and grown on mammary epithelial growth
medium (MEGM, LONZA, Boroline Road Allendale, NJ,
USA); MDA-MB-231, MDA-MB-468, Hccl143, T47D and
MCEF7 were purchased from ATCC (Manassas, VA, USA)
and grown on high glucose Dulbeccos modified medium
containing L-glutamine (Invitrogen, Life Technologies,
Grand Island, NY, USA) with addition of 10 mM 4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES),
1 mM sodium-pyruvate and 10% fetal calf serum. Sanger
sequencing confirmed that wild type GATA3 was expressed
in all of these cell lines.

Plasmids

IL5/GFP

IL5 promoter fragment (-390 to +396) containing two GATA3
binding sites [30] in downstream of the GFP reporter gene.

WtGATA3; mutGATA3

¢DNA of wild-type and mutant GATA3 alleles, respect-
ively, of MCEF?7 cells, was isolated by PCR and cloned into
pBabe/Zeo expression vector. Sanger-sequencing con-
firmed both the mutation and wild type sequences.

Transient transfection assays

A total of 1 10 © cells/10 cm dish were transfected with
10 pg of DNA using JetPrime (POLYPLUS Transfection,
Il kirch, France) according to the manufacturers protocol.
Total RNA was isolated 48 hours after the transfection,
reverse-transcribed, and transcript levels quantified by real
time PCR using ABI7900HT (Life Technologies-Applied
Biosystems, Wilmington, MA, USA) with KAPA SYBR
FAST ABI Prism 2X qPCR Master Mix (Kapa Biosystems).
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Relative expression levels were calculated as levels of tested
genes in GATA3- over control (ctr])- transfected cells each
normalized to beta-actin. Primers used for real time PCR
are detailed in Additional file 1: Table S2. Primers that were
used for GATA3 detection react with both wild type and
mutant GATA3.

siRNA

Three different Stealth-RNAi siRNA duplex oligoribonu-
cleotides for GATA3 and Stealth-RNAi siRNA negative
control were purchased from Invitrogen. A total of 50
pmole of each duplex were transfected using JetPrime
(POLYPLUS). Expression of GATA3 and target genes
was tested 48 hours after transfection.

Cancer progression model
hMEC cells were transformed as described in [31].

Mammospheres assay

Cells were plated in ultra-low attachment tissue culture
plates (Corning, Corning, NY, USA) as described by Dontu
et al. [32], 48 hours after transfection. Mammospheres were
measured and counted ten days after seeding under a
NIKON TE2000 inverted microscope supplemented with a
digital camera.

Fluorescence activated cell sorting analysis

Cells were transfected as detailed above. Forty-eight hours
after transfection, fluorescence was measured in 1 10 * GFP-
positive cells using a Gallios flow cytometer (Beckman Coulter,
Brea, CA, USA) and quantified using flowJo (TreeStar).

Results

Increased GATAS3 levels characterize luminal breast cancer
Breast cancer patients are classified by molecular subtypes
as a means of therapeutic decision making and prognosis
[10]. In an effort to characterize molecular mechanisms
associated with distinct breast cancer subtypes, we
analyzed gene expression patterns in four publicly avail-
able cohorts of several hundred patients [26-29,33,34]. In
agreement with published data [5-9], we found that the
expression levels of GATA3 alone were sufficient to
separate patients into ER positive and negative groups
(Figure 1A-D). No other protein classified patients by
clinically relevant groups at similar statistical significance
in the roughly 1,000 patients tested (see Additional file 2:
Table S1), adding to accumulating evidence that GATA3
plays an imperative role in the biology of breast cancer.
We tested whether the variation in GATAS3 levels reflects
loss of expression in BLBC or increased expression in
luminal breast cancer. To this end, we compared GATA3
transcript levels in the BLBC lines MDA-MB-468 (TNBC),
MDA-MB-231 (Basal B) and Hccl143 (TNBC) and in
luminal breast cancer lines MCF7 and T47D to normal
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epithelial mammary cells. In accordance with the popula-
tion effect, when compared to normal mammary epithelial
cells, GATA3 transcript levels are elevated in the luminal
breast cancer lines and decreased in BLBC lines
(Figure 1E). Combined, these analyses indicate that
GATA3 levels are altered in both basal-like (decreased
levels) and luminal (increased levels) breast cancers. We
postulated that various molecular pathways are altered
following GATA3 overexpression in luminal breast cancer,
which may promote cancer progression. The following
experiments were designed to test this hypothesis.

Genome-wide identification of GATA3 binding sites in normal
mammary epithelial cells and luminal breast cancer cells

As a first step in characterizing the involvement of GATA3
in luminal breast cancer, we identified its target genes in
normal and cancer breast cells. We performed ChIP-seq
of GATA3 in normal hMEC and MCF?7 cells. hMEC are a
mixed myoepithelial/luminal population, only the latter of
which express GATA3 [35]; MCF?7 is a luminal breast can-
cer line, which overexpresses high levels of GATA3, and
thus is a convenient line to use for ChIP of the endogen-
ous protein. Although these cells have one GATA3 allele
with mutation within its DNA binding domain, the wild
type allele is the one overexpressed and we postulated that
its overexpression should overcome any effect that the
mutant allele may have. Furthermore, the mutant allele
has decreased affinity to the antibody we used, suggesting
that DNA segments that are bound by the wild type allele
will be primarily immunoprecipitated. Thus, these two
lines were selected to compare and characterize GATA3
regulated genes in normal and cancer luminal mammary
cells. For each cell type, input and GATA3 bound DNA
from two independent experiments were sequenced on a
SOLiD sequencer. At a P-value of 0.001, 5,266 binding
sites in hMEC and 6,084 in MCF?7 cells were at least three-
fold enriched above the respective input samples. Thirty
percent were cell-specific (Figure 2A), pointing to altered
targets recognition by GATA3 following tumorigenesis.

In both samples, 46% of GATA3 binding sites were
inside or within 10 kbp of coding sequences (Figure 2B).
Of these, among GO annotated genes [36], large groups
are associated with cellular/organ differentiation, adhe-
sion and migration, in accordance with published data
[4,12,13] (Figure 2C). Other groups of GATA3-regulated
genes were found associated with processes which may
be involved in cancer development and progression, in-
cluding regulation of metabolic processes, proliferation,
cell cycle, apoptosis, angiogenesis and hypoxia. These
processes were parallel in hMEC and MCF7 (data not
shown). However, since the majority of the genes are not
annotated, this observation cannot be conclusive.

To explore major GATA3-regulated genes which may
be involved in breast cancer, we correlated expression
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Figure 1 GATA3 expression levels classify breast cancer patients in ER groups. (A-D) GATA3 expression levels divide patients according to their
ER status in multiple cohorts of patients. On each sub-figure, the left panel presents expression levels of GATA3 across the population of samples in
each GEO dataset. ER- patients are tagged blue and ER+ patients are tagged red. The right panel presents the same data, in a bars and whiskers format.
P-values for each dataset are: (A) 431E-27, (B) 3.49E-35, (C) 2.32E-17 and (D) 4.11E-40. (E) GATA3 expression levels are correlated with ER status in
breast cancer lines. Relative GATA3 transcript levels in ER+ and ER- breast cancer lines are compared to normal mammary cells. GATA3 transcripts were
detected by RT-gReal Time PCR and normalized to beta-actin. ER, estrogen receptor; GATA3, GATA binding protein 3.

levels of the GATA3 target genes with clinical data avail-
able from breast cancer patients [26-29,33,34]. Three
genes (described in details in Table 1): BCL2 an anti-
apoptotic protein [37]; DACHI - inhibitor of ER signal
transduction and apoptosis and regulator of cell cycle pro-
gression [38-40]; and THSD4, which is possibly associated
with extra cellular matrix assembly [41], divided breast
cancer patients according to ER status (Figure 3A-D),

suggesting that these three genes and their related func-
tions may participate in major GATA3-controlled breast
cancer pathways.

Alteration in GATA3 regulatory effect upon
transformation

Of the three ER associated GATA3 targets identified
above, BCL2 has the best characterized tumor-promoting
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activity, while DACH1 has been reported to function as both
tumor promoter [42] and tumor suppressor [38]. To test the
effects of GATA3 on tumorigenesis, we, therefore, tested its
effect on these genes in normal and luminal breast cancer
cells. Overexpression of GATA3 in normal hMEC cells
resulted in downregulation of BCL2, DACH1 and THSD4,
supporting a tumor suppressor function for GATA3 under
normal conditions. However, in the luminal breast cancer
lines MCF7 and T47D, these genes were induced by
GATA3 overexpression (Figure 3E, H and Additional
file 3: Figure S1), suggesting that upon transformation,
GATA3 may change its function to support cancer pro-
gression. This effect was not limited to the ER expressing
lines, as a parallel effect was demonstrated in the ER- line
MDA-MB-231 (Figure 3F). An alternative interpretation
could be that the difference in activity resulted from a dif-
ference in the lineage of hMEC compared to the breast
cancer cells tested. We thus tested the effect of GATA3 in
a stepwise transformation model, in which hMEC are
transformed by sequential introduction of genes encoding
the telomerase catalytic subunit hTert, SV40 large-T anti-
gen (LT) and the oncoprotein H-Ras [31].

In hTert- immortalized cells, exogenous expression of
GATAS3 resulted in downregulation of BCL2, THSD4
and DACHTI1 levels, similar to hMEC. Upon subsequent

transformation, however, a shift concomitant with our
observations in luminal breast cancer cells occurred,
namely, GATA3 upregulates expression of these genes
(Figure 3G).

The shift in regulatory activity demonstrates opposing
tumor suppressor and tumor promoting associated ef-
fects of GATA3 in normal and breast cancer cells, re-
spectively. Furthermore, deregulation of BCL2, DACH1
and THSD4 may represent key events accompanying
GATA3-mediated transformation of normal cells into
breast cancer.

Genes associated with various cellular processes are
deregulated following altered GATA3 function

Cancer is driven by an accumulation of alterations in pro-
cesses dictating the normal functions of a cell. While the
three genes we identified above may have a central role in
breast cancer progression, other GATA3-regulated pro-
cesses may be altered upon transformation.

To study GATA3-associated mechanisms involved in
normal cell functions and luminal breast cancer, we se-
lected genes (from those identified by ChIP-seq), repre-
senting different molecular processes according to the GO
browser (Figure 4A; and Table 1), and their response to
GATA3 was examined in hMEC and in MCF7 cells.
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Gene Abbreviation Function Reference
B-cell CLL/lymphoma 2 BCL2 Anti-apoptotic [37]
Dachshund1 DACH1 Anti-apoptotic [38-40,42,43]
Inhibitor of estrogen signaling
Cell cycle progression
Inhibitor of breast cancer stem cells
Inhibitor of tumor growth and metastasis
Thrombospondin, type | domain containing 4 THSD4 May promote matrix assembly [41]
Solute carrier organic anion transporter family, member SLCO5A1 Nutrients (possibly hormones) uptake [44]
5A1
Growth regulation by estrogen in breast cancer 1 GREB1 Estrogen induced breast cancer cells growth/ proliferation  [45]
Brain-enriched guanylate kinase-associated homolog BEGAIN Chromosome segregation [46]
Centrosomal protein 70 kDa CEP70 Mitotic spindle assembly [47,48]
Angiogenesis
Rho-associated, coiled-coil containing protein kinase ROCK1 Serine/threonine kinase [49-52]
Focal adhesion
Cancer invasion/ metastasis
Angiogenesis
Apoptotic membrane blebbing
SUMO1/sentrin specific peptidase 5 SENP5 SUMO specific protease [53,54]
Cell division
Proliferation
Kinesin family member 168 KIF16B Endosome transport and receptor recycling and [55,56]
degradation
FGF/EGF signal transduction
Potassium channel tetramerisation domain containing 2 KCTD2 lon transport [57]
Upregulated in liver metastasis
ATP-dependent DNA helicase homolog HFM1 Putative DNA helicase (58]
Susceptibility to soft-tissue sarcoma
Extensive tumor aneuploidy
Bone morphogenetic protein 2 BMP2 TGF-B receptor antagonist [59-61]
Cancer invasion/migration
Cancer proliferation
Tumor angiogenesis
Hormone independence
v-erb-a erythroblastic leukemia viral oncogene homolog 4 ERBB4 (HER4) EGF receptor [62,63]

Mammary gland differentiation
Apoptosis

Cell cycle and proliferation arrest in breast cancer

In accordance with our former observations, the response
to GATAS3 was cell-context dependent (Figure 4B). Namely,
in MCF7 cells, all of the genes tested were upregulated in
response to overexpression of GATA3 (Figure 4H), with the
exception of HFM1, which was downregulated. These re-
sults were verified in MCF7 and T47D cells for representa-
tive genes by transfection of three different GATA3 siRNA

(see Additional file 4: Figure S2). However, in normal mam-
mary cells, again with the exception of HEM1, the genes
tested were either downregulated or did not respond to
GATAS3 (Figure 4B).

Combined, the differences in GATA3 target genes and
responses indicate that alterations in GATA3 regulatory
effect depend on the cellular settings (that is, normal
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(See figure on previous page.)

Figure 3 GATA3 controls luminal breast cancer predominantly through differential regulation of DACH1, THSD4 and BCL2 genes. (A-D)
Expression levels of GATA3 target genes stratify patients by ER status in the same cohorts of patients as used in Figure 1. Each sub-figure presents two patient
groups. P-values are presented at the upper-left corner of each graph. (E) GATA3 has opposite effects on THSD4, BCL2 and DACHT1 in normal cells and cancer
cells, respectively. Expression levels of specified genes after transfections of GATA3 relative to vector into indicated cells are presented. (F) Upregulation of
THSD4, BCL2 and DACH1 by GATA3 is independent of ER expression: relative levels of the indicated genes after transfection of GATA3 or empty vector into
MDA-MB-231 cells are presented. (G) Deregulation of THSD4, BCL2 and DACH1 during tumorigenesis: hMEC were transformed by sequential introduction of
the three genetic elements detailed in the figure. Effect of GATA3 expression at each step was assessed as above. (H) Representative expression of GATA3
following transfection. Results shown in figures E-G are average standard error of t hree to five independent experiments. (*) P-value <0.1; (**) P-value <0.05.
ER, estrogen receptor; GATA3, GATA binding protein 3; hMEC, human mammary epithelial cells.

versus cancer cells), possibly reflecting other transcrip-
tion factors expressed in the cell.

GATA3 induces an increase in proliferating stem cell
populations of cancer, but not healthy, mammary cells
The altered regulatory effect of GATA3 in breast cancer
cells predicts that a distinct phenotype should result in
normal and cancer cells following GATA3 expression. In
normal luminal mammary cells, GATA3 is associated
with differentiation of progenitor cells. Accordingly, a
group of genes that we identified by ChIP-seq and that
responded differentially to GATA3 (for example, BMP2,
ERBB4 and KIF16B [26,64]) are linked to proliferation
and maintenance of normal or cancer stem cells. We
therefore tested the effect of GATA3 on populations of
normal or cancer stem cells, as follows: 48 hours follow-
ing transfection of GATA3 or control vector, hMEC or
MCF7 cells were seeded in ultra-low attachment plates
according to a published protocol [32], and floating
spheres, representing progenitor [32] or tumor stem
cells (tumor initiating cells (TICs)) [65], respectively,
were counted after 10 days.

In accordance with published data [66], expression of
GATA3 resulted in a decrease in the numbers and sizes of
the mammosphere population isolated from hMEC
(Figure 5A-B). Conversely, in MCF7 cells, an increase in
floating sphere populations, and specifically those that
were above 100 p in size, was observed in the GATA3
transfected culture. These results indicate that GATA3
plays a role in the proliferation of cancer stem cells and, in
contrast, the decrease of normal stem cell populations.

Mutation of GATA3 leads to altered expression of

target genes

While, so far, we have focused on the effects of GATA3
overexpression in cancer cells, an additional alteration to
GATAS3 functional activity may be associated with muta-
tions found in a population of luminal breast cancer pa-
tients. In MCF7 cells a G insertion at position 1566
resulting in frameshift at D366 and truncation of the DBD
has been characterized [21-24]. This set of mutations may
impair GATA3 regulatory activity and lead to distinct
tumor characteristics of the population which has mutated
GATAS3 allele. The next experiments were designed to

explore the possibility of altered activity of mutant GATA3,
using the mutant (mut) or wild type (wt) alleles isolated
from MCF7 cells.

We first tested whether the mutant GATA3 from MCF7
cells (mutGATA3) was capable of activating a target gene.
To this end, an IL5/GFP construct was cotransfected with
wtGATA3 or mutGATAS3 into HeLa cells, and GFP levels
were measured 48 hours post transfection. Expression
levels of wtGATA3 and mutGATA3 genes were compar-
able, as verified by qRT-PCR (data not shown). As ex-
pected, wtGATA3 activated the expression of IL5/GFP.
However, mutGATAS3 failed to activate IL5/GFP expression
indicating that the DBD truncation associated with luminal
breast cancer diminishes GATA3 activity (Figure 6A).

The inability of mutant GATA3 to activate the IL5
promoter raises the possibility that it might have a dis-
tinct effect on a subset of promoters, in which GATA3 is
necessary to recruit other transcription factors.

To test this, we overexpressed the mutGATA3 allele in
MCEF?7 cells and compared the levels of GATA3 regu-
lated genes to wtGATA3 transfected cells.

In agreement with our hypothesis, we found that mut-
GATA3 had weaker activity or failed to regulate GATA3
target genes (Figure 6B), concomitant with altered activity.
These observations suggest that mutant GATA3 protein
may lead to disparate cancer associated mechanisms.

Distinct molecular signatures in luminal breast cancer
patients harboring GATA3 mutations depend on the
functional domain mutated

The altered effect of mutant GATA3, in conjunction with
the central role for GATA3 in the biology of breast cancer,
predicts that mutation within GATA3 sequence may lead
to altered gene expression patterns in patients, with
possible clinical implications. To characterize a mutant
GATA3-associated signature, we analyzed mutation data
of luminal breast cancer patients from The Cancer
Genome Atlas [67,68]. Of these patients, 14.7% (47/319
patients) had heterozygous mutation for GATA3 (hence-
forth termed wt/mutGATA3). These mutations were dis-
tributed within intron 4 (splice site mutations; twelve
patients) and intron 5 (splice site mutations; four pa-
tients), and within exon 3 (missense mutations; three pa-
tients), exon 5 (frameshift mutations; eight patients) and
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Figure 4 Response of target genes to GATA3 depends on the cell s condition. (A) Representative GATA3-controlled processes and associated
genes. (B) Relative expression levels of GATA3 target genes after transfection of GATA3 or empty vector into the indicated cells. Results shown are
average standard error of two to three independent experiments. GATA3, GATA binding protein 3.
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Figure 5 GATA3 induces populations of proliferating mammospheres in breast cancer, but not normal, cells. (A) Representative
mammospheres generated following control or GATA3 transfection. A 100 p bar is shown at each photo. (B) Mammospheres count. Average
counts of two independent experiments for each cell type are shown. (*) T-test P-value <0.1. GATA3, GATA binding protein 3.

exon 6 (frameshift mutations; twenty patients). Total
levels of GATA3 expression in the wt/mutGATA3 patients
were comparable to those of the wtGATA3 population
(data not shown).

Analyzed as a single group, the wt/mutGATA3 patients
do not present a distinct molecular characteristic. We di-
vided the patients into groups, according to the site of the
mutations within the GATA3 sequence. The groups that
generated clear signatures corresponded to the functional
domains [69] mutated: patients bearing a mutation within
the DBD (exons 5,6) and patients bearing mutations within
the transactivation domain (TAD, intron 4,5, exon 3). These
groups produced a genetic signature comprised of four

genes: CHI3L2, KRT23, VICNI and EDN?2, according to
which the mutant TAD patients were clustered with BLBC
patients and mutant DBD patients formed an altogether
discrete group (Figure 7A-D, left panels). Within the entire
population of luminal breast cancer patients, these genes
did not divide the patients by subtypes (Figure 7A-D; right
panels).

These results demonstrate that distinct breast cancer
subtypes are associated with wt/mutGATA3 populations
within luminal breast cancer patients, and may suggest
that these patients share some of the GATA3-dependent
mechanisms of BLBC patients, who are a clinical group
with regard to considerations of mode of treatment.
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Figure 6 Altered effect of mutant GATA3 in breast cancer leads to a distinct expression pattern of GATA3 target genes. (A) MutGATA3
fails to activate GATA3 dependent promoter. GFP construct driven by GATA3 responsive promoter was cotransfected with the indicated constructs into Hela
cells and the fluorescence levels measured after 48 hours. Representative results of three independent experiments are shown. In each section, the red curve
represents GFP transfected cells; the blue curve represents GFP with mut- or wtGATA3, as indicated. (B) mutGATA3 has an altered effect in breast cancer cells.
Relative transcript levels of GATA3 target genes after transfection of WtGATA-3 or mutGATA-3 into MCF7 cells. Results shown are average standard er ror of
three to four independent experiments. GATA3, GATA binding protein 3; mut, mutant; wt, wild type. (*) Pvalue <0.1 (**) P-value <0.005.
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Discussion

Breast cancer is, in fact, a collection of alterations in gen-
omic, genetic and expression profiles, leading to a group of
breast diseases [70]. The heterogeneity of the disease(s) cre-
ates a challenge in identifying an exclusive driving force and,
consequently, early diagnosis, decision on mode of treat-
ment and prognosis [71]. Clinically implemented signatures
today use different biomarkers, such as combined expres-
sion and genomic variation differences, to classify patients
in clinical groups as a means of decision on mode of treat-
ment. The unique ability of GATA3 as a sole biomarker, that

is, not as a part of a genomic signature, to classify breast
cancer patients in clinical groups is, thus, uncommon in the
context of breast cancer, and suggests that GATA3 is a
major force behind processes standing at the core of the
disease. While much attention has been given to tumor sup-
pressor functions of GATA3 [4,12,13,39,72,73], lately it was
reported to mediate ER binding to the genome, thus sup-
porting growth of hormone-driven cancers [1,20]. Our find-
ings connect these different functions by suggesting a
cellular-context dependent equilibrium between tumor
suppressor and tumor promoting effects. Based on altered
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Figure 7 Distinct genetic signatures of luminal breast cancer patients are associated with specific mutations of GATA3. (A-D): Mean and
distribution of expression levels of indicated genes are shown. The basal WT group are BLBC patients with no GATA3 mutations; DBD and TAD are luminal
breast cancer patients heterozygous for GATA3 mutations within the DBD (exons 5, 6) or TAD (intron 4, 5 or exon 3), respectively. T-test P-values of the
differences between the DBD and TAD groups are presented at the right bottom corner of each graph. BLBC, basal-like breast cancer; DBD, DNA binding
domain; GATA3, GATA binding protein 3; TAD, transactivation domain; WT, wild type.
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regulatory activity of GATA3 upon tumorigenesis, we can
postulate that in normal cells GATA3 is associated with
tumor suppression activities (for example, differentiation,
proper apoptotic processes, reduced proliferation). Con-
versely, in luminal breast cancer, GATA3 supports aspects
of cancer progression through altered signal transduction of
hormones and growth factors; increased proliferation and
decreased apoptosis; and simultaneously, signaling prognosis
associated with GATA3 expression [7,74] may be a result of
other processes, including upregulation of genes regulating
chromosome integrity (BEGAIN, CEP70, HEM1).

Within the host of GATA3 target genes we uncovered, a
signature of three genes (BCL2, DACHI and THSD4) sep-
arates patients into ER groups, underlining deregulation
of apoptotic signaling (negatively regulated by BCL2 and
DACHI), ER signaling and cell cycle control (regulated by
DACH] [38-40,42,43]) as possible major processes early in
luminal breast cancer development. The function of
THSD4, currently unknown, may expose additional path-
ways involved in luminal breast cancer progression. In
BLBC, other GATA3-controlled cellular pathways, or lack
of downstream ER signaling, may compensate for upregu-
lation of BCL2, THSD4 and DACHI by GATAS3, resulting
in a tumor suppressor function.

Thus, a model for a GATA3-dependent mechanism con-
trolling transformation involves initial alterations in the
milieu of transcription factors expressed in a cell, followed
by loss of control on cell cycle progression, apoptosis and
ER signaling resulting from deregulation of BCL2, DACH1
and/or THSD4 by GATA3. These changes, in turn, permit
further acquisition of tumorigenic-associated signals leading
eventually to cancer. This model suggests that GATA3
activity precedes, or, alternatively, circumvents the need for
ER signaling in early tumorigenesis, in agreement with sup-
portive evidence [1], thus placing GATA3 at the core of
luminal breast cancer.

The effect of GATA3 results, however, not only from
direct transactivation of targets. GATA proteins have an
established function in locus control regions, directing
tissue- and developmental-specific expression patterns of
distal regions [75,76]. Indeed, GATA3 binding sites as
identified by ChIP-seq are predominantly enriched in
intergenic regions. Accordingly, an altered binding pattern
in cancer cells would influence the cells transcription pro-
gram through chromatin organization, and sequentially
transcription, of extensive and distal genomic regions.

The dual activities of GATA3 are exemplified by its
effect on normal/cancer stem cell populations. In normal
cells, GATA3 expression reduced the population of pro-
genitor cells, in agreement with a role in differentiation of
these cells into mature luminal cells [4,66,72]. Conversely,
in luminal cancer cells, GATA3 expression led to prolifer-
ation of TICs. Since, in luminal breast cancer models,
GATA3 induces differentiation [12,66], we postulate that
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our observations reflect proliferation of an existing TIC
population rather than active de-differentiation. This is
consistent with findings in a mouse model, which showed
that exogenous expression of GATA3 leads to larger, but
more differentiated, tumors, relative to control tumors
[12]. Thus, GATA3 acts to prevent tumorigenesis in
normal cells by reducing populations of transformation
susceptible progenitor cells, while in luminal breast cancer it
induces both differentiation, and, as a tumor-supporting fac-
tor, proliferation of therapy-resistant [77], EMT-associated
[78], TICs. Further functional tests will be needed to fully
characterize the equilibrium between tumor supporting-
and suppressing-functions of GATA3.

GATA3 is one of the frequently mutated genes in breast
cancer [21,22,79], predominantly in the luminal subtype
[79]. Distinct GATA3 regions necessary for chromatin
remodeling and direct transactivation [80] predict that
mutations of different domains may affect different sets of
genes. Accordingly, mutations and expression analyses
demonstrated distinct molecular signatures associated with
mutations of specific functional domains. Clustering of pa-
tients bearing TAD mutations with BLBC patients may
result from reduced activity on target genes [81] mimicking
the phenotype of GATA3-low breast cancer, while an
altogether divergent and discrete signature characterizes
patients with DBD mutations. Further experiments are
needed to fully characterize the molecular basis and
possible clinical outcome associated with the different mu-
tations. However, these molecular signatures suggest that
molecular typing and, subsequently, prognosis and treat-
ment considerations for breast cancer patients may require
incorporation of specific GATA3 mutations.

Conclusions

In summary, a critical role is demonstrated for GATA3
within the networks that govern breast cancer progression.
Changes in genomic targets and regulatory activity may
control tumor-associated mechanisms. Considerations of
mutational modifications demonstrate how a GATA3 posi-
tive cancer may actually produce a distinct clinical pheno-
type. Our findings combine to expose possible molecular
mechanisms associated with breast cancer progression and
suggest that typing of patients according to their GATA3
behavior may add a layer in therapeutic considerations.
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Additional file 1: Table S2. Primers used in real time PCR.

Additional file 2: Table S1. T-test P-values for genes dividing breast
cancer patients groups by ER status at the highest statistical significance.
Additional file 3: Figure S1. GATA3 induces Bcl2, DACH1 and THSD4
in luminal breast cancer lines. Relative expression levels of specified
genes were measured 48 hours following siRNA transfections relative to
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Ctrl siRNA transfected cells, both normalized to beta-actin. Results of
three pooled GATA3 siRNAs are shown.

Additional file 4: Figure S2. Silencing of GATA3 is followed by
downregulation of tested genes in luminal breast cancer cells. Three
pooled siRNA were used to silence GATA3 in MCF7 or T47D lines (a).
Relative expression levels of tested genes were measured in MCF7 (b)
and T47D (c) cells transfected with GATA3 siRNA relative to control
transfected cells, both normalized to beta-actin. Results are average
standard error of three to five independent experiments. *T-Test P-values
<0.1; **T-Test P-values <0.05; ***T-Test P-values <0.01.
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