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Abstract: The polypeptides encoded by the chloroplast ndh genes and some nuclear genes form the
thylakoid NADH dehydrogenase (Ndh) complex, homologous to the mitochondrial complex I. Except
for Charophyceae (algae related to higher plants) and a few Prasinophyceae, all eukaryotic algae
lack ndh genes. Among vascular plants, the ndh genes are absent in epiphytic and in some species
scattered among different genera, families, and orders. The recent identification of many plants
lacking plastid ndh genes allows comparison on phylogenetic trees and functional investigations of
the ndh genes. The ndh genes protect Angiosperms under various terrestrial stresses, maintaining
efficient photosynthesis. On the edge of dispensability, ndh genes provide a test for the natural
selection of photosynthesis-related genes in evolution. Variable evolutionary environments place
Angiosperms without ndh genes at risk of extinction and, probably, most extant ones may have
lost ndh genes recently. Therefore, they are evolutionary endpoints in phylogenetic trees. The low
number of sequenced plastid DNA and the long lifespan of some Gymnosperms lacking ndh genes
challenge models about the role of ndh genes protecting against stress and promoting leaf senescence.
Additional DNA sequencing in Gymnosperms and investigations into the molecular mechanisms of
their response to stress will provide a unified model of the evolutionary and functional consequences
of the lack of ndh genes.
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1. Introduction

The ndh genes are homologous to those encoding components of mitochondrial and
bacterial respiratory complex I (NADH dehydrogenase, EC 1.6.5.3). Their identification
in chloroplast DNA, by the 1980s [1,2], was a surprise because the respiratory electron
transport chain and the photosynthetic electron transport chain are characteristic of mito-
chondria and chloroplast respectively, and there was no evidence for the presence of any
complex I-like or respiratory-like process in chloroplasts. Therefore, the role, if any, of the
ndh genes in the chloroplast became an active field of research that continues today.

Chloroplasts evolutionarily derive from primitive endosymbiont cyanobacteria in
host cells [3,4]. Many genes from cyanobacteria were progressively transferred to the
nucleus of host cells, and the engulfed cyanobacteria evolved into chloroplasts that are
only partially autonomous. Most chloroplast proteins are encoded in nuclear DNA, and
only a few chloroplast proteins (about a hundred) are encoded in genes retained in plastid
DNA; among them, the ndh genes. These genes, although lost in most algae lineages, are
conserved in the plastid DNAs in the phylum Streptophyta and in the derived land plants.
This suggests that ndh genes provide some advantages for the adaptation from aquatic to
terrestrial environments. Figure 1 compares the chloroplast DNAs of Arabidopsis thaliana
(154.5 kbp), as a model Angiosperm, and Synechocystis (3600 kbp), as a model cyanobac-
terium. Transpositions of the ndh genes (yellow) accompanied the reduction of about
95% of the cyanobacterial genome size to become the chloroplast DNA of angiosperms.
The ndh genes are present in the plastid DNA of bryophytes, ferns, and photosynthetic
higher plants, except for a few species that will be considered here. The conservation and the
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expression of ndh genes in chloroplasts vary among photosynthetic eukaryotes, revealing how
environmental factors determine the conservation or the loss of genes through natural selection.

Figure 1. Map of ndh genes (yellow) in the circular plastid DNA typical of higher plants. Some
other representative genes are also indicated. Those inside the circle are transcribed clockwise (inner
arrow) and those on the complementary strand counterclockwise (outer arrow) and are depicted
outside. The thick lines in the circle correspond to the inverted repeated regions. Inside the circle,
the ndh gene map in Arabidopsis is compared with the homologous gene map of Synechocystis as a
model cyanobacterium.

Indeed, sequencing of chloroplast DNA from many plants, and immunological and
proteomic identification of chloroplast proteins and protein complexes, have demonstrated
the presence of ndh genes and a complex I-like (the Ndh complex) in the chloroplast of
most land plants. Parasitic angiosperms, such as Epifagus virginiana and Cuscuta reflexa,
which have low or no photosynthetic activity, were soon found to lack ndh genes [5–7],
which suggested that the protein products of the ndh genes play a role in photosynthesis.
However, as we will see below, some fully photosynthetic plants have been found to lack
the plastid ndh genes and the Ndh complex, making their removal as intriguing as their
functional role. The low relative amount of Ndh protein (about 0.2% of the thylakoid
protein) [8,9] and the absence of chloroplast ndh genes in several plants [10] suggest that
the functional role of the Ndh complex in the chloroplast might be dispensable in some
environments and in some plant lines.

Early evidence [11,12] still suggested that ndh genes are involved in the response to
different stresses, which could be related to the evolutionary loss of ndh genes. However,
other functions of the Ndh complex in photosynthesis and leaf senescence could explain
the loss of ndh genes. Plastid DNA from many plants have recently been sequenced and
provide extensive taxonomic and phylogenetic information on the loss of plastid ndh genes.
This review will seek correlations of biochemical, functional, and protective properties
attributable to the Ndh complex with the estimated time and mode of evolutionary loss of
ndh genes.
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2. Chloroplast ndh Genes

Table 1 shows the usual name of the 11 chloroplast ndh genes (ndhA to ndhK), their
encoded polypeptides, and their homologous subunits in respiratory complex I of mito-
chondria and respiratory bacteria. In most plants, the ndh H, A, I, G, E, and D genes with
the psaC gene (encoding the photosystem I protein PsaC and located between ndhE and
ndhD genes) are organized into a transcriptional unit (operon) that maps into the small
single-copy region of plastid DNA. The ndhC, K, and J genes constitute another operon
located in the large single-copy region of plastid DNA (Figure 1). The ndhF (mapping into
the small single-copy region) and two identical copies of the ndhB gene (one in each of the
two inverted repeated regions) are transcribed independently as monocistronic mRNA.
Transpositions, inversions, and deletions within the DNA strand account for the deviations
from the canonical gene organization, prevalent in Angiosperms (Figure 1). Each of the
ndhA and ndhB genes has an intron of approximately 700 and 1000 nucleotides, respectively.

Table 1. Chloroplast ndh genes, encoded polypeptides, and homologous subunits in the respiratory
complex I.

Ndh
Gene

Encoded
Polypeptide

Homologous Polypeptides
in Respiratory Complex I (References)

ndhA NDH-A ND1/NuoH/FpoH, EchB, NQ08 [11,13]
ndhB NDH-B ND2/NuoN/FpoO, NQO14 [13–15]
ndhC NDH-C ND3/NuoA/FpoA, NQ07 [14–16]
ndhD NDH-D ND4/NuoM/FpoM, NQ013 [13]
ndhE NDH-E ND4L/NuoK/FpoK, NQ011 [13,15,16]
ndhF NDH-F ND5/NuoL/FpoL, NQ012 [13,17]
ndhG NDH-G ND6/NuoJ/FpoJ, NQ010 [13,18]
ndhH NDH-H 49(IP)/NuoD/FpoD, EchE, NQ05 [13,19,20]
ndhI NDH-I TYKY/NuoI/FpoI, EchF, NQ09 [13,20]
ndhJ NDH-J 30(IP)/NuoC/FpoC, EchD, NQ04 [13,20]
ndhK NDH-K PSTT/NuoB/FpoB, EchC, NQ06 [13,20]

Consistent with a functional role of the proteins encoded by the ndh genes in pho-
tosynthesis, several of them are absent or pseudogenized in heterotrophic species of the
genera Orobanche and the family Orchidaceae [21–23]. However, ndh genes were not
found in some fully photosynthetic competent plants, such as the Gymnosperm Pinus
thunbergii [24]. Except for Gnetales and several conifers, plastid DNA of Gymnosperms
have ndh genes [25]. Thus, the plastid DNA of Cycas taitungensis [26] and of the Conifers
Cryptomeria japonica (a Cupressaceae) [27] and Thuja plicata [28] contain the ndh genes.
Frequently, ndh pseudogenes with large nucleotide deletions are found in the plastid DNA
of plants lacking ndh genes, and comparison among phylogenetically close genera suggests
that the functional genes were recently lost.

Among fully photosynthetic Angiosperms, species of several genera and families’
(e.g., Erodium, Ericaceae, Najas) ndh genes rarely correlate with taxonomic or evolutionary
relationships [23] and, at least in the Orchids family, occurred after evolution into sub-
families [29–33]. Similarly, only two out of thirteen Erodium species (E. texanum and E.
carvifolium) retain all eleven ndh genes intact in the chloroplast [29]. The ndh genes were
reported to be absent in species of Gentiana sect. Kudoa [34], but they are present in species
of Gentiana sect. Cruciata [35]. Extensive sequencing of plastid DNA within families and
genera over the past few years frequently reports the absence of ndh genes in a few plants.
As a recent example, of 25 complete DNA sequences from the genera Aragoa, Littorella, and
Plantago of Plantaginaceae, only those of the aquatic genus Littorella lack ndh genes [36].

Independent losses of ndh genes have been found in families of the order Alismatales,
where 10 of 94 plants tested lack ndh genes [37], in the family Tofieldiaceae, in the aquatic
species Najas flexilis of the family Hydrocharitaceae [31], and specifically, in Capparis spinosa
var. herbacea of the genus Capparis [38]. In contrast, through chloroplast DNA re-ordering,
some Ericales duplicate six ndh genes (in the inverted repeat regions), while they lose
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one copy of the usually duplicated ndhB gene, and the ndhF remains alone in the small
single-copy region [39,40] (compare with Figure 1). Not surprisingly, the loss of ndh genes
and the inverted repeat region are found in some Cactaceae [41] and may be associated
with crassulacean acid metabolism.

Representative phylogenetic trees for Ericaceae (Figure 3 of Reference [30]), Erodium
(Figure 1 of Reference [29]), and Alismatales (Figure 3 of Reference [37]) show that losses of
chloroplast DNA ndh genes from some Angiosperms appear to be recent (less than 50 Ma)
and independent evolutionary events after most species’ diversification occurred. Possibly,
most of the older losses of ndh genes produced plants unable to evolve and diversify. Plant
species that have lost the ndh genes could be endpoints of the evolutionary tree and will
become extinct. Arguably, many Angiosperms lost the ndh genes in mild environments,
where the Ndh complex was dispensable [10,23,32,42–45]. They and their offspring were
unable to survive and diversify in variable stress environments. Probably, the same
considerations are also valid for Gymnosperms, where ongoing intensive sequencing
programs for Pinus species, which probably diverge only less than 10 Mya [46,47], should
clarify what species and how many contain ndh genes [48].

3. Functional Role of the Thylakoid Ndh Complex

Understanding the fate of the ndh genes during land plant evolution must be based on
the reactions catalyzed by the Ndh complex in chloroplasts. These appear to be related to
the cyclic photosynthetic electron transport and photophosphorylation. The Ndh complex
is found in the stromal thylakoids [9,49,50] and catalyzes an oxidoreduction reaction whose
electron acceptor is oxidized plastoquinone (PQ). There are some discrepancies about the
identity of the electron donor. The similarity to respiratory complex I, as well as in vitro
and zymogram assays, suggests that NADH is the electron donor [8,9,17,28,51–53], in
accordance with the reaction:

NADH + H+ + PQ→ NAD+ + H2PQ

NADPH has no or negligible donor activity in assays with most plant preparations.
Therefore, the Ndh complex would provide a pathway for PQ reduction not dependent on
photosynthetic electron transport, that would initiate (Figure 2) a chlororespiratory electron
transport chain [9,50,53]. Through dynamic oxidoreduction of plastoquinone, chlororespi-
ration adjusts (poises) the redox levels of intermediaries [9,54–56] to optimize [57] cyclic
electron transport (CET) following photoinhibition of photosystem II, under fluctuating
light intensities or when temperature or humidity strongly affect CO2 availability or the
rate of its reduction. CET complements linear electron transport (LET) (especially un-
der different stress conditions and high CO2 concentrations) to polarize the thylakoid
membrane, which is required to synthetize ATP and dissipate the excess of energy from
excited chlorophylls (non-photosynthetic quenching of chlorophyll fluorescence, NPQ) via
zeaxanthin (xanthophyll cycle).

At a sudden decrease in light intensity, the reductive CO2 cycle drains more electrons
than PSII can supply, and the transporters would be over-oxidized if the Ndh complex does
not supply extra electrons from the NADH formed, for example, by malate dehydrogenase.
Conversely, at high light intensity and a low rate of CO2 fixation (due to low temperature
or stomate closure under dry conditions), the electron transporters are reduced in excess,
and electrons are drained by the Mehler reaction, producing anion superoxide (O2•−).
The additional electrons are drained by the subsequent action of superoxide dismutase
and plastoquinol peroxidase, which scavenge superoxide and hydrogen peroxide (H2O2)
respectively, keeping the level of reactive oxygen species (ROS) under control.
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Figure 2. Connection of the Ndh complex with the photosynthetic electron transport. Electron
transporters are displayed on the reference scale of the redox potential (E0). Arrows are marked in
red for cyclic-specific electron transport (CET), in blue for electrons through the Ndh complex, and in
green for electron excitation transfer. Box on the bottom right schematizes the main transformations
of reactive oxygen species.

Terminal oxidase [50,55] could be an additional electron-draining process of cyclic
over-reduced electron transporters. The combined actions of the Ndh complex and ox-
idative reactions constitute the chlororespiratory electron transport chain that rapidly
buffers the redox shifts of electron transporters while maintaining active CET. The balanced
ratio of Ndh and oxidative reactions prevents the burst of ROS levels that can led to cell
death [58–65].

Based on assays with Arabidopsis membrane preparations, Yamamoto et al. [66] re-
ported evidence for reduced ferredoxin as an electron donor and postulated that the Ndh
complex transports electrons from photosystem I to PQ, providing a route of CET addi-
tional to that of the commonly accepted model in which ferredoxin donates electrons to the
intermediary electron pool, PQ/cyt.b6f [67]. Be that as it may, the involvement of the Ndh
complex optimizing CET and the associated photophosphorylation is widely accepted.

4. Dispensing with the Role of the ndh Genes

The involvement of the Ndh complex optimizing photosynthesis would explain the
absence of the plastid ndh genes in parasitic plants and some carnivorous plants [68,69]
that rely on low or no photosynthetic activity. Logic suggests that unused genes would
accumulate mutations and, eventually, be eliminated to economize plant chemical and en-
ergy consumption [10,23,32,42–45]. Among the mutations, T-to-C mutations are frequently
corrected by C-to-U editing at the RNA level of the transcript [42] and, less frequently, by
C-to-T reversion in DNA [41]. However, the pseudogenization and deletion stages of ndh
genes should be affected by the effects of environmental changes on the evolution of other
functional traits of plants. Thus, detailed analysis of gene loss in Orchid and Ericaceae
species [21,30] revealed that ndh genes were among the first pseudogenized genes in the
chloroplast during the evolutionary transition from phototrophic or mycoheterotrophic
to wholly heterotrophic metabolism, raising the question of whether species without ndh
genes would survive for a long time without the development of heterotrophic structural
and functional adaptations.

Transgenic plants defective in ndh genes point to some clues based on the role of the
Ndh complex in protection against different stresses. Increased expression of ndh genes
under different environments provides additional lines of evidence. Thus, transgenic
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tobacco plants whose ndh genes have been inactivated show impaired photosynthetic
activity [17,70], especially under fluctuating light intensities and high atmospheric CO2
concentrations [56].

Plants under stress demand extra ATP consumption. Consequently, to satisfy it,
heat stress was reported to increase CET and photophosphorylation in grape leaves [71].
The plastid Ndh complex is an efficient proton pump that increases CET and associated
phosphorylation [72]. More specifically, chlororespiration has been found to increase under
stress [55,73–76] and protects against photo-damage of oxygen-evolving complex and
PSII [77,78].

Many biochemical and functional assays using transgenic plants indicate that the Ndh
complex improves photosynthesis efficiency, decreases entropy production [44,56], and
protects the leaves against a variety of stresses. However, extensive research using plant
species lacking ndh genes is required to confirm the selective advantages provided by the
Ndh complex. In this line of research, Sun et al. [79] reported intense variability and loss of
ndh genes in the critically endangered Kingdonia uniflora. Similarly, Folk et al. [80] found
intense pseudogenization and loss of ndh genes in the semi-aquatic plant Saniculiphyllum
guangxiense, which contrasts with the strong conservatism of the plastid genes in other
Saxifragales. Plausibly, the precariousness of Kingdonia uniflora and Saniculiphyllum guangx-
iense could be related to the poor photooxidative protection due to the absence of ndh genes.
Plants lacking ndh genes have more difficulty adapting to changing environments. Thus,
while the non-invasive weed Mikania cordata lacks the ndhF gene, the invasive Mikania
micrantha retains it [81] and could invade new environments.

Current explanations assume that ndh genes could be dispensed with in mild envi-
ronments. However, their loss only slowly drove plants to the heterotrophic alternative or,
eventually, to extinction when abiotic stress episodes affected terrestrial habitats [82]. Be
that as it may, gene dispensation implies that plants without ndh have some evolutionary
advantages over plants with ndh in mild environments. Metabolism economy may be one
advantage, but not necessarily the only one.

Being involved in stress protection, comparative analyses of plastid genes in different
plants frequently report positive selection of the ndh genes [83–85]. However, the subtle
function of ndh genes makes it difficult to functionally and ecologically compare species
that differ only by the presence of ndh genes. Moreover, in stress protection, several
activities interact with that of the Ndh complex in different ways, which involve ROS
signaling and transcriptional factors, and may result in either a protective response [86] or
cell death [63,64,87]. The Ndh complex and ndh gene transcripts increase early during leaf
senescence [9,59]. Accordingly, transgenic tobacco plants defective in the ndhF gene show
delayed leaf senescence [62] (Figure 3), and chloroplast-related ROS activities are required
for senescence and cell death in different plant systems [28,88–92].

Due to their involvement in ROS metabolism, ndh genes participate in complex cross-
roads regulating defense response, aging, and programmed cell death [63–65], three related
cellular possibilities critical for plant survival and evolution.

ndh gene losses may have occurred frequently during the evolution of land plants,
but the co-existence of ndh-less and ndh-containing plants of the same or newly diversified
genera suggests: (1) that plants that lost ndh genes a long time ago (e.g., 10 or more Mya)
became extinct, and (2) that the ancestors of extant ndh-less plants lost ndh genes recently.
Therefore, ndh gene pseudogenizations are recent events in plant evolutionary trees that
only include data from extant plants. An obvious conclusion would be that plant species
lacking ndh genes are in danger of extinction.



Int. J. Mol. Sci. 2021, 22, 12505 7 of 13

Figure 3. Delayed leaf senescence in T181A and T181S tobacco as compared with wt (Petit Havana),
showing basal leaf senescence even before blooming. Tobacco T181A and T181S are point mutants
obtained from wt tobacco in which the phosphorylable threonine at position 181 of the NDH-F
subunit of the Ndh complex is changed to non-phosphorylable alanine and serine, respectively [17].

5. Plant Death or Species Extinction, a ndh Dilemma?

Extinction of species lacking ndh genes requires recurrent periods of stress in most
lands and over many generations. Their survival requires poorly investigated mechanisms
of protection alternative to ndh genes, or a drastic decrease of ROS-generating metabolism,
such as photosynthesis, as occurs in the heterotrophic metabolism of epiphytic and carniv-
orous plants.

Gnetales and some Pinus, which could have lost the ndh genes early in evolution,
require further functional investigations and sequencing of the plastid DNA from many
closely related species and subspecies.

Gnetales and some Pinus that lack ndh genes are surprisingly long-lived. The Gnetal
Welwitschia mirabilis is a well-documented case of a plant lacking ndh genes [93]. It is the
only species in the only genera of the Welwitschiaceae family of Gnetales, and estimates put
its lifespan at up to 1000 years. Several Pinus, such as some individuals of Pinus longaeva,
probably live for longer periods, and their needles remain alive and photosynthetically
active for up to 30 years. As long-lived plants, they have surely suffered many periods
of stress, but have survived without ndh genes. On the other hand, their longevity could
be due in part to the absence of ndh genes, as found in transgenic tobaccos. To answer
this question and, in general, the relationships among plant longevity, species survival,
extinction, and diversification, requires detailed investigations on the distribution of ndh
genes and pseudogenes in Gymnosperms and on the molecular mechanisms that protect
long-lived species against stress.

In Angiosperms’ leaves, ROS not only destroy cell components, but are also trans-
duction signals within the complex networks of molecules that modulate the response to
various stresses and cell survival and death [94]. The destructive and signaling actions
of ROS co-exist in responses to stress, aging, and senescence, and it is often difficult to
distinguish between the two actions and among the three responses. Three major ROS,
singlet oxygen (1O2), superoxide anion radical (O2•−), and hydrogen peroxide (H2O2),
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are effective wreckers of cellular components and are also cellular signals that affect gene
expression and enzymatic activities. In general, 1O2 and O2•− appear to promote cellular
aging and programmed cell death (senescence), and H2O2 promotes the stress defense re-
sponse [64,65,95,96]. In chloroplasts, 1O2 is generated by transfer of an electronic excitation
from chlorophyll to O2. O2•− is generated by transfer of an electron from reduced inter-
mediaries to O2 or to 1O2. The Ndh complex, in concerted action with electron-draining
reactions (chlororespiration, including superoxide dismutase, SOD), keeps the thylakoid
membrane polarized, which allows dissipation as heat of excess energy from excited
chlorophylls and decreases the formation of 1O2. SOD delays senescence by removing
O2•− and forming H2O2. Therefore, low levels of SOD are associated with senescence in
plant [58,59,61,97–100] and animal [101] tissues. In contrast, mRNA translatable expression
of ndh genes increases early in leaf senescence, and the Ndh complex increases during
tissue senescence and fruit ripening [9,11,28,59,91,102,103]. Increased Ndh with lower SOD
levels in senescence and aging, far from balancing the redox level of transporters, increases
their reduced forms, thus hindering thylakoid polarization and dissipation of excess light
energy, and worse, increasing 1O2 and O2•− formation, as observed during barley flag
leaf senescence [104]. Therefore, SOD and Ndh complex responses, as photosynthetic
tissues age, emerge as key determinants of the leaf fate towards death (increased Ndh and
decreased SOD) or survival.

Although the presence of ndh genes in nuclear DNA and their encoded polypeptides in
chloroplasts cannot be excluded, Gnetales and some Pinus probably lack the Ndh complex.
In addition, investigations on SOD and other activities that may be involved in protection
of photosynthetic machinery in Gymnosperms are needed to understand their survival
and longevity, often in extreme environments.

The molecular mechanisms of senescence have been investigated mainly in leaves
of monocarpic Angiosperms and show great similarity with the programmed cell death
(PCD) investigated in animals and plants [62]. When the tissue reaches an advanced,
but poorly defined, stage of development, the death program triggers the expression of
senescence-related genes involved in the ordered macromolecular breakdown, leading to
cell death. In animal and non-photosynthetic plant tissues, mitochondria are critical in
triggering PCD through cellular signals, including ROS, that re-program gene expression
from live metabolic processes to cell death [105–107]. Often, the ROS damage makes it
difficult to distinguish between ROS-mediated PCD and ROS-mediated cellular aging, in
which the cell dies by accumulation of hazardous damages of cellular components. In
photosynthetic tissues, chloroplasts replace mitochondria as the signal factory (including
ROS) that triggers PCD and/or cellular aging [62]. Most responses to biotic and abiotic
stresses are also mediated by ROS produced by mitochondria [108] and chloroplasts [12],
adding further complexity to the time-course of death and defense responses in plants that
are permanently exposed to variable environments. However, the molecular mechanisms of
death and defense responses are reasonably well-known in Angiosperms, but are scarcely
known in most Gymnosperms, where the absence of ndh genes in some of them is a factor
to be considered.

The absence or low expression of ndh genes could explain why needles and the
whole plant in several Gymnosperms do not appear to show PCD but show aging by
accumulation of hazardous damages. Intriguingly, evidence links heritable deficiencies
of complex I (the mitochondrial homologous of Ndh complex) to human longevity [109],
in clear correspondence with the longevity observed in Gymnosperms lacking ndh genes.
However, this does not explain why, without ndh genes, Gymnosperms can survive the
stresses to which Angiosperms are supposedly protected by ndh genes. Further molecular
and physiological investigations should shed light on the uncertainties surrounding the
life extension of some plants, the dispensation of the ndh genes, and the extinction of most
ndh-less plants.
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6. Concluding Remarks and Future Perspectives

Recent analyses of the absence of plastid ndh genes in a number of plants and com-
parison with phylogenetic trees, as well as with functional investigations of the role of the
ndh genes, allowed us to advance some conclusions and propose open questions about the
functional and evolutionary consequences of the presence of the ndh genes.

The ndh genes allow Angiosperm species to survive in many stressful terrestrial
environments and to maintain efficient photosynthesis. They provide little or no advantages
in mild environments, where they consequently accumulate mutations and, eventually,
become pseudogenes and are deleted from plastid DNA. Angiosperms that have lost plastid
ndh genes survive in mild and moderate stress environments or adopt a heterotrophic or
carnivorous metabolism that compensates for their low or absent photosynthetic efficiency.
Variable environments along the scale time of biological evolution place Angiosperms
without ndh at permanent risk of extinction, as may be occurring with the endangered
Kingdonia uniflora [79]. Consequently, phylogenetic analyses indicate that Angiosperm
species lacking plastid ndh genes lost them recently (typically less than 10 Mya). Most
hypothetical species that lacked ndh genes more than 10 Mya became extinct, and the extant
Angiosperms without ndh are probably evolutionary endpoints on phylogenetic trees.

In Gymnosperms, the still small number of available sequences makes a comprehen-
sive phylogenetic analysis of ndh gene loss difficult. Although a low relevance of PCD is
assumed for leaves and the whole plant in Gymnosperms, the long lifespan of many of
them poses formidable problems of understanding from our knowledge of ndh genes and
stress responses in Angiosperms. Therefore, in addition to advances in plastid and nuclear
DNA sequencing, future research should reveal the mechanisms of the stress response
in Gymnosperms, from the molecular and cellular levels, including ROS generation and
scavenging, to membrane-protecting mechanisms. A satisfactory understanding of the
dispensability of the ndh genes may only be achieved with a broad view that includes the
peculiarities of Angiosperms and Gymnosperms in terms of photosynthetic metabolism,
stress response, longevity, reproduction, diversification, and vulnerability to extinction,
that could be affected by the loss of ndh genes.
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